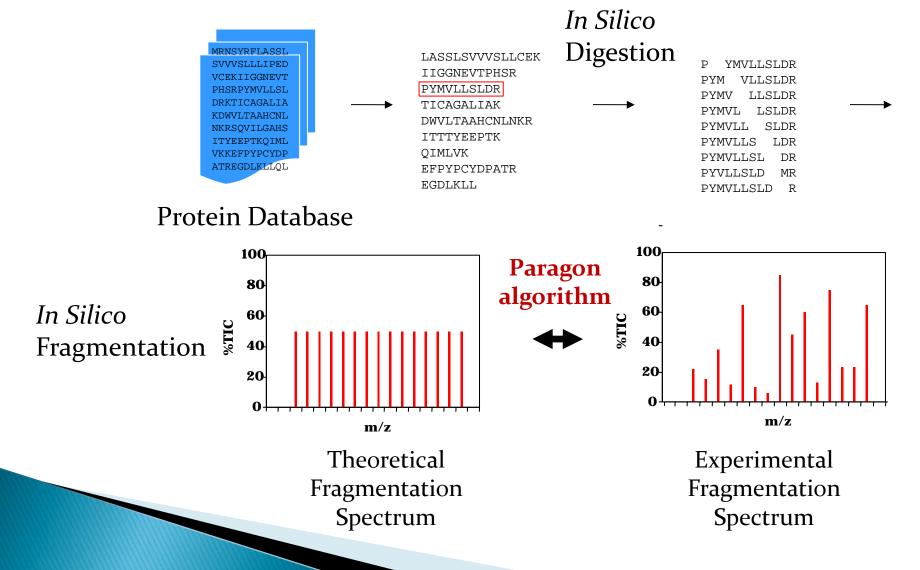
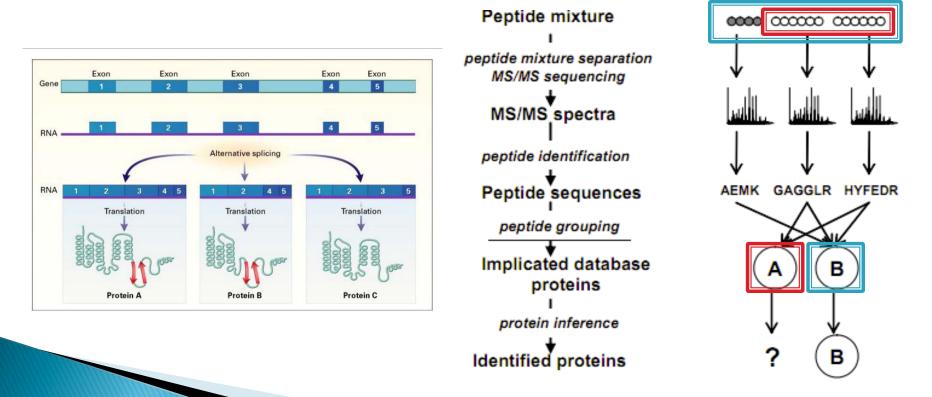

Quantitative Proteomics


Jana Horáková Mass Spectrometry – IOCB AS CR

- Bottom-up approach
- Before you start
 - Experimentalal design
- Quantitation methods
 - Labelling techniques
 - Metabolic labelling SILAC
 - Chemical labelling iTRAQ, dimethyl labelling
 - Label-free techniques
 - Targeted approach SRM
 - MS/MS^{all} approach –SWATH

Bottom-up Approach in Proteomics



Peptide identification Database Search

Limitations of Bottom-up Approach

- Protein level information is inherently lost
 - Proteins are quantified indirectly, their ratios are inferred from peptides after digestion.
 - Protein isoforms impose a problem to protein identification and quantitation. Close *inspection of data on peptide level* is required.

- Bottom-up approach
- Before you start
 Experimental design
- Quantitation methods
 - Labelling techniques
 - Metabolic labelling SILAC
 - Chemical labelling iTRAQ, dimethyl labelling
 - Label-free techniques
 - Targeted approach SRM
 - MS/MS^{all} approach –SWATH

Before you start: Experimental design

What do you want to quantify?

• One protein you know or as many as possible?

• What do <u>you</u>	know about the proteins and the	sample? Do
you expe	Consultation is	ichment?
 How preci What is the major chain 	necessary before	esults?
• What is the		you expect ient?
	you begin your	
• How man	experiment!	Can you hod?
validate t	CAPCIMICIII:	hod?

Bear in mind: Protein quantitation is a complex task, there is no simple solution. Not all quant. approaches may be suitable in your case.

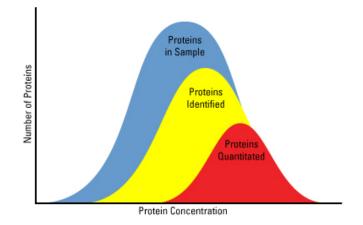
Experimental design: Choosing your quantitation method

- Sample type
 - Cell culture vs. tissue sample
 - Complexity of the sample and variation in protein abundancy
- Sample preparation prior to LC-MS/MS
 - Clean-up and enrichments strategies
 - sample loss (use of internal STD), but removal of interference
- Shotgun or targeted analysis
 - Large scale screening of up- or down-regulated proteins or biomarker confirmation

Application of label or label-free techniques

- Bottom-up approach
- Before you start
 Experimentalal design

Quantitation methods


- Labelling techniques
 - Metabolic labelling SILAC
 - Chemical labelling iTRAQ, dimethyl labelling
- Label-free techniques
 - Targeted approach SRM
 - MS/MS^{all} approach –SWATH

MS quantitation in proteomics

- Often only relative determination of quantity
- Based on peak heights or areas
- Quantity of a protein can be defined by peaks from
 - Precursor peptide(s) m/z (MS level)
 - Fragment peptide ion(s) m/z (MS/MS level)
- Labelling techniques
 - A mass tag (label) is introduced into the protein or peptide.
 Compared samples are mixed together and analyzed. The introduced mass shift enables relative quantitation.
- Label-free techniques
 - The mass of the protein or peptide remains unchanged, samples are analysed separately.

MS quantitation in proteomics

Protein abundance
 and sample complexity
 affect quantitation yield

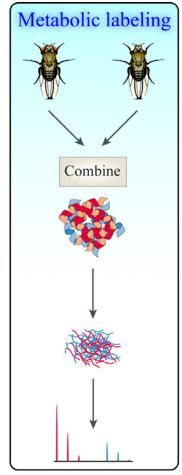
- Data dependent acquisition (DDA) usually optimized for protein identification not quantitation
 - Multiple injections of the same sample may result in partly different peptide identification lists
 - Only most intense peaks are subjected to MS/MS

- Bottom-up approach
- Before you start
 Experimentalal design
- Quantitation methods
 - Labelling techniques
 - Metabolic labelling SILAC
 - Chemical labelling iTRAQ, dimethyl labelling
 - Label-free techniques
 - Targeted approach SRM
 - MS/MS^{all} approach –SWATH

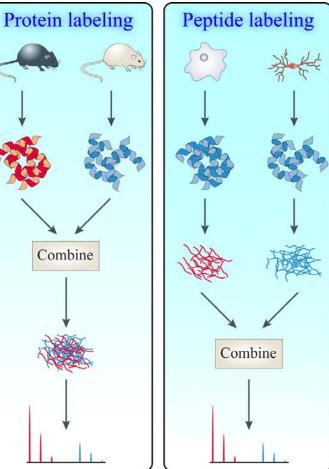
Labelling techniques

Stable isotopes

- Differential mass labels Heavy: ¹³C, ¹⁵N, ¹⁸O, ²H Light: ¹²C, ¹⁴N, ¹⁶O, ¹H
- Introduction of single elements
 - Trypsin digestion in H₂¹⁸O
 - ¹⁵N labelling of cell cultures
- Introduction of compounds labelled by multiple heavy isotopes
 - Stable isotope labelling of amino acids in cell culture (SILAC)
 - Isobaric tag for relative and absolute quantitation (iTRAQ)


Presumptions

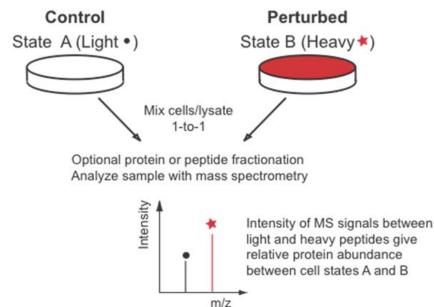
- Equal behavior under chromatographic conditions corresponding H/L labeled peptides elute at the same time
- Equal MS sampling probability of the isotopes during their elution window


Labelling techniques

Metabolical

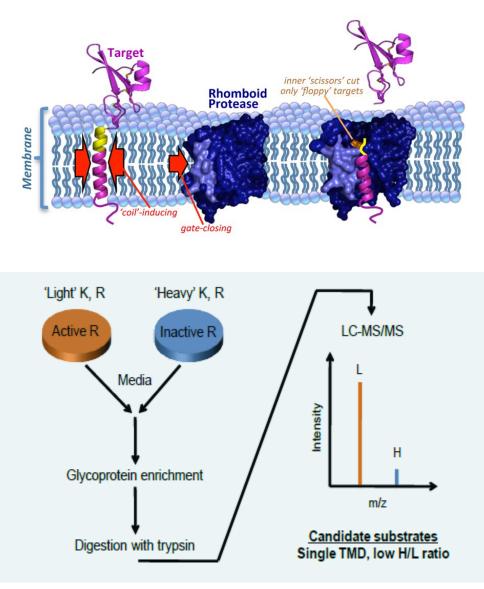
• Eg. SILAC

- Chemical
 - Eg. Dimethyl labelling


- Bottom-up approach
- Before you start
 Experimentalal design
- Quantitation methods
 - Labelling techniques
 - Metabolic labelling SILAC
 - Chemical labelling iTRAQ, dimethyl labelling
 - Label-free techniques
 - Targeted approach SRM
 - MS/MS^{all} approach –SWATH

Metabolic Labelling - SILAC

Stable isotope labelling by amino acids in cell culture


- Cell culture is grown on a medium containing either only heavy or light AAs (Arg, Lys) – auxotrophy required
- After at least 5 cell cycles a nearly full incorporation of the heavy AAs is achieved
- Labelled AAs are used as protein building blocks
 - Influence of sample preparation variations on quantitation results is eliminated
 - Label incorporation needs to be monitored

SILAC Application Example

Rhomboid protease

- Responsible for cleavage of substrates in or near their transmembrane region hereby releasing their Nterminal part into the extracellular space.
- Quantitative comparison of secretomes in cell cultures containing active rhomboid and inactive mutant to identify substrates.

SILAC Incorporation

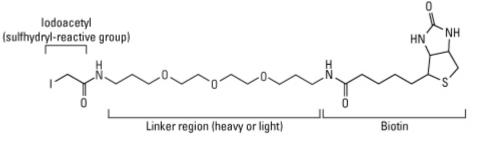
- First step: Incorporation level of heavy AAs (¹³C ¹⁵N Arg, Lys) into the cell culture proteins
 - LC-MS/MS quantitation result of a selected protein from a heavy labeled cell culture

	Protein	s Detected	Í.														Res	ults are not bias	
	N U 1 2	85.47	15.47 82.0	Accessio tr G7RM tr B6HZX	Name Elongation factor TuOS=Esc Beta-galactosidase OS=Esch		Species ECOC1 ECOSE	Peptides(95%) 76 15	H:L 35.3 0.0		gical Proces	ses Molecu	lar Function	8 PANTHE	RID	Pro	tein	sele	ctior
(Peptide	Quantitat	ion																
	Used ×	Annotat auto auto auto auto	99 99 99 99	 AFDQIDNA AFDQIDNA AFDQIDNA AFDQIDNA 	PEEK PEEK	Label:13Ci @12 Label:13Ci @12	cations 6)15N(2)(K 6)15N(2)(K 6)15N(2)(K)	△Mass 0.0091 0.0070 0.0070 0.0070	Theor m/z 688.8201 692.8271 692.8271 692.8271	2 1. 2 1. 2 1. 2 1. 2 1.	Spectrum / 1.1.5768.4 1.1.5765.4 1.1.5766.6 1.1.5767.5 1.4.5773.4 1.1.5767.5	H:L 29.2 29.2 29.2 29.2 29.2	134 134 134	Pe	eptic	le se	elect	ion
		Quantitat 1.4e4 - 1.3e4 - 1.2e4 -	ion Informa	ation		ligt	t	heavy	692.8309				- /L	. ra	tic) = (35 i.	e.	
	5	1.1e4 - 1.0e4 - 9.0e3 - 3.0e3 -							_693.3	318		H/L ratio = 35 i.e. incorporation level 97 %							
	6	7.0e3 - 5.0e3 - 5.0e3 -							69	3.8333									
	2	3.0e3 - 2.0e3 - 1.0e3 - 0.0e0 - 677		680.3345	682,3508 		.8249 69	692.3273 0.6613 1	93 694	694.3327 694.82 694.82 695 69	6.3495	699.8110 <u>11.11.11</u> 98 699	الباسية إيدار	نىراب ابرك	իսկ տեղ	.8033 1		<u>ция, штра</u> 710 711	

SILAC

- Samples are combined early in experiment – accounts for any sample losses
- Suited also when
 extensive sample
 preparation is required
- Both shotgun and targeted approach possible

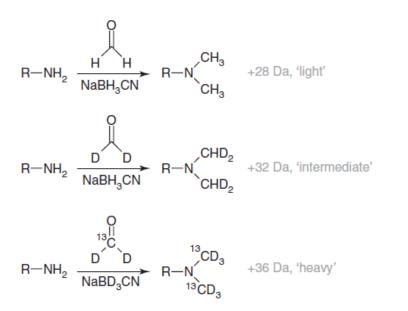
- Auxotrophy for Lys, Arg
- Easily applicable only to cell cultures
- Metabolic conversion of Arg to Pro
- Limited multiplexing
- Expensive

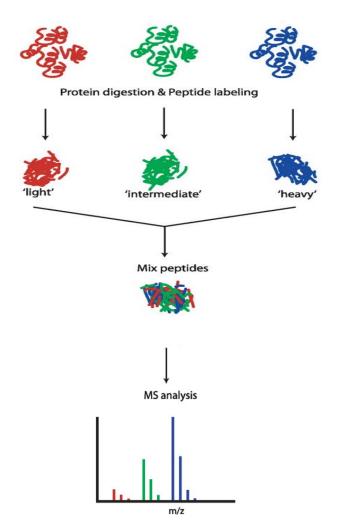

Advantages

Disadvantages

- Bottom-up approach
- Before you start
 Experimentalal design
- Quantitation methods
 Labelling techniques
 - Metabolic labelling SILAC
 - Chemical labelling dimethyl labelling, iTRAQ
 - Label-free techniques
 - Targeted approach SRM
 - MS/MS^{all} approach –SWATH

Chemical labelling


- The label is introduced in vitro
- Performed on protein or peptide level
- Cysteine labelling techniques
 - ICAT (Isotope Coded Affinity Tag)



- Primary amine labelling techniques
 - Dimethyl labelling
 - **iTRAQ** (AB Sciex), TMT (Thermo)

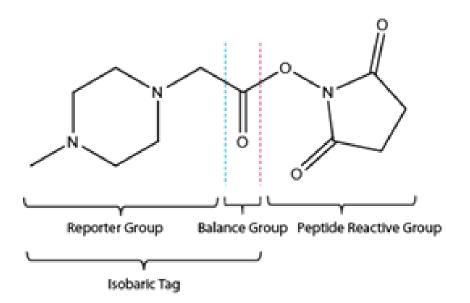
Dimethyl Labelling

Reaction of N-termini and e-amino group of lysine with formaldehyde followed by a reduction with sodium cyanoborohydride

Boersema, P. J., et a Fiplex protein quantification based on stable isotope labelling by peptide dimethylation applied to cell and tissue lysates. Proteomics. 8, 2008, pp. 4624-4632.

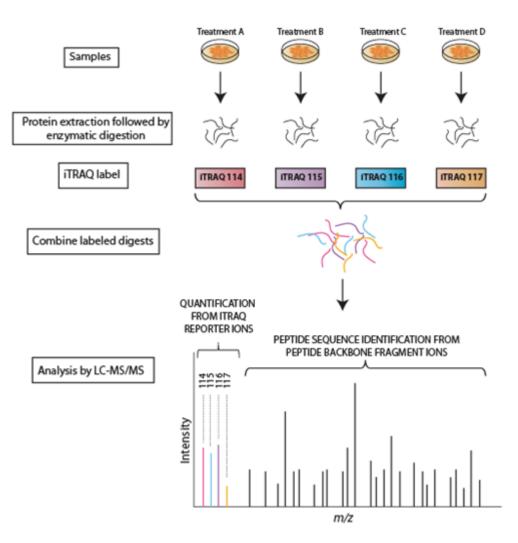
Dimethyl labelling

- Cheap and easily accessible reagents
- Reaction
 - Fast
 - In solution after digestion
- Other primary amines may react with formaldehyde – avoid Tris, Am. Bic, use TEAB
- All steps prior mixing of samples may influence your results optimisation required


Advantages

Disadvantages

iTRAQ


Isobaric tag for relative and absolute quantitation

- Reaction with primary amines
- Isobaric tag 145 Da = Reporter group + balance group (both variable heavy/light isotope composition)

itraq

- Tagged peptides are isobaric
- Ratios of reporter ions determined after peptide fragmentation
- Reporter ions represent peptide levels from diff. exp. conditions

iTRAQ

- Cheaper than SILAC
- Reaction
 - Fast
 - In solution after digestion
- Less complex MS spectra: Isobaric peptides
- Quantitation at MS/MS level – more specific

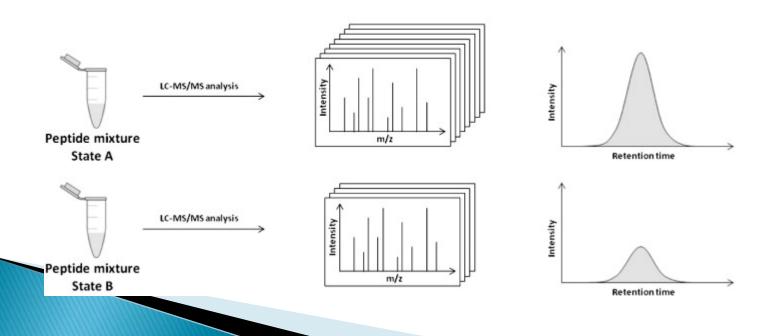
- Other primary amines may react with formaldehyde – avoid Tris, Am. Bic, use TEAB
- All steps prior mixing of samples may influence your results – optimisation required

Advantages

Disadvantages

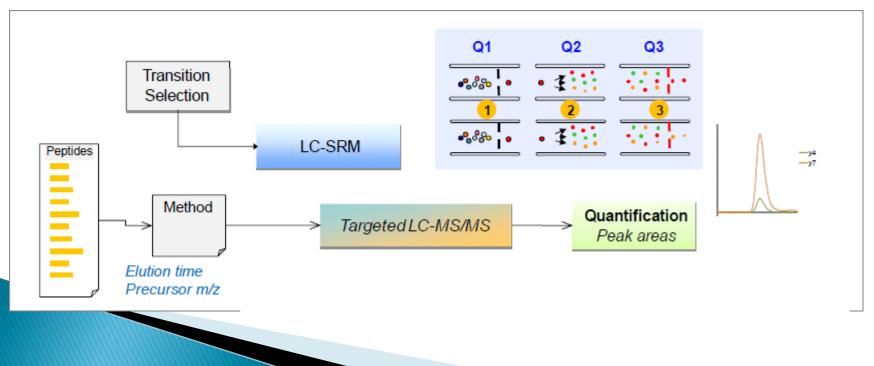
- Bottom-up approach
- Before you start
 Experimentalal design

Quantitation methods

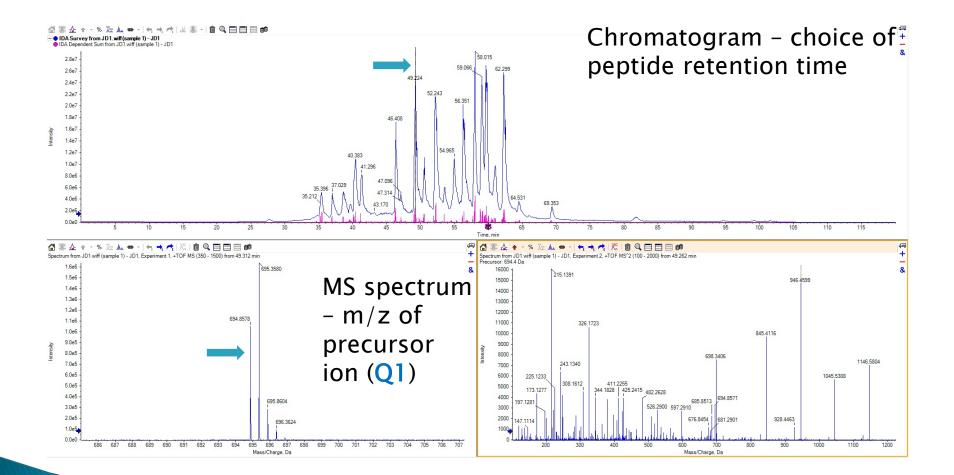

- Labelling techniques
 - Metabolic labelling SILAC
 - Chemical labelling iTRAQ, dimethyl labelling
- Label–free techniques
 - Targeted approach SRM
 - MS/MS^{all} approach –SWATH

Label-free techniques

May require special MS instrumentation but no labels

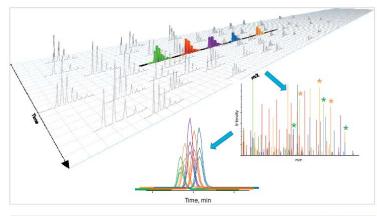

MS or MS/MS based quantitation possible

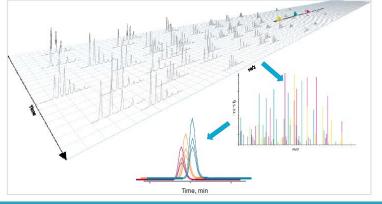
Quantification based on spectral counting and concomitant identification (MS/MS) Quantification based on peptide-ion intensity (MS) and subsequent identification (MS/MS)



Selected Reaction Monitoring (SRM)

- Targeted approach
 - Precursor selection (Peptide m/z) Q1
 - Fragmentation in the collision cell Q2
 - Fragment ion scan (Peptide fragment m/z) Q3
 - Quantitation


SRM principle

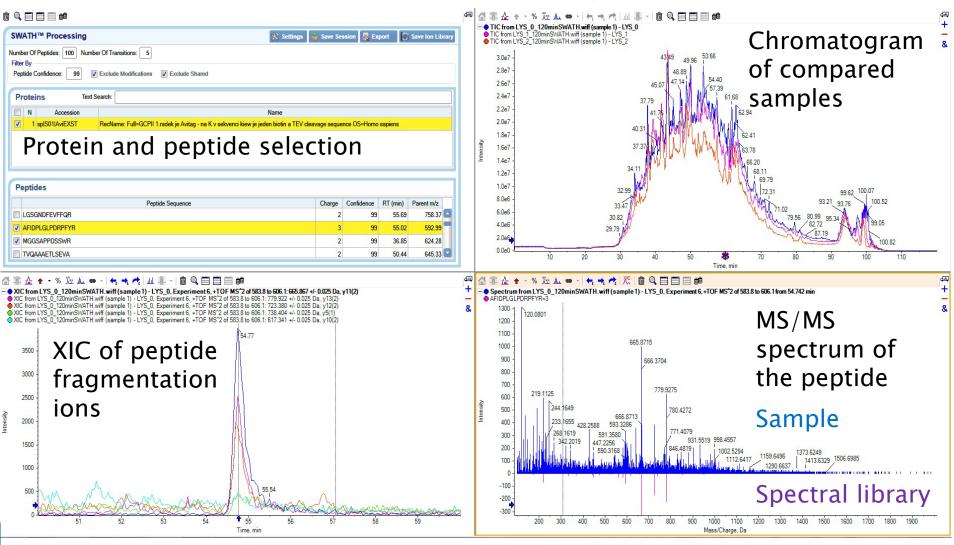


MS/MS fragmentation spectrum (Q3)

- Bottom-up approach
- Before you start
 Experimentalal design
- Quantitation methods
 - Labelling techniques
 - Metabolic labelling SILAC
 - Chemical labelling iTRAQ, dimethyl labelling
 - Label–free techniques
 - Targeted approach SRM
 - MS/MS^{all} approach SWATH
- Summary

SWATH – MS/MS^{ALL} Acquisition

TripleTOF 5600


Precursor selection window (in SRM single m/z)

 Fragmentation in the collision cell

MS/MS scan of fragments origina

fragments originating from all precursors from the selection window

SWATH Result Example

Data export to a statistical program to perform quantitation

SWATH

- Enables quantititation of previously not considered proteins
- Simplifies SRM method development – choice of precursor ions is less elaborate
- Large and complex data files
- Spectral library needs to be generated in a separate acquisition run
- Internal standards required

Advantages

Disadvantages

- Bottom-up approach
- Before you start
 Experimentalal design
- Quantitation methods
 - Labelling techniques
 - Metabolic labelling SILAC
 - Chemical labelling iTRAQ, dimethyl labelling
 - Label-free techniques
 - Targeted approach SRM
 - MS/MS^{all} approach –SWATH

Summary

Accuracy

Precision/ Reproducibility

Suggestions
 Perform both biological and technical replicates
 Randomize your sample preparation to avoid
 systematic bias
 Search engines, quantitation programs are not
 perfect
 Use statistical tests to draw important
 conclusions

Summary of methods

- More expensive
- Combing samples increases complexity but accounts for any sample losses
- Combined samples are treated the same

- Cheaper
- Samples analyzed separately – unlimited multiplexing, but increased analysis time
- Reproducible sample preparation is required
- Extensive validation is recommended

Label

Label-free

Thank you for your attention