

FIBER LASERS AND AMPLIFIERS Bright light from glass threads

VLASTIMIL MATĚJEC

Institute of Photonics and Electronics AS CR, v.v.i.

Chaberská 57, 182 51 Prague 8-Kobylisy, Czech Republic

OUTLINE

- Lasers basic terms
- Fabrication of RE-doped fibers
- Continual and pulse lasers
- Soliton lasers
- Lasers based on double-clad fibers
- Fiber amplifiers

WHAT IS LASER?

Diagram of Semiconductor Laser

Solid state laser

WHAT IS LASER?

Optical oscillator employing stimulated light emission

Light Oscillator by Stimulated Emission of Radiation

LASER

LOSER

Light Amplification by Stimulated Emission of Radiation

Rubby laser 16. 5.1960, Maiman's paper in Nature, August 6, 1960, Vol. 187, No. 4736, pp. 493-494

Sun:

temperature of the surface: 5780 K Stefan-Boltzmannův law: $I=\sigma T^4 [W/m^2] \rightarrow$

Intenzity of light on the surface of Sun: I= 63 MW/m²

Optical fiber:

at optical power of 1W in optical fiber \rightarrow

Light intensity in the fiber core is : 12.7 GW/m² approx. **200 x** more than on Sun

LASER CHARACTERISATION

- Laser emits light due to Amplified Stimulated Emission (ASE)
- Light beam from laser has spatial coherence that allow us to focuse it into a small spot
- Light beam has temporal coherence that makes possible to emit only one frequency

Laser radiation can bring high powers (cold nuclear fusion induced by Nd:YAG laser

LASER – LIGHT OSCILLATOR

What requires any oscillator?

Acoustic oscillator

It requires gain and feedback!

OSCILLATOR FREQUENCY

LASER GAIN

GAIN is obtained in <u>gain medium</u> (ruby crystal, glasses doped with rare-earth elements, etc) via Amplified Stimulated Emission (ASE)

SPONTANEOUS AND STIMULATED EMISSION

Stimulated emission is <u>an emission</u> of light **induced by the interaction of photon** with excited atoms \Rightarrow <u>Two photons</u> with the same wavelength, phase and polarisation (coherent light) are obtained (amplification - ASE)

CONDITION FOR ASE

- <u>Strong pumping</u> \Rightarrow Inversion population
- Signal photons for interaction with excited atoms
- ? How to provide these photons

Lasers: Result of <u>spontaneous emission and feedback</u> (provided by laser resonator)

<u>Amplifiers</u> From amplified signal

RESTRICTIONS TO ASE

- Interactions between <u>closely spaced RE atoms</u> decay of ASE. Caused by the vibration of glass matrices (phonons) They can be controlled by matrix composition
- Interaction of excited atoms with <u>−OH ions</u> decay of ASE ⇒ Requirements for dry glasses
- Spontaneous emission that contributes to noise
- <u>Optical losses of the fiber materials</u> (scattering) decrease a number of signal photons

HOW TO PROVIDE MORE PHOTONS FOR ASE?

POPULATION INVERSION

level populations

$$N_2 = N_1 \exp\left(-\frac{E_2 - E_1}{kT}\right)$$

Boltzmann law $N_2 < N_1$

 $\begin{array}{c} \tau_2 >> \tau_1 + strong \ pumping \rightarrow \\ N_3 > N_2 \end{array}$

Electrons on 3rd level create population inversion and light with frequency $v=(E_3 - E_2)/h$

can be amplified

V. Matějec et al., ICT Zacatepec, Mexico, April 2013

HOW TO PROVIDE MORE PHOTONS FOR ASE?

OPTICAL RESONATOR - Feedback

Reflects axially propagating photons back to gain medium a part of photons pass through partial reflector out of the resonator

AXIAL RESONANT MODES

Only modes with the same phase strengthen the field

GAIN AND AXIAL RESONANT MODES

Multiple resonant modes propagate in resonator and bring energy obtained from gain

Gain curve have multiple resonant modes

LASER – OPTICAL OSCILLATOR

Conditions for laser oscillations:

- Enough strong active medium
 Gain of the active medium > optical losses in the resonator
- 2. Phase synchronisation $\Delta \phi = 2\beta L = 2\pi N$ The phase of the feedback signal is synchronised with the phase of the input signal

- 1. Employ glass fiber cores doped with rare-earth elements (Er, Yb, Nd, Tm)
- 2. Optical core itself is used as the resonator

As optical fibers can transmit high light intensities in the fiber cores they could be used for *rapid and broad band light sources for telecommunications – fiber lasers Long telecommunication lines – amplifiers*

IPE research in the field

Er-doped fibers for C band (1530-1595 nm) Er/Yb fibers for C band, Yb as sensitiser Tm-doped fibers for S band (1460-1530 nm)

RE IONS IN TELECOMMUNICATIONS

- Nd ions 1300 nm (strong ASE only in fluoride glasses)
- Er ions 1550 nm (strong ASE in silica glasses)
- Yb ions 1060 nm (silica glasses) used for pump lasers
- Tm ions 1470 nm (silica glasses) -S band or 810 nm (strong ASE in silica glasses)

EMISSION SPECTRA OF RE IONS

The emission spectra of Er and Nd ions in GeO_2/P_2O_5 /SiO₂ glass

EFECT OF GLASS COMPOSITION ON Er EMISSION

Emission bands depends on material composition

ABSORPTION SPECTRA OF Nd IONS

Absorption bands of RE ions are used for pumping

ABSORPTION SPECTRA OF Er IONS

ABSORPTION AND ASE of Er/Yb-DOPED FIBER

 σ - transition cross-section (a – absorption, e-emission)

Linear resonator without mirrors

ENERGY DIAGRAM OF Er-BASED LASERS

For C band

ENERGY DIAGRAM OF Tm-BASED LASERS

For S band

ENERGY DIAGRAM OF Er/Yb-BASED LASERS

Er/Yb FIBER LASERS

- 1064 nm optical pump of Yb
- Transfer of energy from excited Yb to Er ions due to phonon vibrations ⇒ Non-radiative excitation of Er ions
- Non-radiative transition of Er ions to a levels with a lower energy (1550 nm)
- Emission of photons at 1550 nm
- Non-radiative transition of Er ions to a levels with a higher energy (green up/conversion)

Er/Yb FIBER LASER

Fiber pumped at 1060 nm, ASE 1550 nm + green up-conversion

TECHNOLOGICAL ISSUES

Issues

- Methods and raw materials for controlled doping RE ions in silica-based glasses suitable for optical fibers drawing
- Materials limiting the factors restricting erbium ASE (decay processes) ⇒ <u>Controlled matrix</u> <u>composition</u>
- Materials controlling non-radiative energy transfers (phosphorous oxide)

Glass matrix compositions

Silica glasses doped with

Aluminium oxide (Al₂O₃) limits interactions between closely-spaced RE ions

Phosphorous oxide (P_2O_5) controls matrix vibrations (phonons)

Raw materials

Solid chemical substances with high boiling points (RE chlorides, Al chloride, RE chelates) \Rightarrow Special techniques are necessary.

TECHNOLOGIES FOR RE-DOPED FIBERS

- MCVD method for doping RE from gaseous phase (organometallic raw materials)
- Solution-doping method
- Sol-gel method

MCVD DOPING FROM GASEOUS PHASE

Modification: RE dopants are avaporated outside the tube

<u>Advantages</u>

- Raw materials with boiling points 600-1000°C (AICI₃, ErCI₃, NdCI₃, organometallic compounds of RE
- Dopant content controlled by heating temperature (the stationary burner, furnace)
- Large cores can be prepared using dopants evaporated outside the tube similarity with the standard MCVD

Disadvantages

Technically complicated – it is necessary to prevent dopant condensation Dopant availability

SOLUTION-DOPING METHOD

- MCVD preparation of a porous layer
- Soaking the layer with solutions of dopants (AI, RE chlorides, nitrates)
- Drying and sintering soaked layer into a glass layer
- Collapse of the tube with the glass layer into a preform

SOLUTION DOPING – FRIT DEPOSITION

<u>MCVD DEPOSITION</u> OF POROUS LAYER (FRIT) t = 1000 - 1200 °C

SOLUTION DOPING – FRIT SOAKING

2. SOAKING THE FRIT (t = 25 °C) Aqueous solutions Re, Al chlorides

SOLUTION DOPING – FRIT SINTERING

3. DRYING AND SINTERING THE SOAKED FRIT t = 25-1700 °C

SOLUTION DOPING – TUBE COLLAPSE

Temperatures 1900-2000 °C

SOL-GEL METHOD IPE

- Mixing starting sols from silicon alkoxide tetraethoxysilane, POCl₃ and Er, Yb and Al chlorides
- Application of a thin gel layer onto the inner wall of the substrate silica tube
- Drying, sintering of the gel layer
- Collapse of the tube with layers into a preform

SOL-GEL METHOD – GEL LAYERS

1. PREPARATION OF GEL LAYER (t = 25 °C) Approach IPE

SOL-GEL METHOD – TREATMENT OF GEL LAYERS

2. DRYING AND SINTERING THE GEL LAYER t = 25-1700 °C

Temperatures 1900-2000 °C

CRITICAL ISSUES

Solution doping

Preparation of porous frits (homogeneity, pore dimensions)

Sintering the dried soaked frits (completeness)

Sol-gel

Drying the gel layer (cracks, defects)

CONCENTRATION AND RI PROFILES

ABSORPTION SPECTRA OF Yb and Er IONS

Solution Doping and Sol-Gel methods

PERFORMANCE

The developed techniques have enabled us to prepare fibers with concentrations

 Er_2O_3 (0.01-0.1 mol.%) Yb₂O₃ (0.5-10 mol.%) Al₂O₃ (1-8 mol.%) POCl₃ (1-18 mol.%)

CONTINUAL FIBER LASER (CW)

1. Linear (Fabry-Perot resonator)

WDM transmits only pump not laser signal (ASE)

Fiber gratings can be used instead of the mirrors

RESONATOR MODES

- Light is transmitted in laser resonators in longitudinal resonator modes
- Frequency difference of the modes in a linear resonator (a length L of 10 m, n~1.5) is $\Delta v = c/(2nL) \sim 10 \text{ MHz} (\Delta \lambda = 0,000008 \text{ nm.})$

Compare with InGaAsP laser L= 300 mm where Δv =142 GHz ($\Delta \lambda$ = 0,8 nm.)

Very narrow spacing of resonator modes in continuous fiber lasers

CW FIBER LASER

IPE-CONTINUAL Er/Yb RING LASER

Pump at 1060 nm (NdYAG or Yb laser)

PULSE LASERS

In a fiber ring Er laser (L=20 m) $\Delta v = 10$ MHz \Rightarrow N ~10⁵ resonator modes (free oscillating modes)

It is necessary to synchronise resonator modes e.g. by inserting optical switch into resonator that opens and closes with a period T_F \Rightarrow formation of pulse train with a period $T_F = L/c$

MODE LOCKING – INERFERENCE IN TIME

Result of mode interference

MODES IN PHASE AND OUT OF PHASE

(c)N=6 modes, all in phase

(d)N=8 modes, all in phase

(f) N=8, in phase, random

(g) N=8, in phase, random amplitudes

(h) N=8, equal amplitudes, random phases

(I) N=8, equal amplitudes,

t = T

t = 0

(I) N=5, equal amplitudes, "FM phases" I(r) I(r) I(r) I(r) I(r) I(r) I(r) I(r)

How to use this interference effect in pulse lasers? Insert loss element in the resonator

PASSIVE MODE-LOCKING

V. Matějec et al., ICT Zacatepec, Mexico, April 2013

ACTIVE MODE-LOCKING

standing-wave cavity:

ring laser cavity:

mode-looked time behavior:

mode-locked frequency behavior:

MODE-LOCKED LASERS

Mode locking can be achieved by:

Passive mode locking - by means of polarisation optical isolator in the ring

Active mode locking - by means of Mach-Zehnder amplitude modulator (lithium niobate) in the ring

IPE PULSE LASER

Pulse laser with passive mode locking due to nonlinear polarisation changes

OPTICAL SOLITONS

Due to <u>high light intensities</u> in core of high-power lasers nonlinear Kerr effect takes place

 $\Delta n \sim Light intensity$

Different parts of an pulse carry <u>different energy</u> \Rightarrow <u>different refractive index</u> and <u>different dispersion</u> \Rightarrow <u>Narrow high-energy pulses</u> can be transmitted in telecommunication lines without dispersion – optical solitons

Optical soliton lines offer long lengths (~1000 km) without amplification

Problems – sensitivity of solitons to fiber irregularities \Rightarrow several pulses are formed

Er/Yb FIBER LASER- SOLITON PULSE

optical solitons \Rightarrow novel laser sources

SOLITON LASER IPE

Green up-conversion accompanies strong ASE of Er at 1550 nm

CLADDING-PUMPED LASERS

Double-clad (DC) fibers

- DC fibers transform a divergent beam from
- a high-power laser diode into
- a high quality laser beam of a DC-based laser

Launching of light into a circular DC fiber by bulk optics (IPE)

LASER BASED ON CIRCULAR DC FIBERS

Excitation by bulk optics

Er/Yb – doped fiber, laser efficiency 32% (pump 750 mW @ 969 nm)

OPTIMUM CROSS-SECTIONS OF DC FIBERS

The best pumping efficiency for these cross-sections

V. Matějec et al., ICT Zacatepec, Mexico, April 2013

DC FIBER TYPE STADIUM - IPE

Theoretical shape

Practical realisation Combining two sidepolished preforms

DC FIBER TYPE STADIUM - IPE

Microscope photo of the DC fiber prepared in IPE

Dimensions 125x250 μ m

V. Matějec et al., ICT Zacatepec, Mexico, April 2013

SPLICING OF PUMP AND SIGNAL FIBERS

Video

OPTICAL AMPLIFICATION

AMPLIFIERS

A source of signal photons is amplified signal

Can be used in WDM systems, it is tunable

Er/Yb AMPLIFIER

Booster configuration

Pump: 1060 nm - Yb fiber laser – IRE Polus YLD-5000

<u>Signal:</u> External cavity tunable laser – E-TEK Dynamics MLTS 1550

GAIN OF AMPLIFIER

CONCLUSIONS

- RE-doped fibers (Er, Yb,Tm) are powerful means for development of fiber lasers and amplifiers – <u>gain sources</u>
- EDFA (Erbium-Doped Fiber Amplifiers) are broadly used in telecommunication lines (incl. submarine ones)
- Fiber lasers pumped via high-power laser diodes represent novel direction for the investigation of high-power lasers

NOVEL DIRECTIONS

- Fiber lasers based on RE nanoparticles better suppressing (decreasing) effects of <u>ASE decay processes</u>.
- Raman amplifiers which offer <u>distributed</u>
 <u>amplification</u> over telecommunication lines

