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A PRODUCT OF THREE PROJECTIONS
EVA KOPECKA AND VLADIMIR MULLER

ABSTRACT. Let X and Y be two closed subspaces of a Hilbert
space. If we send a point back and forth between them by orthog-
onal projections, the iterates converge to the projection of the point
onto the intersection of X and Y by a theorem of von Neumann.

Any sequence of orthoprojections of a point in a Hilbert space
on a finite family of closed subspaces converges weakly, accord-
ing to Amemiya and Ando. The problem of norm convergence
was open for a long time. Recently Adam Paszkiewicz constructed
five subspaces of an infinite dimensional Hilbert space and a se-
quence of projections on them which does not converge in norm.
We construct three such subspaces, resolving the problem fully.
As a corollary we observe that the Lipschitz constant of certain
Whitney-type extension does in general depend on the dimension
of the underlying space.

1. INTRODUCTION

Let K be a fixed natural number and let ¥ = {Lq,...,Lg} be
a family of K closed subspaces of a Hilbert space H. Let zg € H
and ky, ko, -+ € {1,2,..., K} be arbitrary. Consider the sequence of
vectors {z,} defined by

(1) Zn = Pknzn—la

where P denotes the orthogonal projection onto L. The sequence
{z,} converges weakly by a theorem of Amemiya and Ando [AA]. If
each projection appears in the sequence { Py, } infinitely many times,
then this limit is equal to the projection of 2z, onto the intersection of
all spaces in .Z.

If K = 2 then the sequence {z,} converges even in norm according
to a classical result of von Neumann [N].

If K > 3 then additional assumptions are needed to ensure the norm-
convergence. That {z,} converges if H is finite dimensional was origi-
nally proved by Préger [Pr|; this also follows, of course, from [AA].

The first author was partially supported by Grant FWF-P23628-N18, the second
author by grant 14-07880S of GA CR and RVO:67985840.
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2 E. KOPECKA AND V. MULLER

If H is infinite dimensional, but the sequence {k,} is periodic, the
sequence {z, } converges in norm according to Halperin [Ha|. The result
was generalized to quasiperiodic sequences by Sakai [S]. Recall that
the sequence {k,} is quasiperiodic if there exists r € N such that
{kmy kmsty - kmary = {1,2,..., K} for each m € N,

The case of H infinite dimensional, K > 3 and {k,} arbitrary was
open for a long time. In 2012 Paszkiewicz [P1] constructed an ingenious
example of 5 subspaces of an infinite dimensional Hilbert space and of
a sequence {z,} of the form (1) which does not converge in norm.
An important input towards the construction originates in Hundal’s
example ([H], see also [K] and [MR]) of two closed convex subsets of
an infinite dimensional Hilbert space and a sequence of alternating
projections on them which does not converge in norm.

The basic idea of Paszkiewicz was the observation, that it is possible
to move a unit vector x; with an arbitrary precision to another unit
vector x5 orthogonal to x; by iterating just 3 projections. This con-
struction is then used to move the initial vector z; to zo L x1, then
to w3 L {x1,x2} with better and better precision along quarter cir-
cles connecting an orthogonal sequence {xy, zs, ... }. Such an iteration
certainly does not converge in norm.

There is a technical difficulty how to glue this “90-degrees” steps
together in such a way, that the next step does not interfere with the
preceding ones. In Paszkiewicz’s example of 5 projections this was
done by gluing the odd and even steps together. The cases of 3 or
4 projections were left open. The goal of this paper is to show that
it is possible to glue the Paszkiewicz “90-degrees” steps constructions
together to obtain 3 Hilbert space projections with non-convergent it-
erations. The construction of 3 projections with this property is not
straightforward. In fact, there is a paper [P2] claiming the same result,
which is apparently not correct.

Notation. Let H be a Hilbert space, and B(H) the space of bounded
linear operators from H to H. For M, N C H we denote by \/ M the
closed linear hull of M, and by M V N the closed linear hull of M U N.
If M is a subspace and N C M then M © N stands for M N N+. By
Py we denote the orthogonal projection onto the closed linear hull of
N.

For m € N let §,,, be the free semigroup with generators gy, ..., gm
satisfying the relations g7 = ¢g; (j=1,...,m). f o = g; -+~ g;, € Sm,
(for some r € N and 4; € {1,...,m} with i;41 # ¢; for all j) and
Ay,..., A, € B(H) are projections, then we write ¢©(Aq,..., A,) =
A;. -+ A, € B(H). Denote by |¢| = r the “length” of ¢.



THREE PROJECTIONS 3

FIGURE 1. Approximating v by projections of w.

2. CONSTRUCTION OF THE EXAMPLE

In this section, let H be a separable infinite dimensional Hilbert
space. The example is “glued” together from finite dimensional blocks.
In each of the blocks three subspaces and a finite product of projec-
tions is constructed which maps a given normalized vector v with an
arbitrary precision on a normalized vector v orthogonal to w.

This idea was already used by Hundal in [H] to construct a cone and
a half-space in H, which intersect at the origin, but such that the cor-
responding sequence of alternating nearest point mappings (although
weakly convergent to the origin) does not converge in norm. All of
Hundal’s blocks are 3-dimensional; here the dimension of the blocks
increases exponentially.

Let u and v be two orthonormal vectors. It is very easy to get from
u approximately to v be means of finitely many projections onto the
lines h; dissecting the right angle between u and v into small enough
angles.

For ¢ > 0 let k(¢) be the smallest positive integer k£ such that
(cos 7-)¥ > 1 —e. That is, if u and v are two orthonormal vectors,
and we project u consecutively onto the lines dividing the right angle
between v and v into k angles of size 7, then we land at v with error
at most ¢ (see Fig. 1).

Projecting onto a line can be arbitrarily approximated by iterating
projections between two subspaces intersecting at this particular line.
In Hundal’s example (see [K]) one of the spaces is always the plane
E = u Vv and the other is a 2-dimensional space V; intersecting E at
h;. These 2-dimensional planes support a part of the surface of a cone.
Paszkiewicz’s ingeniously simple idea was to replace the n pieces of
2-dimensional planes V; by an increasing family of n finite dimensional
spaces Z; C --- C Z,. He then replaced the projections onto these
spaces by projections onto the largest space X = Z,, and its suitable
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small variation Y. Lo and behold, instead of projecting onto several
spaces, Paszkiewicz is projecting just onto three of them: FE, X, and
Y. In what follows, we significantly refine this construction in order
to be able at the end to glue together the “90-degree” steps to just 3
resulting subspaces instead of Paszkiewicz’s 5.

The first statement of the next lemma is taken from [P1]; we supply
a slightly different proof.

Lemma 2.1. Let ¢ > 0. Then there exists . € Sie)41 with the

following properties:
(i) ifu € H, ||u|| = 1, then there existv L u, ||v|| = 1, and subspaces
ZyCZyC - C Z,’C(g), dim Z = j+1 for all j, such that v € Z,;( ) and
HSOE(PZ{a .. ‘7PZ/

k(s)’

€

Pyyy)u — UH < 2e.

(i) Moreover, if M, R C H are finite-dimensional subspaces, u €
MNRY, |Jul| =1, then there existv 1L (MV R), ||v|]| = 1 and subspaces
2y C Zy C - C Zyy, dimZi = j+ 1 for all j, such that v € Z
Z,;(E) 1L R, and

€)’ €)’

||g05(PZ{, . PZ;@, Prpvy)u — UH < 2e.

Proof. Write k := k(e).

To prove (i), choose orthonormal vectors zg, 21, ..., 2,_1,v € H or-
thogonal to u. Let £ =u V v.

Let £ = ;. For j = 0,...,k, let h; = ucosj§ + vsin j§ be the
points on the quarter circle connecting hg = u to hy = v. We construct
inductively a rapidly decreasing sequence of nonnegative numbers o >
a; > -0 > g1 > ap = 0 in the following way. Choose «g € (0,1)
arbitrarily. Let 1 < j < k — 1 and suppose that ag,...,o;—; and
subspaces Z] C --- C Z;_; have already been constructed. Set

Z]I-/ = \/{ho -+ QpZp, hl -+ 121,00, hj,1 -+ Qj_125-1, h]}

Since E'N Zj = Vh;, we have (PZJr/PEPZ;/)”x — P,z for each v € H
as r — 00, by [N]. As both spaces are finite dimensional, there exists
r(j) € N such that

- €
|(Pzy PePyy)™ — By || < i
Let a;j > 0 be so small that

® [Pay o = By < 4,
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where
!
Zj = \/{ho + oz, hl + 121y ey hj—l + a5_125-1, hj + Oéij}.

Suppose that Z] C Z), C --- C Z;_, have already been constructed.
Set formally oy, = 0 and Z}, = Z! = \/{ho + apzo, b1 + 121, ..., h—1 +
ag_12k—1, hi}. Find rp € N such that (2) is true also for j = k. Then
v=nhy € Z;,. Let

0e(Py;, ..., Py, Pg) = (Py PpPy )" - - (Pg PpPy)"".
We have
(P, ... Py, Pe)u— |
<||(Py PPz )™ -+ (P5 PePry )™ = Puy )

+ H(PZ,’CPEPZ,’C)T(IC) cee ((PZéPEPZé)TQ) - th)Phlu” + e

+ H ((PZ;@PEPZJIC)T(M - Phk>Phk—1 e Ph1u

[ [[Bay e Buyu =

§%+-~-+%+1—(C08%)k<25.

(ii) Let My = M Nut. Let Hy = (RV My)*. Then u € Hy.

Clearly, the construction of (i) can be done in Hy, so we can find v €
(M Vv R)*, ||v]| = 1, and subspaces Z}, C Z, C --- C Zyey C Ho C R+,
dim Z = j + 1 for all j, such that v € Z,’g(a) and

nga(Pzi’ s 7PZ,27Pqu)u - UH < 2e.

All iterations in ¢.(Pg, ..., Pz, Puw)u belong to Hy C My, so we
may replace P,y, by Pyrve, and so

(P, ... Pz, Pavo)u—o|| = ||e(Pz, - .., Pz, Puvo)u — v|| < 2e.
O

The following two corollaries will come in handy, when we will be
joining the “90-degrees” blocks into one single example.

Corollary 2.2. Let ¢ > 0 and let . € Sie)41 be the element con-
structed in Lemma 2.1. Then there exists v. € (0,min{1,e}) (depend-
ing only on €) with the following property: if M, R C H are finite-
dimensional subspaces, u € M N R*, ||u|| =1 and w € R*, |Jw|| =1,
|(u, w)| < e, then there exist v L (M V RV w), ||v] =1 and subspaces
Zy C Zy C o C Zpe) C (RVw)*, dimZ; = j+1 for all j such that
v € Zie), and

||SO€(P217 .. '7PZk(8)7PMVU>u - UH < 35
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Proof. Suppose that w € R, ||w|| = 1 and |(u,w)| is small enough
(how small will be clear from the proof). Let k = k(¢) and v, Z1, ..., Z},
be as in Lemma 2.1 (ii) with v, 2q,...,2, L w. We replace the sub-
spaces ZJ’, 7 =1,...,k, by the subspaces

Z; = \/{hz + a;z; — cos(i&)(u, w)w},

1=0

which are orthogonal to w. If [(u,w)| is small enough, then [Pz, —
Pz <e/lee| for all j, hence

H('ps(PZl; s 7PZk7PMVv) - SOS(PZ£7 cee 7PZ;€7PM\/’U)H <é€
and by the triangle inequality

l=(Pz, - Pry,, Parv)u = o]
Sngff(PZU s 7PZk7PMVU>u - SOg(Pzi, . ’PZJIC’PMVU>U’H
+ || 0c(Pzy, . .. Pay, Pave)u — v|| < 3e.

The exact conditions on |(u,w)| depend on €, k, avq, . .., ap_1, where all
the parameters are determined by e. U

Corollary 2.3. Lete > 0 and let k = k(¢). Then . € Sgy1 and~y. > 0
constructed in Corollary 2.2 have the following property: if R, M C H
are finite-dimensional subspaces, u € M N R, ||lul] = 1, v/ € R*,
|lu—u|| <, v L (v —u), then there existv L (RVM V'), ||v]] =1
and subspaces Zy C Zy C -+ C Zp C (RV (u— )L, dimZ; = j + 1
for all j such that v € Zy, ||l@-(Pz,- .., Pz, Pavo)u — || < 3¢ and
u' = Pxu, where X = Z,, V u'.

Proof. If v’ = u then the statement follows from Corollary 2.1. If u/ £ u
we set w = (v — u)/||v' — u||. Then ||w|| =1, and

(u,wy = (u — ', w) = |lu— || < ..

If vand Zy,...,7Z; C (RV (u— 1))t are constructed as in the proof
of Corollary 2.2, then

HQOE(PZI,. . .,PZk,PM\/v)u — UH < 3e.
Let X = Z vV u'. Since X L (v —u), we have Pyu = u/'. O

Paszkiewicz replaced projections onto an increasing family of n finite
dimensional spaces by projections onto just two spaces: onto the largest
space in the family and onto a suitable small variation of it. Again, we
modify the proof of his result, so that we can refine it in Lemma 2.5.
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Lemma 2.4. Let Z; C Zy C --- C Zj C X C H be subspaces satisfying
dmZ; =j+1forj=1,...,k, dmX =k+2. Lete,6 >0 and a > 0.
Then there exist a subspace Y C H and numbers a < s(k) < s(k—1) <
- < s(1) such that X NY = {0}, ||Px — Py|| < 0 and for each
je{l,..., k},
H(PXPyPX)S(j) — PZ]'H < E.

Proof. Let e, ..., e, 1 be an orthonormal basis in X such that ey, e; €
AR ej € Zj@Zj—l (2 <j< l{?), and €r+1 € X 6 Z. Let wy, ... , W1
be orthonormal vectors orthogonal to X. We construct Y as the linear
span of the vectors e; + fw;, j € {0,...,k+ 1}, where Sy > fi >

- > 31 = By > 0 are chosen below.

Note that if Y is constructed in this way, we have for m € N and
je{0,....k+1},

m €j

(3) (PXpyP)() 6] (1 —|—ﬁ]2)m
Then choose first fy11 > 0 such that [P, — P, 480 w0l < 9.
Choose s(k) > a such that 1/(1+ 2,,)*® <.

Inductively construct numbers

/Bku S(k - 1)7ﬁk—17 S(k - 2)7 cee 78(1)7ﬁ1760 - /61

such that
Brg1 > B > > 1= >0
a<s(k)<s(k—1)<---<s(1)
1 1
oy < ||
(14-5 3G ; <ean 1+ﬁ]2)5(” <e
forj:k;,...,l.Ifx:ZerOlazeZEX,thenby(B)
k+1 J )
(P20 Pl =[S s~ D
i=0
J 2 k+1
B T
W =2 TR Z ww

k+1
<é? Za? = &2||=||.
i=0

For any z € H we have
(PXpyP)()S(j)Z - PZjZ = (PXpyP)()S(j)(PX,Z) — PZj(PX,Z),
since Z; C X. Hence by (4) for j € {1,...,k},
H(P)(Pypx>s(j) — PZjH < €.
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It is easy to see that |Pxy — Py|| = —P. |<d. O

The next lemma combines all the technical tools needed for the con-
struction of the example we have developed so far.

Lemma 2.5. Let e > 0, 0 > 0. Let R,M C H be finite-dimensional
subspaces, u € MN R, |lul| =1, v/ € RE, [Ju—v/|| <., v L (v —u).
Then there existv L (RVMV), ||v|| = 1, finite-dimensional subspaces
X, Y C R, XNY = {0} and ¢ € S3 such that Pxu =1/, ||Px—Py|| <
0 and

|| €k+1 k+1+5k+1wk+1|

| (Px, Py, Pyvo)u — || < 4e.
Moreover, there exists v' € Y, ||[V'|| = 1, such that Pxv' = cv for some
c>0, [[v —v| <2§ and {u,u'} L {v,v'}.
Proof. Let v, 2y, ..., Z, and X be as in Corollary 2.3. Let eg, ..., exi1
be an orthonormal basis in X such that eg,e; € Z1,e; € Z;6Z;1 (2 <
J < k), ex1 € X O Z, Let wy,...,wgy1 be orthonormal vectors or-
thogonal to X V RV M. As in the proof of the previous lemma, let
Y = Ve + Biw; 1 0 <i < k+ 1}, Wherek%r2 > Brpp1 > 0 > [y >
b1 = By > 0 are positive numbers which decrease so rapidly that

|P.,. , — P. | <3¢

€k+1
and so that there exist exponents s(k) < s(k —1) < --- < s(1) such
that

k18K 1wk 11 |

|(Px Py Px)*9) — Py || < %|
for j € {1,...,k}. Then ||Px — Py|| <J. Set
w(PX, Py, PMVv) = %((PXPYPX)S(U, R (PXPYPX)S(k)7 PM\/U)'
Then
|4(Px, Py, Pavo)u — v
S”ZD(PX’ Py, Pyryo)u = 9o (Pzy, - - -, Py, PM\/v)uH
+ [|0-(Pzy, - ., Pz, Parvo)u — vl| < 4e.
Let v = ZkH vie;. Set

o = >oity viles + Biwn) .

13230 viles + Bawy)|
Then o' € Y, ||v/]| = 1 and Pxv' = cv, where ¢ = || S5 v(e; +
Baw))|| 7t Since 1 < || M vi(es+Biws)|| < 146, we have 1 > ¢ > 1—6

and [|[v' — Pxv'|| = ¢|| S50 viBies]| < 6. Thus 1/|| S50 vi(es + Bows) || >
1 -9, and

[v" = vl < [[v" = Pxv'|| + | Pxv" — || < 26.
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It is clear from the construction that {u, v’} L {v,v'}. O

Clearly we have limg_,, ||Px Py Px||* = 0. Moreover, as in the pre-
vious lemma, we may require that s(k) = min{s(j) : 1 < j < k} be
arbitrarily large.

Now we are ready to prove our main result: in an infinite dimensional
Hilbert space the iterates of 3 orthoprojections do not have to converge
in norm.

Theorem 2.6. Let H be an infinite dimensional Hilbert space. There
exist three orthogonal projections Py, Po, Py € B(H), a vector zo € H
and a sequence ky, ko, -+ € {1,2,3} such that the sequence of iterates
{z,} defined by z, = Py, zn—1 (n € N) does not converge in norm.

Proof. For n € N let ¢, = #, and let v, = 7., be defined as in
Corollary 2.2.

Let uy € H, ||ui|| = 1. Set formally Yy = V{u;} and X, = {0}. Let
uy be any vector satisfying [[uy —usl| < and wy L (uj — ). Using
Lemma 2.5 (for R = {0} and M = Vuy), we find X;,Y) C H, v; € X
and ¢; € S3 such that ||vi|| =1, vy L u; and

||¢1(PX1, PY17 PU1\/U1>UI - U1|| < 481.

Let t; € N satisty ||(Px, Py, Px,)"| < e1.
Let v] € Yy satisty ||vj]| = 1, |[v] — Px,vi]] < [[v) — 1] < 72, where
Py, v is a multiple of vy and {uy,u)} L {vy,v]}.
Set ug = v}, ufy = Px,us and continue the construction using Lemma 2.5.
Ifn>2and Xy,..., X, 1,Y1,.... Yo 1 CH,uy,...,U_1,V1,...,0n_1,

/

uy,...,u,_4 and vy,...,v,_; have already been constructed, then set
!/

Up = vy, ul, := Px,_,u, (which is a multiple of v,_1), M, = Y, 4
and R, = \/?:_Ol(Xj V'Y;) © V{u,,u,}. Construct X,,Y, C R,
U, € S3 and vy, v, L (R, V {un,u,}) as in Lemma 2.5 such that

107, = Px, il < llom = 03l < Yng1 and
[9n (Pxs Privs Py v, Jtn = V| < den.

Moreover, we require that ||Px, — Py,|| < €n/|¢e,_,| and that any
two consecutive occurrences of Py, v, in ¥n(Px,, Py,, Py, ,vv,) are
separated by (Px, Py, Px,)®, with s so large that we have 52@ 5 <
en/|pn]. This is possible according to the remark after the proof of
Lemma 2.5; if n = 2 then this condition is not relevant. Let ¢, satisfy
||(Px, Py, Px,)™|| < e,. We now continue the construction.

let L, = X,VY,Vu, and L, = L, © {tn,u),,v,, vl }. By the
construction, L, L \/;:11 L;, and if [n — j| > 2, then L, 1 L;.
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Let further X, = L, N X,, = X,, © v{ul,, v, }
By the construction,

H,éZJTL(PXnv Pan PYn_l\/vn)un - U"H < 4571'

Set X, = X, VX, VX, oV Y=Y, VY, VY, 4V--- and
En :’Un\/Ynfl\/Ynfg\/"'

For each x € X,, we have Py, x = Pf,nx and Py, vy, T = PEnx. Since
in the product v, (Px,, Py,, Py, _,vv,), both Py, and Py .\, always
follow Py, , we can replace Py, by Pf’n’ and Py, ., by PEn without
any change. So we have

(5) |¢on(Px.,,, Py . Pg )t — v || < 4en.
Note that for n = 1 we have )?1 = X; and so we may replace Px, by
P)?1 in (5)

Let n > 2. Note that in ¢, two consecutive positions of Pz are

separated by (Px, Py Px,)° where s satisfies 5;@’5’2 < en/lpn]. Forz €
X, we have Py = Py, v, v and Py Pp = Py, Py x+ 2’ + 2" for
some 2’ € X, and 2" € V!, . Furthermore, P?nm/ = 0. Moreover,
for each y € L, we have Px,y = Px y and Py,y = Py y. Hence
|(Pg. Py Py )*Pg x — (Px, Py Px,)’ Pg x|
<||(Pg, Py, Pg,)a"||= [|(Px, o Py, o Px, .)a"|| < 3557 < eu/lonl.
So
H@Z)R(P)?nv P}A/na Pﬁn)un - Un”
+ ||¥n(Px.,., Py, . P )ttn — vn|| < 5en.
Let X = \/Joi1 Xj, }/odd = \/;.;0 Y2j+1 and }/even = \/;i() Y?j-
Suppose that n is even. All iterations in ¢,(Pg , Py , Pg )u, belong
to \/;.L:1 L;, so we may replace P; by Px without any change. Thus
Hwn(P)ﬁ P}’}na PEn)un - UnH < 9&n-
Similarly, we may replace Py by Py.,,.,. Thus
|%0n(Px, Pyppens P Yt — va| < Bep.

Let E = E,V X, 1V Y0isV Y5V, Then |Pg— Py, |l = | Px,., —
PYn+1” < i;:l\ and

|90 (Px, Py, Pg)tn — va| < 5en.
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So
||¢n(PX7 PYeUen7 PYodd)un - U”H
< |[tn(Px, Prers Pe)tn — va|| + | Py — Prosa || - |00
< be,,.

Similarly, for odd n we have

Hw”(PXV PYodd? PYeuen)un - UnH < bey,.

Write for short A, = ¥,(Px, Py.,.., Px,,,) if n is even and A, =
Un(Px, Py, ., Px,.,..,) if n is odd. So [|A,u, — v,|| < 6e, and |4, || <1
for all n. We have

|An A1+ Ajug — v,
<[[Ap -+ Ao(Aruy — vy
+ || An - Ag(vg —wa)|| + || Ay -+ - Agug — vy |
<61 + Y2 + || Ay - - - Agug — vy |
<Tey+||An -+ - Aqug — v, ||

and by induction
HAnAnfl e Ajug — Un” <Ter+Teg+ -4+ Te, < 1de; < 1/2

Since {v,} is an orthonormal sequence, the limit lim,, ., A, -+ Aju;
does not exist. O

3. DIMENSION DEPENDENT CONSTANT IN AN EXTENSION THEOREM

Let .Z be a family of K closed subspaces of finite dimension or
codimension of a Hilbert space H. Let {z,} be a sequence of vectors
defined as in (1). It follows from [Pr], that the sequence converges
in norm. In [KKM] the following estimate of the rate of convergence,
which is sometimes called “condition (K)” (see, e.g., [DR]) was given.

Theorem 3.1. Let & be a finite family of closed subspaces of fo of
finite dimension or codimension. Let {z;} be a sequence of projections
on the spaces in £ as defined in (1). Then for all j <k,

2 — al* < (K, d)(|]* — |a]?),

where the constant ¢(K,d) > 0 depends on the number K of the spaces
and their mazimal dimension or codimension d (for each space we
choose the one which is finite) only. Consequently, the sequence {z;}
converges in norm.
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The main tool in [KKM] for proving the estimate above is a Whitney-
type extension theorem involving derivatives. Given two points a and
b in R? with |b — a| = 1, there is a differentiable function ®, so that
®(b) — ®(a) = 1, and on K given affine spaces, the derivative of ® is
parallel to these spaces. Moreover, the Lipschitz constant of ® depends
on K and d only.

Theorem 3.2. Let Ly, Lo, ..., Lx be subspaces of R% and L; their
affine translates. Let a,b € RY be two points with |b — a| = 1. There
exists a differentiable function ® : R? — R, so that

(i) ®(b) — ®(a) = 1;
(i) ®(L;) C L; fori=1,...,K;
(iii) the mapping ® : R? — RY is Lipschitz with a constant ¢ de-

pending on K and d only.

The question whether it is possible to choose ¢ independently of the
dimension d was left open in [KKM]. According to [KR], if K = 2 this
is indeed the case.

In view of Theorem 2.6, for K > 3 the Lipschitz constant ¢ of &’
does depend on the dimension d. If ¢ depended on K only, according
to Theorem 2.8 of [KKM] the rate of convergence as in Theorem 3.1
and hence convergence of {z,} would be available for any K closed
subspaces of any Hilbert space H. Theorem 2.6 proves that in an
infinite dimensional Hilbert space H this is not always the case.
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