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GENERALIZED VERTEX ALGEBRA OF INTERTWINERS AND
CORRELATION FUNCTIONS ON SELF-SEWN RIEMANN
SURFACES

ALEXANDER ZUEVSKY

ABSTRACT. We review our recent results on computation of the partition and n-
point ”intertwined” functions for modules of vertex operator superalgebras with
formal parameter associated to local parameters on Riemann surfaces obtained by
self-sewing of a lower genus Riemann surface. We introduce the torus intertwined
n-point functions containing two intertwining operators in the supertrace. Then
we define the partition and n-point correlation functions for a vertex operator
superalgebra on a genus two Riemann surface formed by self-sewing of the torus.
For the free fermion vertex operator superalgebra we present a closed formula
for the genus two continuous orbifold partition function in terms of an infinite
dimensional determinant with entries arising from the original torus Szegé kernel.
This partition function is holomorphic in the sewing parameters on a given suit-
able domain and possess natural modular properties. We describe modularity of
the generating function for all n-point correlation functions in terms of a genus
two Szegd kernel determinant.

1. INTRODUCTION

In these notes we review our recent results on construction and computation of
correlation functions of vertex operator superalgebras with a formal parameter asso-
ciated to local coordinates on a self-sewn Riemann surface of genus g which forms a
genus g + 1 surface. In particular, we review result presented in the papers [TZ1]-
[TZ5] accomplished in collaboration with M. P. Tuite (National University of Ireland,
Galway). The ideas reflected in these notes were also presented in two seminars given
in 02-03/2014 at Mathematical Department, Charles University, Prague.

1.1. Vertex operator super algebras. A Vertex Operator Superalgebra (VOSA)
[B,DL,Ka, FHL,FLM] is a quadruple (V,Y,1,w): V. =V5@ Vi =P, c1, Ve, dimV,. <
o0, is a superspace, Y is a linear map Y : V — (EndV)[[z,27!]]: so that for any
vector (state) u € V' we have u(k)1l = 6, _1u, k > —1,

Y(u,2z) = Z u(n)z "1,

nez

Key words and phrases. Automorphic forms, correlation functions, generalized vertex operator
algebras, intertwining operators, Riemann surfaces.
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2 ALEXANDER ZUEVSKY

u(n)Va C Vagpu), p(u)- parity. The linear operators (modes) u(n) : V. — V satisfy
creativity

Y(u,2)1 =u+ O(z),

and lower truncation

conditions for u, v € V and n > 0.
These axioms identity imply locality, associativity, commutation and skew-symmetry:

(z1 — 22)"Y (u, 21)Y (v, 22) = (—1)p(“’”)(zl — 29)"Y (v, 22)Y (u, z1),

(z0 + 22)"Y (u, 20 + 22)Y (v, 20)w = (20 + 22)"Y (Y (u, 20)v, z2)w,

vty

u(k)Y (0,2) — (~1)PEDY (0, 2u(k) = 3 (]

>0
Y (u, z)v = (=1)P@e2EEDY (4, —2)u,

for u, v, w € V and integers m, n > 0, p(u,v) = p(u)p(v).
The vacuum vector 1 € Vj ¢ is such that, Y'(1, z) = Idy, and w € V; 5 the conformal
vector satisfies

Y(w,2) = Z L(n)z~""2

nez
where L(n) form a Virasoro algebra for a central charge C
C
[L(m),L(n)] = (m —n)L(m+n)+ E(m3 — M)0m,—n-
L(—1) satisfies the translation property
Y(L(-1)u, z) = 0,Y (u, 2).
L(0) describes a grading with L(0)u = wt(u)u, and V, = {u € V|wt(u) = r}.

1.2. VOSA modules.

Definition 1.1. A V-module for a VOSA V is a pair (W,Yw), W is a C-graded

vector space W = @ W,., dim W, < oo, W,y =0 for all v and n < 0. Yy : V —
reC
End(W)[[z, 271]]

Yir(u,2) = 3 ()21,
neEZ
foreachu €V uw : W = W. Y (1, z) =Idw, and for the conformal vector

Yiw(w,2) = 3 L (n)2 "2,
neEZ
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where Ly (0)w = rw, w € W,.. The module vertex operators satisfy the Jacobi iden-
tity:

zalé (zl — 22) Yw (u, z1)Yw (v, 22)

Z2 — 21

— ) YW(Usz)YW(ua Zl)
20

= 2,10 (Zl — ZO> Yw (Y (u, z0)v, z2) .

0(z) = Z 2"

nez
The above axioms imply that Ly (n) satisfies the Virasoro algebra for the same central
charge C' and that the translation property

Yw(L(—Du,z) = 0.Yw(u,z).
1.3. Twisted modules. We next define the notion of a twisted V-module [FHL,

DLM2]. Let g be a V-automorphism g, i.e., a linear map preserving 1 and w such
that

Recall that

gY (v,2)g7" =Y (gv, 2),
for all v € V. We assume that V' can be decomposed into g-eigenspaces
V= @peCVpa
where V? denotes the eigenspace of g with eigenvalue 277,

Definition 1.2. A g-twisted V-module for a VOSA V is a pair (W9,Y,) W9 =

G%Wﬂ, dim W9 < oo, W7, =0 for all 7 and n < 0. Yy : V. — End W9{z}, the
re
vector space of End W9-valued formal series in z with arbitrary complex powers of z.

ForveVer
Yg(v,z) = § Ug(n)z_n_lv
nep+7Z

with vg(p+Dw =0, w € W9, I € Z sufficiently large. Yy(1,z) = Idws,
Yy(w,2) = Z Ly(n)z"""2,
ne”Z

where Lg(0)w = rw, w € WJ. The g-twisted vertex operators satisfy the twisted
Jacobi identity:

_ 21— 2
2t (1202) Yy (u, 21)Y, (v, 22)

22 — 21

118 (22 Y )Y )

— -r —
=251 (M) ) (Zl ZO) Y, (Y (u, z0)v, 22),

—z2 —Z2

forue Ve,
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1.4. Creative intertwining operators. We define the notion of creative intertwin-
ing operators in [TZ3]. Suppose we have a VOA V with a V-module (W, Yy ).

Definition 1.3. A Creative Intertwining Vertex Operator Y for a VOA V-module
(W, Yw) is defined by a linear map

Y(w,z) = Z w(n)z "

nez

for w € W with modes w(n) : V. — W ; satisfies creativity
Y(w,2)1 =w+ O(2),
for w € W and lower truncation
w(n)v =0,

forveV,weW and n > 0. The intertwining vertex operators satisfy the Jacobi
identity:

_ z — 2
N L5 ( 120 2) Yw (u, z1)Y (w, 22)

—25 6 <Z2_Zl> Y (w, 22)Y (u, 21)
%

=210 (Zl ; ZO) Y (Yw (u, z0)w, 22) ,
2
forallueV andwe W.

These axioms imply that the intertwining vertex operators satisfy translation, lo-
cality, associativity, commutativity and skew-symmetry:

Y(Lw(-1w,z) = 09.Y(w,z2),
(z1 — 22)"Yw(u,21)Y (w, 22) = (21— 22)"Y (w, 22)Y (u, 21),
(20 + 22)" Yw (u, 20 + 22)Y (w, 2z2)v = (20 + 22)"Y (Y (u, 20)w, 22)v,
uw (k)Y (w, 2) = Y(w, 2)u(k) = Z (I?)Y(uw(j)w, 2)2F 9,
P
Y(w,z)v = eEwEDY (v, —2)w,

for u, v € V, w € W and integers m, n > 0.

1.5. Example: Heisenberg intertwiners. Consider the Heisenberg vertex opera-
tor algebra M, [Ka] generated by weight one normalized Heisenberg vector a with
modes obeying

[a(n)v a(m)] = n(sn,fma
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n, m € Z. In [TZ3] we consider an extension M = UyaecM, of M by its irreducible
modules M, generated by a C-valued continuous parameter « automorphism g =
27mica(0)
e .

We introduce an extra operator g which is canonically conjugate to the zero mode
a(0), i.e.,
[a(n), q] = bn0-
The state 1 ® e® € M is created by the action of e®? on the state 1 ® . Using ¢-

conjugation and associativity properties, we explicitly construct in [TZ3] the creative
intertwining operators Y (u, z) : M — M,,. We then prove

Theorem 1.4 (Tuite-Z). The creative intertwining operators Y for M are generated
by q-conjugation of vertex operators of M. For a Heisenberg state u,

Y(u®e*,z) = e™Y_(e*2)Y(u®e) V(e z) 2240,
Fn
Yi(e% z) = exp (:Faz a(£n) Z) .
n
n>0

The operators Y with some extra cocycle structure satisfy a natural extension from
rational to complex parameters of the notion of a Generalized VOA as described by
Dong and Lepowsky [DL,DLM3]. We then prove in [TZ3]:

Theorem 1.5 (Tuite-Z). Y (u ® e®, z) satisfy the generalized Jacobi identity

—ap
17—z 7 —z o
Zol<lz.f> 5(1202) Y(u®e* z1)Y(v®e?, z)

—af
_ 1 [ ”R2—~ 20 — 21
C(a, B)z, ( - ) ) ( — >
Y(v®el, 2) Y(u® e, z)

=210 (zl — 'z(’) Y(Y(u®e® 2)(v®e?), 20) (

Z2

21 — 20 > aa(0)

Z2
forallu®e®,v®@el € M.

1.6. Invariant form for extended Heisenberg algebra. The definitions of invari-
ant forms [FHL,L] for a VOSA and its g-twisted modules were given by Scheithauer [S]
and in [TZ2] correspondingly. A bilinear form (-,-) on M is said to be invariant if for
all u ® e, v®e?, w®e € M we have

Yue,2voef,wee) =™ e Yi(u®e, 2)wee),
_ by 2L(0) )\2
v (u®e*z) = Y <ez,\ 2L(1) <_> (u®e®), -2 .
z z

We are interested in the Mobius map z — w = £ associated with the sewing condition
so that A = —¢ pz, with £ € {£v/—1}. We prove in [TZ3]
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Theorem 1.6 (Tuite-Z). The invariant form {.,.) on M is symmetric, unique and
invertible with

(v®e*,wee) = )\_azéa’,ﬂ(v ®ew®el).

2. THE SZEGO KERNEL

2.1. Torus self-sewing to form a genus two Riemann surface. In [TZ1] we
describe procedures of sewing Riemann surfaces [G,FK]. Consider a self-sewing of
the oriented torus ¥() = C/A, A = 2mi(Z1 @ Z), 7 € Hj.

2’1:0 2’2:0

lpl/r2

Define annuli A,, a = 1, 2 centered at z = 0 and z = w of (1) with local coordinates
21 = z and 7y = z — w respectively. We use the convention 1 = 2, 2 = 1. Take
the outer radius of A, to be r, < %D(q) = minyea az0 |A|. Introduce a complex
parameter p, |p| < riry. Take inner radius to be |p|/rz, with |p| < rire. 71, ro must
be sufficiently small to ensure that the disks do not intersect. Excise the disks

{za, |2a| < lplrz'} € B,

to form a twice-punctured surface

S0 = 5O\ | {24, |2al < lolrz '}

a=1,2

Identify annular regions A, C i(l), A, = {za, |p|7’g1 < |zq| € 14} as a single region
A = Ay ~ A, via the sewing relation

R122 = P,

to form a compact genus two Riemann surface ©(® = S\ {A; U Ay} U A, parame-
terized by

D? = {(r,w,p) €Hy x CxC ,|w—A>2|p|> >0, A€ A}.

2.2. The Prime form. Recall the prime form E)(z,2") [M,F1,F2]

9 [  v|0@)
EW(z 2 = K ({Z d : ) ~(z—2)de"2dZ"7 for 2~ 2,
((2)2¢(=")2
is a holomorphic differential form of weight (—3,—3) on 20 x 5@,

E(g)(z7 2 = —E9) (', 2),
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Q@ oz, .
and has multipliers 1 and e~ S v along the a; and b; cycles in z. Here

§(z) =Y 0.9 | ;] (0l )n(2),
i=1

(a holomorphic 1-form, and let ¢(z)2 denote the form of weight 1 on the double cover
309 of O
In particular, the prime form on the torus is [M]

1

EW(z,2) =KV (z— 2 1) dz"2 d2/~ 7,

91(z,T)
KM - =)
&7 = 50,7
for z € C and 7 € H; and where ¥;(z,7) =9 “g} (z,7).

2.3. The Szegd kernel. The Szegd Kernel [M,F1,F2] is defined by

’ oy — 5] U2 dz3dz'%
59 Lﬁ} (2,2'1Q) = ¥ [a} (0)E©) (2, 2') N

for z ~ 2/,
B

with 0 [g} (0) # 0,

09j = 76727”;67.7 ¢J = 7627”'0“7.7 ] = ]_,...,g7
where E(g)(zl, z9) is the genus g prime form. The Szeg6 kernel has multipliers along
the a; and b; cycles in z given by —¢; and —0; respectively and is a meromorphic
(L, 1)-form on B x $(9),

273
S(9) [Z] (z7z’) )] L‘i_” (z/7z),

where =1 = (6; 1) and ¢~ = (¢; ).

K3
Finally, we describe the modular invariance of the Szeg6 kernel under the symplectic

group Sp(2g,Z) where we find [Fay]
S(9) l?] (z,2/|QW) = @ [9} (z,2'1Q9)
¢ ) ¢ ) )

with 9]' = —6_27”"83'7 (bj = —€2ﬂ-i&j,

()=(2 5) (D) wa i)
Q= (AQ+B)(CQ+D) ',

where diag(M) denotes the diagonal elements of a matrix M.
On the torus ©(M) the Szegé kernel for (6, ¢) # (1,1) is

sl 8] =n )] e-snast e



8 ALEXANDER ZUEVSKY

where

0
P1|: :|(Z,T) =
: o[ 5 Jon %67
B gt
_%1_9—1qk+>\’

= 1ol

for ¥1(z,7) =9 [7] (2,7), g = €%, and ¢ = exp(2miA) for 0 < A < 1.

|

24. Genus two Szeg6 kernel in the p-formalism. It is convenient to define
K € [ 5 2) by ¢o = —e?™*. Then we prove [TZ1] the following

Theorem 2.1 (Tuite-Z). S@ is holomorphic in p for |p| < riry with
§P(x,y) = 5 (x,) + O(p),
forz, y € W where S,(Ql)(x,y) is defined for k # —35, by

(e - (Ggneny

9 [ ] T — Y+ Kw,T)

(1){ },{wr KW (z —y,7)

L . 1
with similar expression for S’(_% (z,y) for k= —3.

Let k, = k + (=1)%, for a = 1, 2 and integer k¥ > 1. We introduce the moments
for S,gl)(x,y) :

o)
Gab(k’yl) = Gab |:¢(1 :l (ﬁ;k,l)

p2(k ey I, o(1) 1
(27”%:( )jg( )xa b () S (i o) ey
Ta b(Yb

with associated infinite matrix G = (Ggp(k,1)). We define also half-order differentials

e L (ka—1) B .
hathr) = e [ | sk = 22 S0
Ca(Ya

o) 2
—_ _ 9(1) pg(ka 3) B 1
Fulko) =T |y | k) = P b5y sk
T

and let h(z) = (ho(k,z)) and h(y) = (hq(k, 7)) denote the infinite row vectors indexed
by a, k. From the sewing relation zyzo = p we have

2| ol

= d
= (-1)7 ¢ pt =1,

Za

S
N|=

dz
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for &€ € {£+/—1}, depending on the branch of the double cover of Y@ chosen. It is
convenient to define

T =¢GDY,
with an infinite diagonal matrix

DOk, 1) = { 9; _09 }5(1@1).

Defining det (I — T') by the formal power series in p
1
logdet (I —T)=Trlog(I-T)=— Z —Tr(T"),
n>1
we prove in [TZ1]

Theorem 2.2 (Tuite-Z).
a.) (I-=T)"t =%, 5,1 is convergent for |p| < rirs,

b.) det (I —T) is non-vanishing and holomorphic in p on DP.
Theorem 2.3 (Tuite-Z). S3)(x,y) is given by

SO (2, y) = SO (2,y) + Er(x)D(I = T) 'R (y).

3. INTERTWINED n-POINT FUNCTIONS

As in ordinary (non-intertwined) case [DLM1,H, MN, MT1,MT3,MT4,MTZ, TZ2,
Z1] we construct in [TZ4] the partition and n-point functions [DVFHLS,EO,FS,GKV,
GV,KNTY,Pe,R, TUY, U] for vertex operator algebra modules.

3.1. Torus intertwined n-point functions. Let g;, f;, ¢ = 1, 2 be VOSA V
automorphisms commuting with ov = (=1)?v. For u € V,,, and the states
v1,...,0, € V we define the intertwined n-point function [TZ4] on the torus by

y | i . . T
Z() |:g :|(U7Z27 V1, T15-++5Un, Tn;U, 21; T)
1

L""]2
= STTV(,Q1 (fl Y (qzz \ (O)uv QZQ) Y(qf(O)'Ula ql)

L —1(0) B
Y(qﬁ(o)vn, an) Y (qzl 92 u, qu) qLogl(O) 6/24> ’

where ¢ = exp(2miT), g = exp(zr), ¢, = exp(z;), j = 1, 2; 1 < k < n, for variables
Tri,...,T, associated to the local coordinates on the torus, and @ is dual for v with
respect to the invariant form on V,4,. The supertrace over a V-module N is defined
by

STI‘N(X) = T’I“N(O'X).
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For an element u € V,4, of a VOSA g-twisted V-module we introduce also the
differential form

y | N1 . o R
‘F( ) |: :| (U,ZQ, V1,15 « -5 Un, Tnj U, 213 T)
1
_ | N . . . R
:Z( ) |:g :| (u7227 U1, L1535+ 3Un, Tns U, 215 T)
1

.dZ;ut[U] dz}“t[a] de;vt [vi],

=1

associated to the torus intertwined n-point function.

3.2. Genus two partition and n-point functions in p-formalism. Let f;, i =1,
2 be automorphisms, and V,,,. be twisted V-modules of a vertex operator superalgebra
V. For zy,...,z, € 1) with |zx| > |p|/r2 and |zp —w| > |p|/r1, k = 1,...,n, we
define the genus two n-point function [TZ4] in the p-formalism by

Z(Q) |:f:| ('Ul,xl; .. .;'Un7$n;7-7w7p)
g

:Z Z ka(l) |:f1:| (U7w+22;’l)1,.’171;...;’l}n7.'17n;f2ﬂ,21;7'),
g1

k>0 u€Vs g, [K]

where (f, g) = ((fi), (g:)), where f (respectively ¢g) denotes the pair fi, fo (respectively
91, 92). The sum is taken over any V,4,-basis.
In particular, introduce the genus two partition function

20 M = 5 29| M wwi oo,

ue Vag2

where Z() [gﬂ (u, w; fo @, 0;7) is the genus one intertwined two point function.

Remark 3.1. We can generalize the genus two n-point function by introducing and
computing the differential form associated to the torus n-point function containing
several intertwining operators in the supertrace as well as corresponding genus two
n-point functions.

Similar to the ordinary genus two case [TZ2], we define the differential form [TZ4]
associated to the m-point function on a sewn genus two Riemann surface for v; € V'
and z; € £ i =1,...,n with |z;| > |p|/r2, |2i —w| > |p|/71,

‘F(Q) |:£:| (Ulv"'vvn;vavp)

=73 {f] (V1,215 ..} Uy Ty T, W, P) H dx;”t[vi].
g

i=1
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4. FREE FERMION VOSA

4.1. Torus intertwined two-point function. The rank two free fermionic VOSA
V(H,Z+ )®?, [Ka] is generated by ¢* with

[ (m), ¥~ (n)] = dp,—n—1, [T (M), ¢F(n)] =0, [¥7(m), ¢~ (n)] =0,

The rank two free fermion VOSA intertwined torus n-point function is parameter-
ized by ) = —e 201 ¢ = —e?™ N and ¢y = —e 2™, [TZ2, TZ4] where

Ufl — eQTrzBla(O)7 og1 = 6—271'104111(0)7 0gs = eQTrma(O)7

for real valued oy, f1, &, (61,¢1) # (1,1).
Foru=1®e" =e" € V,y, and v; = 1,47 = 1,...,n we obtain [TZ4] the basic
intertwined two-point function on the torus

A {gj (€7, 22; €%, 213 T)

=STy,, ( ny (q£2(0)erc’ q22> % <q£1(0)e—rc’ q21> e (0)—c/24) .

We then consider the differential form

g7(L1) |:§i:| (x17y17 o 7xn,7yn)

=r [fl] (e wi T, 29T, yns YT T s e, 07),
g1
associated to the torus intertwined 2n-point function
AR {fl} (e w; ¥ YTy T e YT Y05 7),
g1

with alternatively inserted n states ¥* and n states 1)~ distributed on the resulting
genus two Riemann surface ¥ at points z;, v; € @, i=1,...,n.
We then prove in [TZ4]

Theorem 4.1 (Tuite-Z). For the rank two free fermion vertex operator superalgebra
V and for (6, ¢) # (1,1) the generating form is given by

Ggll) |:§1:| (xlaylv .. 'axnayn)

=z [fl} (e”,w; e ", 0; T) det 5,21)7
9

1 9 [%ﬂ (kw, T)
n(r) KW(w,7)"*

A [fl} (e, w; e7%,0; 7) =
g1

is the basic intertwined two-point function on the torus, and n X n-matrix S’,(.gl) =

[S,gl) [Zﬂ (@i, y5 | T,U))}, i, j = 1...,n, with elements given by parts of the Szeqd

kernel.
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4.2. Genus two partition function. In [TZ4] we then prove:

Theorem 4.2 (Tuite-Z). Let V,g,, i =1, 2 be 0g;-twisted V-modules for the rank two
free fermion vertex operator superalgebra V. Let (8,¢) # (1,1). Then the partition
function on a genus two Riemann surface obtained in the p-self-sewing formalism of
the torus is a non-vanishing holomorphic function on D given by

Z(Q) |:£:| (T,’U},p) = Z(l) |:£1:| (eﬁaw; e_ﬁao; T) det(l _T)a
1

where Z(M) [{J;ﬂ (", w;e™",0;7) is the intertwined V-module Vg4, torus basic two-

point function.

We may similarly compute the genus two partition function in the p-formalism for
the original rank one fermion VOSA V (H L+ %) in which case we can only construct
a o-twisted module. Then we have [TZ4] the following

Corollary 4.3 (Tuite-Z). Let V be the rank one free fermion vertex operator super-
algebra and f1, g1 € {o0,1}, a = 1, 2 be automorphisms. Then the partition function
for V-module V4, on a genus two Riemann surface obtained from p formalism of a
self-sewn torus XV is given by
72 [f} (r,w,p) = zW
g

rankl rankl

[gl} (e, w;e™",0;7)det (I — T)l/2 ,
1

where Zr(;r)lk 1 [gﬂ (e",w; e %,0; 7) is the rank one fermion intertwined partition
function on the original torus.

4.3. Genus two generating form. In [TZ4] we define matrices

H* = ((h(z)) (k,a), H~ = ((R(y)) (1,b))" .

S and S,(gl) are finite matrices indexed by x;, y; for ¢, j = 1,...,n; H" is semi-
infinite with n rows indexed by x; and columns indexed by £ > 1 and ¢ = 1, 2 and
H~ is semi-infinite with rows indexed by [ > 1 and b = 1,2 and with n columns
indexed by y;. We then prove

Lemma 4.4 (Tuite-Z).

S’g) EHT Do

det{H_ I_7

] = det S® det(I —T),

with T, D,

Introduce the differential form

G [ﬁ (T1, Y15+ Ty Yn)

= F(2) |:£:| (¢+7w_7"'aw+v¢_;T’w’p)’
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associated to the rank two free fermion VOSA genus two 2n-point function
f - _
A [g WF e,y 5T T 39T s T W, p),

with alternatively inserted n states ¥+ and n states 1~. The states are distributed
on the genus two Riemann surface Y2 at points z;, Y € Y@ i=1,...,n. Then we
have

Theorem 4.5 (Tuite-Z). All n-point functions for rank two free fermion VOSA
twisted modules V4 on self-sewn torus are generated by the differential form

g7(12) |:‘£:| (xlvylv DR vwnvyn) = Z(2) |:£:| (vavp) det 5(2)

where the elements of the matriz S = [5(2) {(ﬂ (s, y; | 7 w)] ,i,j=1,...,n and

AL [ﬂ (1,w, p) is the genus two partition function.

5. MODULAR INVARIANCE PROPERTIES

Following the ordinary case [DLM1,MT3,MT5] we would like to describe modular
properties of genus two ”intertwined” partition and n-point generating functions. As
in [MT3], consider H C Sp(4,Z) with elements

1 0 0 b
a 1 b ¢
0 0 0 1

H is generated A
[A,B]C~? = =
with elementb

(1,0, ) B = 1(0,1,0) and C = u(0,0,1) with relations
= 1. We also define I'y C Sp(4,Z) where I'y = SL(2,Z)

[B,C)]
0 b1 0
0 a1d1 — b161 =1.

Od10’
0001

Together these groups generate L = H x I'; C Sp(4,Z). From [MT3| we find that L
acts on the domain D7 of as follows:

wla,b,c).(t,w,p) = (7,w+ 2miar + 2mid, p),

( ) (alTerl w P >
AT, w, = ; ’
m P at+dy e+ dy (61T+d1)2

We then define [TZ4] a group action of 41 € SL(2,Z) on the torus intertwined two-
point function Z™M [gﬂ (u,w; v,0;7) for u, v € Vgt

Z(l) |:§1:H71 (’UQ’LU, ’U,O; T) = Z(l) <71 |:§1:|> (uvfyl'w; ’U,O; 71'7—)7
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ay by
with the standard action ~;.7 and ~;.w, and ~;. [fl} = [ 101551}, and the torus

g1 1191

multiplier eg,ll) [51] e U(1), [MTZ], [TZ1]. Then we have [TZ4]

Theorem 5.1 (Tuite-Z). The torus intertwined two-point function for the rank two
free fermion VOSA is a modular form (up to multiplier) with respect to L

AR [fl} v (u,w; v,0; 7)
g1
= e} [fl} (er7 + dy ) Wrtwtvts® Z() [fl} (u, w;v,0;7),
g1 g1

where u, v € Vyy.

The action of the generators A, B and C' is given by [TZ1]

f1 f1 f1 fig2 o0 f1 f1

Al | = fifao Bl =|fa- Clf|=]|fge
il g195 o |’ g1 g1 ’ a1 g1 :
92 g2 92 92 92 g2

In a similar way we may introduce the action of v € L on the genus two partition
function [TZ4]

7| Hmw,m =20 (3. ).

fi gt

fa | _ fo
Tlig | T gt

92 go

We may now describe the modular invariance of the genus two partition function for
the rank two free fermion VOSA under the action of L. Define a genus two multiplier

eﬁf) [; ] € U(1) for v € L in terms of the genus one multiplier as follows

f !
2= [o)

for the generator v, € I';. We then find [TZ4]

Theorem 5.2 (Tuite-Z). The genus two partition function for the rank two VOSA
is modular invariant with respect to L with the multiplier system, i.e.,

z® {ch] v (1, w, p) =e£y2) {ch] z? Lﬂ (1, w, p) .

Finally, we can also obtain modular invariance for the generating form

GSE) |:§:| (331,2/17 e 7x7layn)7

for all genus two n-point functions [TZ4].
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Theorem 5.3. Gg) [ﬂ (1,Y1, -+, Tn,Yn) s modular invariant with respect to L

with a multiplier.
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