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Abstract. We construct special types of quantum soliton solutions using quantum Lie algebras
associated to affine Lie algebras.

1. Introduction
The group–theoretical (Lie-algebraic) method [6, 7] of construction and integration of two-
dimensional exactly solvable models is one of the most powerful. Using the representation
theory for conformal and affine Toda models [9, 7] one is able to reconstruct the general solutions
to systems as well as to derive special, in particular, solitonic solutions both in classical and
quantum regions. The zero curvature condition applied to elements of connections constructed
as sums of products of arbitrary functions with generators of (higher) grading subspaces [5] of
a Lie algebra results in systems of equations [3].

Previously, general solution to the higher grading affine Toda equation were obtained in
[3]. In [9] group-theoretical specialization for the lower grading subspace were formulated, and
classical soliton solutions obtained in frames of algebraic approach to integrable models. In
[10] we proposed quantum Lie algebra solutions generating solitons based on further algebraic
properties of quantum groups.

In this paper we consider the case of affine Toda models constructed using algebraic elements
that belong to grading subspaces up to some number l. The group–theoretical approach
allows to extract special solitonic solutions from general ones. The lower grading case for the
quantized version of the affine Toda models (the sine–Gordon equation) involving the quantum
Lie algebra [1] (sl2)q was considered in [10]. Here we extended that construction for a higher
grading subspace case. Exactly solvable dynamical systems appearing in this the higher grading
formulation are generalizations of lower (l = 1) cases, and possess more complicated and deep
properties describing more complicated physical situations. It is important to take into account
next terms in more general equations in order to understand interrelations of ordinary solutions
(to equations associated to lower grading algebraic generators) with solutions corresponding to
higher graiding.

2. Higher grading affine Toda system
In this and the next sections we recall [3] the affine Toda system consrtuction. Consider
a two dimensional manifold M with local coordinates z±. Up to a gauge transformation,

(1, 0)-component lying in (see subsection 7.1 of Appendix)
⊕l

n=0 Ĝ+n and (0, 1)-component in



⊕l
n=0 Ĝ−n of a flat connection A in the trivial holomorphic principal fibre bundle M×Ĝ −→ M

( l > 0 is fixed integer) satisfy the zero curvature condition

∂+A− − ∂−A+ + [A+ , A−] = 0. (1)

The components A± are the following (we keep notations of [3])

A+ = −B F+B−1 , A− = −∂−BB−1 + F−. (2)

Here B is a mapping M −→ Ĝ0 (Ĝ0 is a group with the Lie algebra Ĝ0) and F
± (1 ≤ m ≤ l−1)

are mappings to
⊕l

n=1 Ĝ±n

F± = E±l +
l−1∑
m=1

F±
m , (3)

where E±l are some fixed elements of Ĝ±l and F±
m ∈ Ĝ±m, (1 ≤ m ≤ l − 1). Substituting (2)

into (1) one arrives at the equations of motion

∂+
(
∂−BB

−1
)

= [E−l , B ElB
−1] +

l−1∑
n=1

[F−
n , B F+

n B−1] , (4)

∂−F
+
m = [El , B

−1 F−
l−mB] +

l−m−1∑
n=1

[F+
n+m , B

−1 F−
n B] , (5)

∂+F
−
m = −[E−l , B F

+
l−mB

−1]−
l−m−1∑
n=1

[F−
n+m , B F

+
n B−1] . (6)

Since Qs, C ∈ Ĝ0 then B can be parameterized as B = b eη Qs eν C where b is a mapping to G0,
the subgroup of Ĝ0 generated by all elements of Ĝ0 other than Qs and C. Substituting B into
the equations of motion (4–6) one has

∂+
(
∂−bb

−1
)

+ ∂+∂− ν C = elη[E−l , b El b
−1] +

l−1∑
n=1

enη [F−
n , b F+

n b
−1] , (7)

∂−F
+
m = e(l−m)η [El , b

−1 F−
l−m b] +

l−m−1∑
n=1

enη[F+
m+n , b

−1 F−
n b] , (8)

∂+F
−
m = −e(l−m)η [E−l , b F

+
l−m b

−1]−
l−m−1∑
n=1

enη[F−
m+n , b F

+
n b−1] , (9)

∂+∂− η Qs = 0 . (10)

Now consider the case l = 1. Let us parameterize the element B in principal grading of Ĝ and
take b = e(ϕ(x+,x−),H0), γ±0 (x±) = e(ϕ

±(x±),H0), where (ϕ,H0) ≡
∑r

i=1 ϕiH
0
i . From the equations

(7–10) for an infinite dimensional Lie algebra Ĝ in the principal grading we obtain the affine
Toda field theory systems of equations

∂+∂−ϕ+ 4µ
β

r∑
i=1

(
mi

αi

α2
i
exp(βαi · ϕ)− ψ

2 exp(−β · ϕ)
)
= 0. (11)

The formal general solution to the above equation was introduced in [9]:

e−βλi·ϕ = e−βλi·ϕ0
(1)⟨λi|(γ+0 )−1µ−1

+ (z+)µ−(z−)(γ−0 )|λi⟩(1)

((1)⟨λ0|(γ+0 )−1µ−1
+ (z+)µ−(z−)(γ−0 )|λ0⟩(1))

mj = e−βλi·ϕ0 (1)⟨λi|B−1|λi⟩(1)

((1)⟨λ0|B−1|λ0⟩(1))
mj , (12)



The fact that (12) is indeed a solution to (11) may be checked by using the representation theory

of Ĝ. A map g : M −→ G appearing in the gradient form of the flat connection A± = g−1∂±g,
may be factorized (according to the Lie algebra decomposition G = G− ⊕ G0 ⊕ G+) by the
modified Gauss decomposition g = µ−ν+γ0− or g = µ+ν−γ0+ with maps γ0± : M −→ G0,
µ±, ν± : M −→ G±. The grading condition provides the holomorphic property of µ±, i.e., they
satisfy the initial value problem

∂±µ±(z±) = µ±(z±)Ẽ±(z±), (13)

Ẽ±(z±) =
M∑
m=1

Ẽ±
m(Φ

±), Ẽ±
m(Φ

±) =
∑
α∈∆+

m

Φ±m
α (z±)X±α, (14)

with arbitrary functions Φ±m
α (z±) determining the general solution to the system. Note that

the summations in (14) are performed over the set of positive roots ∆+
m of G =

∑
m∈ZZ Gm in

the subspace Gm. Using notations of [3], ĝ0 ≡ γ0+γ
−1
0− , and γ

±
0 (x±) : M −→ G0 are arbitrary

mappings. The element B is parameterized as B−1 = (γ+0 (x+))
−1ĝ0γ

−
0 (x−).

3. Generalization of the affine Toda equations
Consider for example the case of ŝl2 in principal grading (see subsection 7.1 of Appendix). The
mapping B is parameterised as

B = eφH
0
eν̃ C eη Q = eφ H̃

0
eν C eη Q, (15)

where H̃0 = H0 − 1
2 C is Cartan element, and ν̃ = ν − 1

2φ. The case l = 3 delivers a

generalization of (11). In this case E3 = a+E
1
+ + a−E

2
−, E−3 = a+E

−2
+ + a−E

−1
− , [3] and

therefore [E3 , E−3] = 3a+a−C ≡ βC. Introduce the notations

E1 = a+E
0
+ + a−E

1
−, E−1 = a+E

−1
+ + a−E

0
−, f1 = a+E

0
+ − a−E

1
−, f−1 = a+E

−1
+ − a−E

0
−,

f2 = −√
a+a−H

1, f−2 = −√
a+a−H

−1.

The fields of the model are in (15) as well as matter fields ψiR/L, i = 1, 2, χ± defined as

F+
1 = ψ2

Rf1 + χ+E1, F+
2 = ψ1

Rf2, F−
1 = ψ1

Lf−1 + χ−E−1, F−
2 = ψ2

Lf−2,

ψiR/L, i = 1, 2, are components of two the Dirac fields ψi. It follows then that

[E3, [E−3, E±1]] = 0, [E3, [E−3, H̃
0]] = 4a+a−H̃

0, [E3, [E−3, fi]] = 4a+a−fi, i = ±1,±2.



Using (7–10), the equations of motion are

∂+∂− φ = −a+a−
((
e2φ − e−2φ

) (
e3η − eη

(
ψ1
Lψ

2
R − χ+χ−

))
− eη

(
e2φ + e−2φ

) (
ψ1
Lχ+ − ψ2

Rχ−
))
, (16)

∂+∂− ν = −a+a−
((
e2φ + e−2φ

)(3

2
e3η − 1

2
eη
(
ψ1
Lψ

2
R − χ+χ−

))
− 1

2
eη
(
e2φ − e−2φ

) (
ψ1
Lχ+ − ψ2

Rχ−
)
+ 2e2ηψ2

Lψ
1
R

)
, (17)

∂− ψ
1
R =

√
a+a−e

η
(
ψ1
L

(
e2φ + e−2φ

)
− χ−

(
e2φ − e−2φ

))
, (18)

∂+ ψ
1
L = 2

√
a+a−

(
−e2ηψ1

R +
1

2
eηψ2

L

(
ψ2
R

(
e2φ − e−2φ

)
+ χ+

(
e2φ + e−2φ

)))
, (19)

∂− ψ
2
R = 2

√
a+a−

(
e2ηψ2

L +
1

2
eηψ1

R

(
ψ1
L

(
e2φ − e−2φ

)
− χ−

(
e2φ + e−2φ

)))
, (20)

∂+ ψ
2
L =

√
a+a−e

η
(
−ψ2

R

(
e2φ + e−2φ

)
− χ+

(
e2φ − e−2φ

))
, (21)

∂− χ+ =
√
a+a−e

ηψ1
R

(
χ−
(
e2φ − e−2φ

)
− ψ1

L

(
e2φ + e−2φ

))
, (22)

∂+ χ− =
√
a+a−e

ηψ2
L

(
χ+

(
e2φ − e−2φ

)
+ ψ2

R

(
e2φ + e−2φ

))
, (23)

∂+∂− η = 0. (24)

The general solutions to the matter fields F±
i may be written in the following form. For m = 1

in (7–10) one has [3]

⟨i|F+
1 |i; i⟩ = f+i = e

r∑
l=0

kil(ϕ
−−ϕ)l

eν0∂+

(
⟨i|µ−1

+ µ−|i; i⟩
⟨0|µ−1

+ µ−|0⟩mi

⟨i|µ−1
+ µ−|i⟩

)
. (25)

Here |i; i⟩ denotes an element of the Verma module which is result of the action of the lowering
generator on the highest state vector.

4. Solitonic solutions from general solutions
In [9] it was shown how to extract solitonic solutions from the formal general solutions of the
affine Toda field equations. Let’s take γ±0 = 1 in (12) to be a constant function. Then the
mappings µ± are µ± = µ0±e

z±E± with µ0± being some fixed mappings independent of z±. Next

take Ẽ± in (14) as E± ≡ E±l+
∑l−1

N=1 c
±
NE±N where E± are elements of a Heisenberg subalgebra

of Ĝ, namely [E+, E−] = ΩC. One can consider principal of homogenious Heisenberg subalgebras
for that purpose. In this paper we only deel with the principal case while the homogeneous case
will be discussed elsewhere. Thus, we arrive at a special solution to (11)

e−βλi·ϕ = e−βλi·ϕ0
(1)⟨λi|ex±E±µ0ex±E± |λi⟩(1)

((1)⟨λ0|ex±E±µ0ex±E± |λ0⟩(1))
mj .

(26)

In order to compute these solutions explicitly we have to remove E±-dependence from (26)

moving E+ to the right and E− to the left . Then we should find such a µ0 =
∏N
i=1 e

Vi so that

Vi would be eigenvectors with respect to the adjoint action of E±, i.e., [E±,Vi] = ω
(i)
± Vi. Then

it turns out [9] that resulting expressions provide us with solitonic solutions to the equations

under considerations while parameters ω
(i)
± characterize solitons.

In the next sections we will explain the affinization (sl2)
t
q of the quantum Lie algebra (sl2)q [1]

and then apply those formulations to the construction of q-deformed solutions to the quantised
[8] affine Toda equations in the specific example of the higher grading the sine–Gordon equation.



5. Quantum Lie algebra
5.1. Universal enveloping algebra Uq(sl2)
The complex Lie algebra sl2 is generated by three elements X+, X− and H satisfying

HX± −X±H = ±2X±, X+X− −X−X+ = H.

The Lie bracket is skew-symmetric and satisfies Jacobi identity. The quantized enveloping
algebra Uq(sl2) [2], [4] is an associative algebra generated by X+, X−, h with q-deformed
commutator relations

X+X− −X−X+ = qH−q−H

q−q−1 , HX± −X±H = ±2X±,

It possesses a Hopf algebra structure with deformed adjoint action

(adX±)qa = X±aqH/2 − q∓1qH/2aX±, (adH)qa = Ha− aH, (27)

(for all a ∈ Uq(sl2)).

5.2. Quantum algebra (sl2)q
In [1] new generators in the quantized universal enveloping algebra Uq(ŝl2) were introduced as

X±
h =

√
2

q+q−1 q
−H/2X±, Hh = 2

q+q−1

(
qX+X− − q−1X−X+

)
. (28)

It forms a three-dimensional subspace (sl2)q = X+
h , X

−
h ,Hh in Uq(sl2), closed under the quantum

Lie bracket
[a, b]h = (ada)qb, (29)

a, b ∈ (sl2)q. These generators possesses the following commutation relations

[Hh, X
±
h ]h = ±2q±1X±

h , [X
±
h ,Hh]h = ∓2q∓1X±

h , [X
+
h , X

−
h ]h = Hh,[

X−
h , X

+
h

]
h
= −Hh [Hh,Hh]h = 2(q − q−1)Hh, [X

±
h , X

±
h ]h = 0.

(30)

We should mention that (sl2)q is not a Lie algebra in the standard sense. The generators (28)
do not satisfy Jacobi identity and q-deformed Lie bracket is not skew-symmetric. Although
q-analog of Jacobi identity for (sl2)q is still absent, nevertheless (29) is q-skew-symmetric,
[1]. Under q-skew-symmetry we mean a symmetry under q-conjugation, (that we will denote
by tilde) an automophism of (sl2)q defined by q 7→ 1

q . Then for any element of (sl2)q

(aX+
h + bX−

h + cHh)̃ = ãX+
h + b̃X−

h + c̃Hh, (a, b, c ∈ C) and q-deformed Lie bracket satisfies˜[a, b]h = [b̃, ã]h.

5.3. Affinization of the (sl2)q
In [10] an affinized version, the principal Heisenberg subalgebra, an eigenvalue vertex operator,
and representations of the quantum algebra (sl2)q were considered. In this section and
subsection 7.2 of Appendix we recall these constructions and then apply them in section 6
to the construction of solutions for the higher grading the sine–Gordon equation. Let G = (sl2)q
and L = C[t, t−1] be the algebra of Lourant polynomials in t and let L(G) = L⊗C G. Introduce
a complex vector space (sl2)

t
q : L̃(G) = L(G)⊕CK⊕Cd. This is a loop algebra L(G) completed

with the derivation d (acting as t ddt in L and trivially on K) extended by a one-dimensional
center K corresponding to C-valued q-deformed 2-cocycle on L(G) Ψq(a, b) = (x|y)hΦ(P,Q),



Φ(P,Q) = Rest
dP
dt Q. Here (x|y)h is a quantum bilinear form on (sl2)q [1] and P , Q are polynoms

in t. We define q-deformed Lie bracket in this algebra as

[tm ⊗ x⊕ ωK ⊕ νd, tn ⊗ y ⊕ ω1K ⊕ ν1d]h =
(tm+n ⊗ [x, y]h + νntn ⊗ y − nν1mt

m ⊗ x)⊕mδm+n,0(x|y)hK
(31)

where x, y ∈ G, ν, ω, ν1, ω1 ∈ C.
Now we introduce generators that constitute an affinization of quantum algebra (sl2)q

H1 = 1⊗Hh, H0 = 1⊗ (K −Hh), e1 = 1⊗X+
h , e0 = t⊗X−

h , f1 = 1⊗X−
h , f0 = t−1 ⊗X+

h .

Then one can calculate the adjoint action

[H0, e0]h = 2e0q
−1, [H0, f0]h = −2f0q

−1, [H0, e1]h = −2e1q, [H0, f1]h = 2f1q
−1,

[H1, e1]h = 2e1q, [H1, f1]h = −2f1q
−1, [H1, e0]h = 2e0q

−1, [H1, f0]h = 2qf0,

[H0,H1]h = −2(q − q−1)H1, [H0,H0]h = 2(q − q−1)H1, [H1,H1]h = 2(q − q−1)H1,

[H1,H0]h = −2(q − q−1)H1, [e0, f0]h = H0, [e1, f1]h = H1, [f0, e0]h = −H0, [f1, e1]h = −H1,
[e0,H0]h = −2qe0, [e0,H1]h = 2qe0, [e1,H0]h = 2e1q, [e1,H1]h = −2e1q,

[f0,H0]h = 2q−1f0, [f0,H1]h = −2q−1f0, [f1,H1]h = 2qf1, [f1, H0]h = −2qf1.

5.4. Heisenberg subalgebra and eigenvector of the q-deformed adjoint action
The key point in the construction of solitonic solution to the affine Toda equation is the existence
of eigenvectors with respect to elements of the Heisenberg subalgebra of the underlying affine
algebra. Let

qE+1 = 1⊗X+
h + t⊗X−

h , qE−1 = 1⊗X−
h + t−1 ⊗X+

h

so that the following series

A2m = (q + q−1)mtm ⊗ (−Hh), A2m+1 = (q + q−1)mtm ⊗ q−1X+
h − tm+1 ⊗ qX−

h +
(
X−
h |X

+
h

)
h
,

Fq =
+∞∑

k=−∞
ζkAk,

(32)
is an eigenvector of qE±1 with respect to the quantum affine Lie bracket (31). Using Fq we can
find q-deformation of the solitonic solution (26) corresponding to the affinization of the quantum
algebra (sl2)q.

6. Solution to the affine Toda equations corresponding to (sl2)
t
q

In this section we will use results of the section 5. We propose q-deformed solitonic solutions
to the affine Toda equations associated with the affine Lie algebra ŝl2, i.e., the sine–Gordon
equation. Those solutions will be constructed by means of the Heisenberg subalgebra operators
and the eigenvector F involved in the exponent in the mapping µ0. Using properties of the
highest weight representation of the affinized quantum algebra (sl2)q one can check (similar to
[9], [8]) that (12) is a solution to the affine Toda equation (11) when we replace its ingredients
by their quantum group counterparts. A consideration in the case of the sine–Gordon equation
is given in [9].

First consider the case of l = 1. Starting from the general solution (12) to the affine Toda

equations for ŝl2 we take γ±0 = 1 and substitute the vectors of the fundamental highest weight

representation of ŝl2 by the fundamental highest weight representation vectors of (sl2)
t
q

e−βλi·ϕ = e−βλi·ϕ0
(1)
q ⟨λi|µ−1

+ (z+)µ−(z−)|λi⟩
(1)
q(

(1)
q ⟨λ0|µ−1

+ (z+)µ−(z−)|λ0⟩(1)q

)mj , (33)



where |i⟩(1)q = |λi⟩(1)q = v
(i)
0 denotes the highest vector in the i−th fundamental representation

of (sl2)
t
q. Taking E± = qE±1 in the solitonic solution and inserting exponential of the eigen

operator Fq as a group element, we obtain [10]

e−βλj ·ϕ = e−βλj ·ϕ0
(1)
q ⟨j|e−E+z+eQFq eE−z− |j⟩(1)q(
(1)
q ⟨0|eE+z+eQFq eE−z− |0⟩(1)q

)mj . (34)

Then it follows that

e−βλj ·ϕ = e−βλj ·ϕ0
(1)
q ⟨j| exp

(
Qe−2z+ζ−2 1

t z−ζ−1
Fq

)
exp(−z+z−)|j⟩(1)q(

(1)
q ⟨0| exp

(
Qe−2z+ζ−2 1

t z−ζ−1Fq

)
exp(−z+z−)|0⟩(1)q

)mj . (35)

So for j = 0
e−βλ1·ϕ = e−βλ1·ϕ0 , (36)

and for j = 1 this gives

e−βλ1·ϕ = e−βλ1·ϕ0 exp

(
−Qe−2z+ζ−2 1

t
z−ζ−1

+∞∑
m=−∞

ζ2mtm(q + q−1)m
)
. (37)

6.1. The case l = 3
The affine Toda equation system (11) is a particular example of more general construction
described in the first section. Namely equations (11) correspond to l = 1 grading subspace. The
case l = 3 leads us to a generalization of (11). Using the general form of solution to the affine
Toda equation for l > 1 (12) we can form a class of q-deformed solutions constructed with by
means of the eigenvector Fq (32). We take in (12)

E± = qE±1 + qE±3, (38)

where qE+3 = t⊗X+
h + t2 ⊗X−

h , qE−3 = t−1 ⊗X−
h + t−2 ⊗X+

h . Then we arrive at a solution
for Toda type field ϕ

e−βλ1·ϕ = e−βλ1·ϕ0 exp

(
−Qe−2z+(1+t)ζ−2 1

t
z−(1+ 1

t
)ζ−1

+∞∑
m=−∞

ζ2mtm(q + q−1)m
)
. (39)

Now we want to find q-deformed solitonic solutions for matter fields F±
m just in the same way

as we did it for Toda type fields. We substitute elements (38) to (25) and take the state vectors
from (42) from the basis of the fundamental highest weight representation of (sl2)

t
q. Finally the

q-solitonic solutions are

f+1 = exp

(
1∑
l=0

k1l(ϕ
− − ϕ)l

)
eν0∂+

(
q⟨1| exp

(
Qe−2z+(1+t)ζ−2 1

t
z−(1+ 1

t
)ζ−1

+∞∑
m=−∞

ζ2mtm(q + q−1)m
)

×
+∞∑
n=0

1
n!(Qe

−2z+(1+t)ζ−2 1
t
z−(1+ 1

t
)ζ−1

)n q−1q−λ
(1)

×
(

+∞∑
m=−∞

ζ2m+1tm(q + q−1)m
)n(

(1− 2qq−(λ(1)−2))n|1; 1⟩q +
n−1∑
k=0

(1− 2qq−(λ(1)−2))k|1⟩q
))

= e

1∑
l=0

k1l(ϕ
−−ϕ)l

eν0∂+

(
exp

(
2Qe−2z+(1+t)ζ−2 1

t
z−(1+ 1

t
)ζ−1

+∞∑
m=−∞

ζ2mtm(q + q−1)m
)
q−1q−λ

(1)

×

(
exp(1− 2qq−(λ(1)−2))|1; 1⟩q +

exp
(
(1−2qq−(λ(1)−2))

)
−1

(1−2qq−(λ(1)−2))−1
|1⟩q

))
,



f+0 = exp

(
1∑
l=0

k1l(ϕ
− − ϕ)l

)
eν0∂+

(
exp

(
Qe−2z+(1+t)ζ−2 1

t
z−(1+ 1

t
)ζ−1

+∞∑
m=−∞

ζ2mtm(q + q−1)m
)

×q−1q−λ
(0)

exp(1− 2q−1q(2+λ
(0)
0 ))|0; 0⟩q +

exp

(
(1−2q−1q(2+λ

(0)
0 )

)
−1

(1−2q−1q(2+λ
(0)
0 )−1

|0⟩q

 .

Similar relations can be obtain all higher cases of l elsewhere.

7. Appendix
7.1. Affine Kac–Moody algebras
Here we recall facts about affine Kac–Moody algebras [5], [3]. Consider an untwisted affine Kac-

Moody algebra Ĝ endowed with an integral grading Ĝ =
⊕

n∈ZZ Ĝn, and denote Ĝ± =
⊕

n>0 Ĝ±n.
By an affine Lie algebra we mean a loop algebra corresponding to a finite dimensional simple Lie
algebra G of rank r, extended by the center C and the derivation D. According to [5], integral

gradings of Ĝ are labelled by a set of co-prime integers s = (s0, s1, . . . sr), and the grading
operators are given by

Qs ≡ Hs +NsD − 1

2Ns
Tr (Hs)

2 C . (40)

Here Hs ≡
∑r

a=1 saλ
v
a ·H0, Ns ≡

∑r
i=0 sim

ψ
i , ψ =

∑r
a=1m

ψ
aαa , mψ

0 = 1. H0 is an element of

Cartan subalgebra of G; αa, a = 1, 2, . . . r, are its simple roots; ψ is its maximal root; mψ
a the

integers in expansion ψ =
∑r

a=1m
ψ
aαa; and λva are the fundamental co–weights satisfying the

relation αa · λvb = δab.
The principal grading operator Qppal is given by (40) where Ns = h is Coxeter

number. Therefore Ĝ0 = {H0
a , a = 1, 2, . . . r ;C;Qppal}, Ĝm = {E0

α(m) , E
1
−α(h−m)}, Ĝ−m =

{E0
−α(m) , E

−1
α(h−m)} where 0 < m < h, and α(m) are positive roots of height m. The element

B is parameterized as B = eφ·H̃
0
eν C eηQppal = eφ·H

0
eν̃ C eηQppal , where H̃0 was defined in [3] as

H̃0
a = H0

a − 1
Ns

Tr
(
HsH

0
a

)
C = H0

a − 2
α2
a

sa
Ns
C, and ν̃ = ν − 2

h δ̂ · φ, with δ̂ =
∑r

a=1
λa
α2
a
, and

λa being the fundamental weights of G. Let us denote by Hn, En
±, D, C the Chevalley basis

generators of ŝl2. The commutation relations are

[Hm , Hn] = 2mC δm+n,0, [Hm , En±] = ±2Em+n
± ,

[Em
+ , En−] = Hm+n +mC δm+n,0, [D , Tm] = mTm , Tm ≡ Hm, Em± .

(41)

The grading operator for the principal grading (s = (1, 1)) is Q ≡ 1
2H

0 + 2D. Then the

eigensubspaces are Ĝ0 = {H0, C,Q}, Ĝ2n+1 = {En+, En+1
− }, n ∈ ZZ, Ĝ2n = {Hn}, n ∈ {ZZ− 0}.

7.2. Highest weight representations of (sl2)q
The highest weight vector v0 of the fundamental representation of the quantum Lie algebra
(sl2)q [10] satisfies the relations Hhv0 = v0, X

+
h v0 = 0, X−

h v0 = v1. Note that because of the
definition of generators (sl2)h (28) we have

[H,X+
h ]h = [H,X+

h ] = 2X+
h , [H,X

−
h ]h = [H,X−

h ] = −2X−
h , [H,Hh]h = [H,Hh] = 0.

The element H lies in Cartan subalgebra of (sl2)q. Therefore Hh(Hv0) = (Hv0), Hv0 = λv0.
Using the definitions (28) we find that Hh = 2

q+q−1

(
qX+X− − q−1X−X+

)
= qH(X+

h X
−
h −

X−
h X

+
h ), and the action ofHh on v0 in such a form gives qH(X+

h X
−
h −X−

h X
+
h )v0 = v0, and finally

X±
h v1 = q−λv0, where λ can be found from 2

q+q−1

(
qX+X− − q−1X−X+

)
v0 =

2
q+q−1 [H]v0 = v0,



with 2q(qλ−q−λ)
(q+q−1)(q−q−1)

= 1. This procedure can be recurrently continued for all vn in the basis of

the representation. In section 7 we introduced a quantum affine algebra (sl2)
t
q as an affinization

of (sl2)q. The highest weight vector of the i-th (i = 1, 2) fundamental representation of (sl2)
t
q

possesses the properties similar to the properties of the highest weight vector of fundamental
representation of (sl2)q. The action of h1,2, e1,2 and f1,2 generators on highest weight vectors

v
(1)
0 and v

(0)
0 is given by

h1v
(1)
0 = v

(1)
0 , h1v

(0)
0 = 0, h0v

(1)
0 = 0, h0v

(0)
0 = v

(0)
0 , e1v

(0)
0 = e1v

(1)
0 = e0v

(0)
0 = e0v

(1)
0 = 0,

f0v
(1)
0 = f1v

(0)
0 = 0, f0v

(0)
0 = v

(0)
1 , f1v

(0)
0 = v

(0)
1 ,

(42)
where superscripts correspond to representation and subscripts are vector basis numbers. In the
same way as for (sl2)q

e1v
(1)
1 = q−Hv

(1)
0 , e1v

(1)
1 = q−λ

(1)
v
(1)
0 , hv

(1)
0 = λ(1)v

(1)
0 , e1v

(0)
1 = 0 h = 1⊗H, (43)

e0v
(0)
1 = q−Hv

(0)
0 , e0v

(0)
1 = q−λ

(0)
v
(0)
0 , hv

(0)
0 = λ(0)v

(0)
0 , e0v

(1)
1 = 0, (44)

H1v
(1)
1 = (1− 2qq−(λ(1)−2))v

(1)
1 , H1v

(0)
1 = 2q−1q(2+λ

(0)
0 )v

(0)
1 . (45)

8. Conclusions
In this paper we discussed affine Toda models formulated with the inclusion of higher then one
grading subspaces for affine Lie algebras. The zero curevature condition applied to elements
of connection involving higher gradign Lie algebra generators lead us to more suffisticated and
interesting systems of equations describing dynamical systems that are closer (with respect to
ordinary affine Toda models) to phenomena in nature. In particular, these systems of equations
take into accound interractions of original Toda fields with matter fields. The group–theoretical
way to treat higher grading affine Toda models allows us to find special solitonic solutions. In the
quantum situation, corresponding methods using properties of quatnum groups and quantum
Lie algebras [1] make possible constructions of special quantum soliton solutions.
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