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Abstract. We are concerned with a nonstandard phase field model of Cahn-
Hilliard type. The model, which was introduced by Podio-Guidugli (Ric. Mat.
2006), describes two-species phase segregation and consists of a system of two
highly nonlinearly coupled PDEs. It has been recently investigated by Colli,
Gilardi, Podio-Guidugli, and Sprekels in a series of papers: see, in particular,
SIAM J. Appl. Math. 2011 and Boll. Unione Mat. Ital. 2012. In the latter
contribution, the authors can treat the very general case in which the diffusiv-
ity coefficient of the parabolic PDE is allowed to depend nonlinearly on both
variables. In the same framework, this paper investigates the asymptotic limit
of the solutions to the initial-boundary value problems as the diffusion coeffi-
cient σ in the equation governing the evolution of the order parameter tends
to zero. We prove that such a limit actually exists and solves the limit problem,
which couples a nonlinear PDE of parabolic type with an ODE accounting for

the phase dynamics. In the case of a constant diffusivity, we are able to show
uniqueness and to improve the regularity of the solution.

1. Introduction. In this paper, we consider the following system
(

1 + 2g(ρ)
)

∂tµ+ µ g′(ρ) ∂tρ− div
(

κ(µ, ρ)∇µ
)

= 0 (1.1)

∂tρ− σ∆ρ+ f ′(ρ) = µ g′(ρ) (1.2)
(

κ(µ, ρ)∇µ
)

· ν|Γ = 0 and ∂νρ|Γ = 0 (1.3)

µ(0) = µ0 and ρ(0) = ρ0, (1.4)

in the unknown fields µ and ρ, where the partial differential equations (1.1)–(1.2) are
meant to hold in a three-dimensional bounded domain Ω, endowed with a smooth
boundary Γ, and in some time interval (0, T ). Relations (1.4) specify the initial
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conditions for µ and ρ, while (1.3) are nothing but homogeneous boundary condi-
tions of Neumann type, involving precisely those boundary operators that match
the elliptic differential operators in (1.1)–(1.2).

This system has been recently addressed in the paper [7]: the existence of solu-
tions has been proved, thus complementing and extending the results of the papers
[4, 5, 6] concerned with simpler or reduced versions of the problem.

Here, we are interested to investigate the asymptotic behavior of the above initial-
boundary value problem (1.1)–(1.4) as the positive diffusion coefficient σ appearing
in (1.2) tends to 0.

Let us briefly explain the modelling background for (1.1)–(1.4). Such a system
comes from a generalization of the phase-field model of viscous Cahn-Hilliard type
originally proposed in [15], and it aims to describe the phase segregation of two
species (atoms and vacancies, say) on a lattice in presence of diffusion. The state
variables are the order parameter ρ, interpreted as the volume density of one of the
two species, and the chemical potential µ. For physical reasons, µ is required to be
nonnegative, while the phase parameter ρ must of course take values in the domain
of f ′.

We also recall the features of [4] and what has been generalized in [6, 7]. Firstly,
the nonlinearity f considered in [4] is a double-well potential defined in (0, 1), whose
derivative f ′ diverges at the endpoints ρ = 0 and ρ = 1: e.g., for f = f1 + f2 with
f2 smooth, one can take

f1(ρ) = c (ρ log(ρ) + (1 − ρ) log(1− ρ)), (1.5)

with c a positive constant. In this paper, we let f1 : R → [0,+∞] be a convex, proper
and lower semicontinuous function so that its subdifferential (and not the derivative)
is a maximal monotone graph from R to R. Then, we rewrite equation (1.2) as a
differential inclusion, in which the derivative of the convex part f1 of f is replaced
by the subdifferential β := ∂f1, i.e.,

∂tρ− σ∆ρ+ ξ + f ′
2(ρ) = µg′(ρ) with ξ ∈ β(ρ). (1.6)

Note that f1 needs not be differentiable in its domain, so that its possibly nonsmooth
and multivalued subdifferential β := ∂f1 appears in (1.2) in place of f ′

1. In general,
β is only a graph, not necessarily a function, and it may include vertical (and
horizontal) lines, as for example when

f1(ρ) = I[0,1](ρ) =

{

0 if 0 ≤ ρ ≤ 1

+∞ elsewhere
(1.7)

and β = ∂I[0,1] is specified by

ξ ∈ β(ρ) if and only if ξ











≤ 0 if ρ = 0

= 0 if 0 < ρ < 1

≥ 0 if ρ = 1

. (1.8)

Secondly, while in [4] g was simply taken as the identity map g(ρ) = ρ, in [6, 7]
g is allowed be any nonnegative smooth function, defined (at least) in the domain
where f1 and its subdifferential live. The presence of such a function g allows for a
more general behavior of (the related term in) the free energy, which reads

ψ(ρ,∇ρ, µ) = −
µ

2
− µ g(ρ) + f(ρ) +

σ

2
|∇ρ|2. (1.9)



VANISHING DIFFUSION LIMIT IN NONSTANDARD PHASE FIELD SYSTEMS 259

Indeed, in particular g(ρ) is not obliged, as it was instead for g(ρ) = ρ, to take its
minimum value at ρ = 0, be increasing and with maximum value at ρ = 1 (when
D(f1) = [0, 1]), but we may have many other instances like, e.g., a specular behavior
of g around the extremal points of the domain of f . Here, we have to impose an
additional restriction on g, which however looks reasonable from the modelling point
of view: we postulate that g is a (smooth) concave function, which in turn implies
convexity with respect to ρ of the term −µ g(ρ) in the free energy (1.9). However,
let us recall that f may stand for a multi-well potential in which the nonconvex
perturbations are incorporated into f2, so that ψ in its entirety needs not be convex
with respect to ρ.

An important generalization that is considered in this paper concerns the dif-
fusivity κ. In [4], κ was just assumed to be a constant function, but it can be a
positive-valued, continuous, bounded, and nonlinear function of µ (and this was the
setting of [6]), or of µ and ρ as it is postulated in [7]. For simplicity, we confine our-
selves to study of the convergence properties of the solution under an assumption
that guarantees uniform parabolicity, i.e., κ ≥ κ∗ > 0. We point out that [6] treats
the situation of κ depending only on µ and possibly degenerating somewhere.

Therefore, the system
(

1 + 2g(ρ)
)

∂tµ+ µ g′(ρ) ∂tρ− div
(

κ(µ, ρ)∇µ
)

= 0 (1.10)

∂tρ− σ∆ρ+ ξ + f ′
2(ρ) = µg′(ρ) with ξ ∈ β(ρ), (1.11)

(

κ(µ, ρ)∇µ
)

· ν|Γ = 0 and ∂νρ|Γ = 0 (1.12)

µ(0) = µ0 and ρ(0) = ρ0, (1.13)

turns out to be the initial and boundary value problem for a nonstandard and
highly nonlinear phase field system in which however the role usually played by
the temperature is here conducted by the chemical potential µ. In the study of
phase field systems, it has been always considered rather important to analyze the
behavior of the problem as the coefficient σ of the diffusion term in the phase
parameter equation tends to 0. The limiting case σ = 0 corresponds indeed to a
pointwise ordinary differential equation (or inclusion)

∂tρ+ ξ + f ′
2(ρ) = µg′(ρ), ξ ∈ β(ρ), (1.14)

in place of (1.11), and to an expression for the free energy (1.9) in which the last
quadratic term accounting for nonlocal interactions is removed.

In fact, especially for the choice (1.7)–(1.8), the limiting problem can be for-
mulated in terms of hysteresis operators: in particular, the so-called stop and play

operators are involved; the interested reader can find some discussion and various
results on this class of problems in [8–14].

By collecting a number of estimates independent of σ for the solution (µσ, ρσ)
to the problem (1.10)–(1.13), by weak and weak star compactness we prove that
any limit in a suitable topology of a convergent subsequence of {(µσ, ρσ)} yields a
solution to the limiting problem in which (1.11) is replaced by (1.14). Furthermore,
under natural compatibility conditions on the nonlinearities and the initial data,
we show boundedness for all the components of any solution to the limit problem.
Finally, in the special case of a constant mobility κ in (1.10), we prove that the
solution is unique and more regular than required.

Our analysis certainly benefits from the fact the system of equations (1.1)–(1.2)
is complemented by the Neumann homogeneous boundary conditions (1.3), which
make the estimates easier avoiding the treatment of boundary terms. On the other



260 PIERLUIGI COLLI, GIANNI GILARDI, PAVEL KREJČÍ AND JÜRGEN SPREKELS

hand, such conditions are quite natural from the modeling point of view and have
been extensively used in [4–7]; in particular, let us comment that in the mathemati-
cal literature of phase field models the Neumann homogeneous boundary conditions
are the standard ones for the order parameter ρ. Concerning the limiting problem,
in our results we also take some advantage from the fact that we can exploit the
ODE structure of equation (1.14) using techniques that are proper for ordinary
differential equations. To this concern, let us also point out that, for the limiting
system with (1.14), a continuous dependence property is shown in the paper [3] in
the case that the mobility coefficient suitably depends on the chemical potential.

The paper is organized as follows. In the next section, we state precise assump-
tions along with our results. The basic a priori estimates independent of σ are
proved in Section 3 and they allow us to pass to the limit by compactness and
monotonicity techniques. Finally, the last section is devoted to the study of the
limit problem and our boundedness, uniqueness, and further regularity properties
are proved.

2. Assumptions and results. The aim of this section is to introduce precise
assumptions on the data for the mathematical problem under investigation, and
establish our main result. We assume Ω to be a bounded connected open set in
R

3 with smooth boundary Γ (treating lower-dimensional cases would require only
minor changes) and let T ∈ (0,+∞) stand for a final time. We introduce the spaces

V := H1(Ω), H := L2(Ω), W := {v ∈ H2(Ω) : ∂νv = 0 on Γ} (2.1)

and endow them with their standard norms, for which we use a self-explanatory
notation like ‖ · ‖V . For powers of these spaces, norms are denoted by the same
symbols. We remark that the embeddings W ⊂ V ⊂ H are compact, because Ω is
bounded and smooth. The symbol 〈 · , · 〉 denotes the duality product between V ∗,
the dual space of V , and V itself. Moreover, for p ∈ [1,+∞], we write ‖ · ‖p for the
usual norm in Lp(Ω); as no confusion can arise, the symbol ‖ · ‖p is used for the
norm in Lp(Q) as well, where Q := Ω× (0, T ).

Now, we present the structural assumptions we make. It is useful to fix an upper
bound for σ, that is,

0 < σ ≤ 1. (2.2)

Then, for the diffusivity coefficient κ we assume that

κ : (m, r) 7→ κ(m, r) is continuous from [0,+∞)× R to R, (2.3)

the partial derivatives ∂rκ and ∂2rκ exist and are continuous, (2.4)

κ∗, κ
∗ ∈ (0,+∞), (2.5)

κ∗ ≤ κ(m, r) ≤ κ∗, |∂rκ(m, r)| ≤ κ∗, |∂2rκ(m, r)| ≤ κ∗for m ≥ 0 and r ∈ R, (2.6)

and for the other nonlinearities we require that

f = f1 + f2 , f1 : R → [0,+∞], f2 : R → R, (2.7)

f1 is convex, proper, l.s.c. and f2 is a C2 function, (2.8)

g ∈ C2(R), g(r) ≥ 0 and g′′(r) ≤ 0 for r ∈ R, (2.9)

f ′
2, g, and g

′ are Lipschitz continuous. (2.10)

It is convenient to introduce the notations

κ′ := ∂rκ, κ′′ := ∂2rκ, β := ∂f1 , and π := f ′
2 (2.11)
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K(m, r) :=

∫ m

0

κ(s, r) ds, K1(m, r) :=

∫ m

0

κ′(s, r) ds,

and K2(m, r) :=

∫ m

0

κ′′(s, r) ds for m ≥ 0 and r ∈ R. (2.12)

We denote by D(f1) and D(β) the effective domains of f1 and β, respectively.
Thanks to (2.6), it is clear that

max{|K(m, r)|, |K1(m, r)|, |K2(m, r)|} ≤ κ∗m

for every m ≥ 0 and r ∈ R. (2.13)

We also note that the structural assumptions of [6] are fulfilled if κ only depends
on m, and that, due to the presence of β(ρ), a strong singularity in equation (1.11)
is allowed. On the other hand, equation (1.10) is uniformly parabolic, since g is
nonnegative and κ is bounded away from zero.

Remark 2.1. Let us recall that any convex, proper, l.s.c. function is bounded from
below by an affine function (cf., e.g., [1, Prop. 2.1, p. 51]), whence the assumption
f1 ≥ 0 looks reasonable, as one can suitably modify the smooth perturbation f2.
Moreover, we point out that the sign conditions g ≥ 0 and g′′ ≤ 0 are just needed
on the set D(β), for g can be extended outside of D(β) accordingly.

Concerning the initial data, we require that

µ0 ∈ V, µ0 ≥ 0 a.e. in Ω, (2.14)

ρ0 ∈ V, ρ0 ∈ D(f1) a.e. in Ω, f1(ρ0) ∈ L1(Ω) (2.15)

and point out that the above assumptions regard the initial data for the limiting
problem, i.e., the one with (1.14) in place of (1.11). On the other hand, let us
consider a family of initial data µ0σ, ρ0σ with

µ0σ ∈ V ∩ L∞(Ω), µ0σ ≥ 0 a.e. in Ω, (2.16)

ρ0σ ∈ W, there is ξ0σ ∈ H such that

ρ0σ ∈ D(β), ξ0σ ∈ β(ρ0σ) a.e. in Ω, (2.17)

that approximate µ0, ρ0 in the sense that

µ0σ → µ0 and ρ0σ → ρ0 weakly in V, (2.18)

‖f1(ρ0σ)‖1 is bounded independently of σ. (2.19)

For the reader’s convenience, we show that such a family {µ0σ, ρ0σ} actually exists.
Of course, if µ0 6∈ L∞(Ω) we can take as µ0σ some truncation of µ0, e.g., µ0σ =
min{µ0, 1/σ}. Concerning ρ0σ, one possible choice is letting ρ0σ ∈ W denote the
solution to

ρ0σ − σ∆ρ0σ + σξ0σ = ρ0, with ξ0σ ∈ β(ρ0σ), a.e. in Ω. (2.20)

Indeed, the elliptic problem (2.20) has a unique solution for all σ > 0, since −∆+β
is a maximal monotone graph in H ×H with effective domain

{v ∈W : ∃ η ∈ H such that v ∈ D(β), η ∈ β(v) a.e. in Ω}.

Thus, ρ0σ is nothing but the outcome of the application of the resolvent of −∆+ β
to ρ0 (let us refer to [1] and [2] for basic definitions and properties of maximal
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monotone operators). A formal test of the equality in (2.20) by ξ0σ and the definition
of subdifferential lead us to the estimate

∫

Ω

f1(ρ0σ) + σ‖ξ0σ‖
2
H ≤

∫

Ω

f1(ρ0), (2.21)

which ensures (2.17) and (2.19), thanks to the nonnegativity of f1. A rigorous way
of proving the existence of ρ0σ and estimate (2.21) passes through the use of the
Yosida approximation βσ (see, e.g., [2, p. 28]) in place of β.

Now, we recall the result proved in [7] that allows us to specify a solution to the
problem (1.10)–(1.12), with σ > 0, which fulfills the appropriate initial conditions.

Proposition 2.2. Assume that both (2.3)–(2.12) and (2.16)–(2.17) hold. Then,

there exists at least one triplet (µσ, ρσ, ξσ) satisfying

ρσ ∈W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.22)

ξσ ∈ L∞(0, T ;H), (2.23)

µσ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L∞(Q), µσ ≥ 0 a.e. in Q, (2.24)

div
(

κ(µσ, ρσ)∇µσ

)

∈ L2(Q) and
(

κ(µσ, ρσ)∇µ
)

· ν = 0 a.e. on Σ, (2.25)

and solving the system of equations and conditions in the following strong form

(

1 + 2g(ρσ)
)

∂tµσ + µσ g
′(ρσ) ∂tρσ − div

(

κ(µσ, ρσ)∇µσ

)

= 0 a.e. in Q, (2.26)

∂tρσ − σ∆ρσ + ξσ + π(ρσ) = µσ g
′(ρσ) and ξσ ∈ β(ρσ) a.e. in Q, (2.27)

µσ(0) = µ0σ and ρσ(0) = ρ0σ a.e. in Ω. (2.28)

Let us point out that equation (2.26) can be rewritten as

∂tuσ − div
(

κ(µσ, ρσ)∇µσ

)

= µσ g
′(ρσ) ∂tρσ,

where uσ = (1 + 2g(ρσ))µσ, a.e. in Q, (2.29)

and the auxiliary variable uσ has been added. Now, we take advantage of a vari-
ational formulation of (2.29) which also accounts for the boundary condition in
(2.25), that is,

〈∂tuσ(t), v〉+

∫

Ω

(

κ(µσ, ρσ)∇µσ

)

(t) · ∇v =

∫

Ω

µσ g
′(ρσ) ∂tρσ v

for all v ∈ V and a.a. t ∈ (0, T ). (2.30)

The main result of this paper reads as follows.

Theorem 2.3. Assume that (2.3)–(2.12) and (2.14)–(2.19) hold. For any σ ∈ (0, 1]
let (µσ, ρσ, ξσ) be the triplet defined by Proposition 2.2 and let uσ := (1+2g(ρσ))µσ.

Then, there exists a subsequence, still labelled by the parameter σ, and a quadruplet

(µ, ρ, ξ, u) such that

µσ → µ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ), (2.31)

ρσ → ρ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ), (2.32)

ξσ → ξ weakly in L2(Q), (2.33)

uσ → u weakly in W 1,4/3(0, T ;V ∗) ∩ L2(0, T ;W 1,3/2(Ω)) (2.34)
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as σ ↘ 0. Moreover, any quadruplet (µ, ρ, ξ, u) that is found as limit of converging

subsequences yields a solution to the following limit problem

〈∂tu(t), v〉+
∫

Ω κ(µ, ρ)∇µ(t) · ∇v =
∫

Ω µ g
′(ρ) ∂tρ v

for all v ∈ V and a.a. t ∈ (0, T ), (2.35)

u = (1 + 2g(ρ))µ a.e. in Q, (2.36)

∂tρ+ ξ + π(ρ) = µ g′(ρ) and ξ ∈ β(ρ) a.e. in Q, (2.37)

u(0) = u0 := (1 + 2g(ρ0))µ0 and ρ(0) = ρ0 a.e. in Ω. (2.38)

Remark 2.4. The nonnegativity property µ ≥ 0 a.e. in Q plainly follows from
(2.24) and (2.31). Note that the first initial condition in (2.38) is given for variable
u for it is not clear whether (cf. (2.31)) µ is continuous from [0, T ] to some vector
space.

Remark 2.5. One standard situation for the limit problem (2.35)–(2.38) is ob-
tained for β = ∂I[0,1] (cf. (1.7)–(1.8)). In this case (2.37) becomes

− π(ρ) + µ g′(ρ)− ∂tρ ∈ ∂I[0,1](ρ) a.e. in Q. (2.39)

Then, if one introduces the generalized “freezing index”

w(x, t) :=

∫ t

0

(−π(ρ) + µ g′(ρ))(x, s)ds, (x, t) ∈ Q,

we thus have ∂tw − ∂tρ ∈ ∂I[0,1](ρ), or equivalently, ρ = SK [w], where SK is the
stop hysteresis operator associated with the closed convex set K = [0, 1] (see, e.g.,
[11, 12, 13]). Hence, we may rewrite (2.39) as

∂tw = −π(SK [w]) + µ g′(SK [w]) a.e. in Q.

In addition to the convergence result stated in Theorem 2.3, one can derive
boundedness for both the components ρ and ξ of any solution to the limit problem,
provided that special additional requirements are satisfied, namely, by assuming
that there exist real constants ρ∗, ρ

∗, ξ∗, ξ
∗ such that

ρ∗, ρ
∗ ∈ D(β), ξ∗ ∈ β(ρ∗), ξ∗ ∈ β(ρ∗), (2.40)

ξ∗ + π(ρ∗) ≤ 0, ξ∗ + π(ρ∗) ≥ 0, (2.41)

g′(ρ∗) ≥ 0, g′(ρ∗) ≤ 0. (2.42)

Theorem 2.6. In addition to the assumptions of Theorem 2.3, suppose that (2.40)–
(2.42) and

ρ∗ ≤ ρ0 ≤ ρ∗ a.e. in Ω (2.43)

hold. Then, the components ρ and ξ of any solution (µ, ρ, ξ, u) to problem (2.35)–
(2.38) satisfy

ρ∗ ≤ ρ ≤ ρ∗ and ξ∗ ≤ ξ ≤ ξ∗ a.e. in Q. (2.44)

If moreover

µ0 ∈ L∞(Ω) (2.45)

and κ = κ0 is constant, then the solution of Problem (2.35)–(2.38) is unique and

µ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (2.46)

Remark 2.7. We observe that the above result is very general. Indeed, assumptions
(2.40)–(2.42) are fulfilled with suitable constants for any graph β with bounded
domain that generalizes the examples (1.5) or (1.7). Of course, the decreasing
function g′ (cf. (2.9)) should not assume a definite sign on D(β).
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Now, we list a number of tools and notations we owe to throughout the paper.
We repeatedly use the elementary Young inequalities

a b ≤ γa2 +
1

4 γ
b2 and a b ≤ ϑa

1

ϑ + (1− ϑ)b
1

1−ϑ

for every a, b ≥ 0, γ > 0, and ϑ ∈ (0, 1) (2.47)

as well as the Hölder and Sobolev inequalities. The precise form of the latter we
use is the following

W 1,p(Ω) ⊂ Lq(Ω) and ‖v‖q ≤ Cp,q‖v‖W 1,p(Ω) for every v ∈W 1,p(Ω),

provided that 1 ≤ p < 3 and 1 ≤ q ≤ p∗ :=
3p

3− p
(2.48)

with a constant Cp,q in (2.48) depending only on Ω, p, and q, since Ω ⊂ R
3.

Moreover

the embedding W 1,p(Ω) ⊂ Lq(Ω) is compact if 1 ≤ q < p∗. (2.49)

The particular case p = 2 of (2.48) becomes

V ⊂ Lq(Ω) and ‖v‖q ≤ C‖v‖V for every v ∈ V and q ∈ [1, 6] (2.50)

where C depends only on Ω. Moreover, the compactness inequality

‖v‖q ≤ ε‖∇v‖2 + Cq,ε‖v‖2 for every v ∈ V , q ∈ [1, 6), and ε > 0 (2.51)

holds for some constant Cq,ε depending on Ω, q, and ε, only. We also recall the
interpolation inequalities, which hold for any ϑ ∈ [0, 1],

‖v‖r ≤ ‖v‖ϑp ‖v‖
1−ϑ
q ∀ v ∈ Lp(Ω) ∩ Lq(Ω),

where p, q, r ∈ [1,+∞] and
1

r
=
ϑ

p
+

1− ϑ

q
. (2.52)

‖v‖Lr1(0,T ;Lr2(Ω)) ≤ ‖v‖ϑLp1(0,T ;Lp2(Ω)) ‖v‖
1−ϑ
Lq1(0,T ;Lq2(Ω))

∀ v ∈ Lp1(0, T ;Lp2(Ω)) ∩ Lq1(0, T ;Lq2(Ω)),

where pi , qi , ri ∈ [1,+∞] and
1

ri
=
ϑ

pi
+

1− ϑ

qi
for i = 1, 2. (2.53)

We observe that (2.52) implies ‖v‖r ≤ ϑ‖v‖p + (1 − ϑ)‖v‖q for every v ∈ Lp(Ω) ∩
Lq(Ω) thanks to the Young inequality, and a similar remark holds for (2.53). Thus,
we have the continuous embeddings

Lp(Ω) ∩ Lq(Ω) ⊂ Lr(Ω)

and Lp1(0, T ;Lp2(Ω)) ∩ Lq1(0, T ;Lq2(Ω)) ⊂ Lr1(0, T ;Lr2(Ω)).

We stress the important case of the space L∞(0, T ;L2(Ω))∩L2(0, T ;L6(Ω)), which
occurs several times in the sequel and corresponds to p1 = ∞, p2 = 2, q1 = 2,
and q2 = 6. In particular, the choices ϑ = 2/5 and ϑ = 1/7 yield the inequalities
(for every v of the above space) and the continuous embeddings

‖v‖L10/3(Q) ≤ ‖v‖
2/5
X ‖v‖

3/5
Y and X ∩ Y ⊂ L10/3(Q) (2.54)

‖v‖L7/3(0,T ;L14/3(Ω)) ≤ ‖v‖
1/7
X ‖v‖

6/7
Y and X ∩ Y ⊂ L7/3(0, T ;L14/3(Ω)) (2.55)

where X := L∞(0, T ;L2(Ω)) and Y := L2(0, T ;L6(Ω)) . Notice that we can take
v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) in (2.54)–(2.55), since V ⊂ L6(Ω). Finally, we set

Qt := Ω× (0, t) for t ∈ [0, T ], (2.56)
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and, again throughout the paper, we use a small-case italic c for different constants,
that may only depend on Ω, the final time T , the shape of the nonlinearities f
and g, and the properties of the data involved in the statements at hand; a notation
like cε signals a constant that depends also on the parameter ε. The reader should
keep in mind that the meaning of c and cε might change from line to line and even
in the same chain of inequalities, whereas those constants we need to refer to are
always denoted by capital letters, just like C in (2.50).

3. The asymptotic analysis. In this section, we prove Theorem 2.3, which en-
sures the existence of a solution to problem (2.35)–(2.38) along with the convergence
properties stated in (2.31)–(2.34).

Then, for any σ ∈ (0, 1] we let (µσ, ρσ, ξσ) denote the triplet defined by Proposi-
tion 2.2 and set uσ := (1+2g(ρσ))µσ. The existence of (µσ, ρσ, ξσ) has been proved
in [7]: we follow in parts the arguments developed there in order to recover useful
estimates independent of σ. Before that, let us remark that the property µσ ≥ 0
can be verified by simply multiplying equation (2.26) by −µ−

σ , the negative part
of µσ, and integrate over Qt. In principle, in this computation one has to define κ
everywhere, e.g., by taking an even extension κ̄ with respect to the first variable.
We observe that

[(

1 + 2g(ρσ(t))
)

∂tµσ + µσ g(ρσ) ∂tρσ
]

(−µ−
σ ) =

1

2
∂t
(

(1 + 2g(ρσ(t))) |µ
−
σ |

2
)

.

Hence, by using µ0σ ≥ 0 and owing to the boundary condition in (2.25), we have

1

2

∫

Ω

(1 + 2g(ρσ(t))) |µ
−
σ (t)|

2 +

∫

Qt

κ̄(µσ, ρσ)|∇µ
−
σ |

2 = 0 for a.a. t ∈ (0, T ).

As both g and κ̄ are nonnegative, this implies µ−
σ = 0, that is, µσ ≥ 0 a.e. in Q.

First a priori estimate. We test (2.26) by µσ and point out that

[(

1 + 2g(ρσ)
)

∂tµσ + µσ g
′(ρσ) ∂tρσ

]

µσ =
1

2
∂t
[

(1 + 2g(ρσ)µ
2
σ

]

. (3.1)

Thus, by integrating over (0, t), where t ∈ [0, T ] is arbitrary, we obtain
∫

Ω

(

1 + 2g(ρσ(t))
)

|µσ(t)|
2 + 2

∫

Qt

κ(µσ(s), ρσ(s))|∇µσ |
2 =

∫

Ω

(1 + 2g(ρ0σ))µ
2
0σ .

We recall that g is nonnegative and Lipschitz continuous (cf. (2.9)–(2.10)). More-
over, ρ0σ, µ0σ are both uniformly bounded in V by (2.18), whence

∫

Ω

(1 + 2g(ρ0σ))µ
2
0σ ≤ c

(

‖µ0σ‖
2
2 + ‖ρ0σ‖2‖µ0σ‖

2
4

)

≤ c

owing to the Hölder and Sobolev inequalities (see (2.50)). Then, in view of g ≥ 0
and κ ≥ κ∗ > 0, from (3.1) it follows that

‖µσ‖L∞(0,T ;H) + ‖µσ‖L2(0,T ;V ) ≤ c. (3.2)

Second a priori estimate. We add ρσ to both sides of (2.27) and test by ∂tρσ.
On account of (2.7)–(2.8) and (2.11), we obtain
∫

Qt

|∂tρσ|
2 +

1

2
‖ρσ(t)‖

2
H +

σ

2
‖∇ρσ(t)‖

2
H +

∫

Ω

f1(ρσ(t))

=
σ

2

∫

Ω

|∇ρ0σ|
2 +

∫

Ω

f(ρ0σ) +
1

2

∫

Ω

(

ρ2σ(t)− 2f2(ρσ(t))
)

+

∫

Qt

µσg
′(ρσ)∂tρσ
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for every t ∈ [0, T ]. Then, thanks to the Lipschitz continuity of f ′
2 and g, and owing

to the bounds entailed by (2.18)–(2.19), we find out that
∫

Qt

|∂tρσ|
2 +

1

2
‖ρσ(t)‖

2
H +

σ

2
‖∇ρσ(t)‖

2
H +

∫

Ω

f1(ρσ(t))

≤ c+ c

∫

Ω

|ρσ(t)|
2 +

1

4

∫

Qt

|∂tρσ|
2 + c‖µσ‖

2
L∞(0,T ;H).

On the other hand, by the chain rule and the Young inequality (2.47) we have that

c

∫

Ω

|ρσ(t)|
2 ≤ c

∫

Ω

|ρ0σ|
2 +

1

4

∫

Qt

|∂tρσ|
2 + c

∫ t

0

‖ρσ(s)‖
2
H ds.

Then, as f1 is nonnegative, by accounting for (3.2), with the help of the Gronwall
lemma we infer that

∫

Qt

|∂tρσ|
2 + ‖ρσ(t)‖

2
H + σ ‖∇ρσ(t)‖

2
H ≤ c for all t ∈ [0, T ].

Thus, we conclude that

‖ρσ‖H1(0,T ;H) + σ1/2‖ρσ‖L∞(0,T ;V ) ≤ c. (3.3)

Third a priori estimate. We proceed formally and test (2.27) by −∆ρσ. Hence,
integrating by parts and with respect to time, we deduce that

1

2
‖∇ρσ(t)‖

2
H + σ

∫

Qt

|∆ρσ|
2 +

∫

Qt

β′(ρσ)|∇ρσ|
2

≤
1

2

∫

Ω

|∇ρ0σ|
2 −

∫

Qt

π′(ρσ)|∇ρσ |
2

+

∫

Qt

g′(ρσ)∇µσ · ∇ρσ +

∫

Qt

g′′(ρσ)µσ|∇ρσ|
2, (3.4)

where the equality ξσ = β(ρσ) has been used along with the smoothness of β,
according to our formal procedure. In fact, what is important is that the related
term on the left-hand side is nonnegative, i.e.,

∫

Qt

β′(ρσ)|∇ρσ|
2 ≥ 0.

Concerning the right-hand side of (3.4), we have that
1

2

∫

Ω

|∇ρ0σ|
2 ≤ c due to

(2.18), and the estimate

−

∫

Qt

π′(ρσ)|∇ρσ|
2 +

∫

Qt

g′(ρσ)∇µσ · ∇ρσ ≤ c

∫ t

0

‖∇ρσ(s)‖
2
Hds+ c ‖µσ‖

2
L2(0,T ;V )

owing to the boundedness of π′ and g′ (see (2.10)–(2.11)). About the last term,
(2.9) and (2.24) imply

∫

Qt

g′′(ρσ)µσ|∇ρσ|
2 ≤ 0,

so that the sign properties of g′′ and µσ become crucial to control this term. Then,
in view of (3.2), from (3.4) it follows that

1

2
‖∇ρσ(t)‖

2
H + σ

∫

Qt

|∆ρσ|
2 ≤ c+ c

∫ t

0

‖∇ρσ(s)‖
2
H ds for all t ∈ [0, T ],
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and the Gronwall lemma and (3.3) allow us to deduce that

‖ρσ‖L∞(0,T ;V ) + σ1/2‖ρσ‖L2(0,T ;W ) ≤ c. (3.5)

Note that here we have used the regularity theory for elliptic equations, owing to the
bound on σ‖∆ρσ‖

2
2 and to the homogeneous Neumann boundary condition satisfied

by ρσ (cf. (2.22)). Finally, an easy consequence of (3.3) and (3.5) comes out from
a comparison of terms in (2.27), which yields

‖ξσ‖L2(0,T ;H) ≤ c. (3.6)

Fourth a priori estimate. As uσ = (1 + 2g(ρσ))µσ, by (2.10) we have that

|uσ| ≤ c (1 + |ρσ|) |µσ|,

|∇uσ| = |2g′(ρσ)µσ∇ρσ + (1 + 2g(ρσ))∇µσ| ≤ c |µσ| |∇ρσ|+ c (1 + |ρσ|) |∇µσ|.

Now, taking (3.2) into account, we see that |∇µσ| is bounded in L2(0, T ;L2(Ω)),
while |µσ| is bounded in L2(0, T ;L6(Ω)) thanks to the Sobolev inequality (2.50).
On the other hand, (3.5) provides a bound for |∇ρσ| in L

∞(0, T ;L2(Ω)) and for |ρσ|
in L∞(0, T ;L6(Ω)). Hence, using Hölder’s inequality, it is not difficult to check that
the products |µσ| |∇ρσ| and |ρσ| |∇µσ| are bounded in L2(0, T ;L3/2(Ω)), whereas
|ρσ| |µσ| is even bounded in L2(0, T ;L3(Ω)). Therefore, we conclude that

‖uσ‖L2(0,T ;W 1,3/2(Ω)) ≤ c . (3.7)

Fifth a priori estimate. Let us recall that (3.2) and (2.50) imply the bounded-
ness of {µσ} in the space L∞(0, T ;L2(Ω)) ∩ L2(0, T ;L6(Ω)). Then, we can apply
(2.52) with p = 2, q = 6, ϑ = 1/2, r = 3 to see that

‖µσ(t)‖
2
3 ≤ ‖µσ(t)‖2‖µσ(t)‖6 for a.a. t ∈ (0, T ),

whence squaring and integrating with respect to t lead to

‖µσ‖
4
L4(0,T ;L3(Ω)) ≤ ‖µσ‖

2
L∞(0,T ;L2(Ω)) ‖µσ‖

2
L2(0,T ;L6(Ω)) ≤ c. (3.8)

Consider now (2.30) which turns out to be a variational formulation of (2.26). As
we want to prove that

‖∂tuσ‖L4/3(0,T ;V ∗) ≤ c , (3.9)

we use (2.30) and let v vary in L4(0, T ;V ). By integrating with respect to time and
invoking (2.6), the boundedness of g′ and Hölder’s inequality, we obtain

∣

∣

∣

∣

∣

∫ T

0

〈∂tuσ(t), v(t)〉 dt

∣

∣

∣

∣

∣

≤ κ∗‖∇µσ‖L2(0,T ;H)‖∇v‖L2(0,T ;H) + c

∫ T

0

‖µσ(t)‖3‖∂tρσ(t)‖2‖v(t)‖6 dt.

Hence, in view of (3.2), by applying the Hölder and Sobolev inequalities (see (2.50))
in the time integral, we infer that

∣

∣

∣

∣

∣

∫ T

0

〈∂tuσ(t), v(t)〉 dt

∣

∣

∣

∣

∣

≤ c‖v‖L2(0,T ;V ) + c‖µσ‖L4(0,T ;L3(Ω))‖∂tρσ‖L2(0,T ;H)‖v‖L4(0,T ;V ).
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Now, the continuous embedding L4(0, T ;V ) ⊂ L2(0, T ;V ), (3.8) and (3.3) allow us
to conclude that

∣

∣

∣

∣

∣

∫ T

0

〈∂tuσ(t), v(t)〉 dt

∣

∣

∣

∣

∣

≤ c‖v‖L4(0,T ;V ),

whence (3.9) follows.

Passage to the limit. By the above estimates, there are a quadruplet (µ, ρ, ξ, u),
with µ ≥ 0 a.e. in Q, and a function k such that (2.31)–(2.34) are satisfied as long as

κ(µσ, ρσ) → k weakly star in L∞(Q) (3.10)

at least for a subsequence σ = σi↘0. By the weak convergence of time derivatives
and thanks to (2.18) and (2.28), the Cauchy conditions (2.38) hold for the limit pair
(u, ρ). By (2.32), (2.34), and the compact embedding (2.49), we can apply well-
known strong compactness results (see, e.g., [16, Sect. 8, Cor. 4]) and infer that
(possibly taking another subsequence)

ρσ → ρ strongly in C0([0, T ];Lp(Ω)) for p < 6 and a.e. in Q (3.11)

uσ → u strongly in L2(0, T ;Lp(Ω)) for p < 3 and a.e. in Q. (3.12)

The weak convergence (2.33), together with (3.11) with p = 2, implies that ξ ∈ β(ρ)
a.e. in Q (see, e.g., [2, Prop. 2.5, p. 27]), due to the maximal monotonicity of the
operator induced by β on L2(Q). Now, we deal with the other nonlinear terms and
the products. We first observe that (3.11) also entails that

φ(ρσ) → φ(ρ) strongly in C0([0, T ];Lp(Ω)) for p < 6 and a.e. in Q (3.13)

for φ = g, g′, π, 1/(1 + 2g), thanks to the Lipschitz continuity of such functions.
This is sufficient to establish equation (2.37). Indeed, by accounting for (2.31), we
see that the product µσg(ρσ) converges to µg(ρ) weakly (e.g.) in L2(Q). On the
other hand, (3.5) implies that σ∆ρσ converges to zero strongly in L2(Q). Now, we
prove equations (2.35)–(2.36), which involve the whole triplet (µ, ρ, u). The first
step is showing strong convergence for µσ and relation (2.36). By combining (3.13)
with (3.12), we see that

µσ =
uσ

1 + 2g(ρσ)
→

u

1 + 2g(ρ)
a.e. in Q. (3.14)

This and (2.31) imply µ = u/(1+2g(ρ)) and (2.36) is proved. Moreover, as {µσ} is
bounded in L10/3(Q) by (3.2), the Sobolev embedding V ⊂ L6(Ω), and (2.54), we
can also deduce a strong convergence. We summarize as follows:

µσ → µ strongly in Lp(Q) for every p < 10/3 and a.e. in Q. (3.15)

From this, we immediately infer that κ(µσ, ρσ) converges to κ(µ, ρ) a.e. in Q, just
by continuity. Then, (3.10) implies k = κ(µ, ρ) and

κ(µσ, ρσ) → κ(µ, ρ) strongly in Lp(Q) for every p < +∞. (3.16)

Therefore, κ(µσ, ρσ)∇µσ converges to κ(µ, ρ)∇µ weakly in Lp(Q) for every p < 2,
thanks to (2.31), and the choice p = 3/2 yields
∫

Q

κ(µσ, ρσ)∇µσ · ∇v →

∫

Q

κ(µ, ρ)∇µ · ∇v for every v ∈ L3(0, T ;W 1,3(Ω)).
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On the other hand, µσg
′(ρσ)∂tρσ converges to µg′(ρ)∂tρ weakly at least in L1(Q),

as one can easily see by combining (2.32), (3.13), and (3.15). It follows that
∫

Q

µσg
′(ρσ)∂tρσ v →

∫

Q

µg′(ρ)∂tρ v for every v ∈ L∞(Q).

Moreover, (2.34) holds. Hence, we can conclude that

∫ T

0

〈∂tu(t), v(t)〉 dt +

∫

Q

κ(µ, ρ)∇µ · ∇v =

∫

Q

µg′(ρ)∂tρ v

for every v ∈ L3(0, T ;W 1,3(Ω)) ∩ L∞(Q). (3.17)

Now, we observe that ∂tu ∈ L4/3(0, T ;V ∗) by (2.34) and that κ(µ, ρ)∇v ∈
L2(0, T ;H) by (2.31) and the boundedness of κ. Finally, µg′(ρ)∂tρ ∈ L4/3(0, T ;
L6/5(Ω)), since g′ is bounded, ∂tρ ∈ L2(0, T ;H), and µ ∈ L4(0, T ;L3(Ω)) as a
consequence of (2.31), V ⊂ L6(Ω), and (3.8)). Therefore, we can improve (3.17)
by a density argument and see that the variational equation still holds for any
v ∈ L4(0, T ;V ). What we obtain is equivalent to (2.35), and the proof is complete.

4. Properties of the limit problem. In this section, we prove Theorem 2.6.
In the whole section, it is understood that the assumptions of Theorem 2.6 are
satisfied, and sometimes we do not remind the reader about that. As far as the
first part of Theorem 2.6 is concerned, the true result regards ordinary variational
inequalities and we present it in the form of a lemma. For convenience, we use the
same notation ρ, etc., even though it is clear that everything is independent of x:
the dot over the variable ρ denotes the (time) derivative, here.

Lemma 4.1. Let (2.40)–(2.42) hold and ρ∗ ≤ ρ0 ≤ ρ∗. Then for every nonnegative

function µ ∈ L1(0, T ), the differential problem

ρ̇(t) + β(ρ(t)) + π(ρ(t)) − µ(t)g′(ρ(t)) 3 0

for a.a. t ∈ (0, T ), and ρ(0) = ρ0 (4.1)

has a unique solution ρ ∈W 1,1(0, T ) such that

ρ∗ ≤ ρ(t) ≤ ρ∗ and ξ∗ ≤ ξ(t) ≤ ξ∗ for a.a. t ∈ (0, T ), (4.2)

where

ξ(t) := −
(

ρ̇(t) + π(ρ(t)) − µ(t)g′(ρ(t))
)

∈ β(ρ(t)).

Moreover, there exists a constant C > 0 such that if µ1, µ2 ∈ L1(0, T ) and ρ10, ρ
2
0

are two inputs and ρ1, ρ2 are the corresponding solutions of (4.1), then for every

t ∈ [0, T ] we have

|ρ1 − ρ2|(t) +

∫ t

0

|ρ̇1 − ρ̇2|(τ) dτ

≤ C

(

|ρ10 − ρ20|+

∫ t

0

(

(1 + µ1)|ρ1 − ρ2|+ |µ1 − µ2|
)

(τ) dτ

)

. (4.3)

Proof. The existence of a unique solution can easily be proved, e.g., by the iterated
Banach Contraction Principle, due to the monotonicity of β and to the Lipschitz
continuity of the other nonlinearities. In (4.2), we only prove the upper inequalities
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since the proof of the lower ones is quite similar. It suffices to prove the desired
inequalities for the solution (ρ, ξ) of the cut-off problem

ρ̇(t) + ξ(t) + π∗(ρ(t))− µ(t)g∗(ρ(t)) = 0

and ξ(t) ∈ β(ρ(t)) for a.a. t ∈ (0, T ), (4.4)

ρ(0) = ρ0 , (4.5)

where π∗ and g∗ are defined by

π∗(r) := π(min{r, ρ∗}) and g∗(r) := g′(min{r, ρ∗}) .

We test (4.1) by (ρ − ρ∗)+ and integrate. Recalling (2.40)–(2.42) and noting that
ξ ≥ ξ∗ and g∗(ρ) = g′(ρ∗) where ρ > ρ∗, we obtain

1

2
|(ρ(t) − ρ∗)+|2 ≤ −

∫ t

0

(

ξ − ξ∗
)

(ρ− ρ∗)+ −

∫ t

0

(

ξ∗ + π∗(ρ∗)
)

(ρ− ρ∗)+

+

∫ t

0

(

π(ρ∗)− π(ρ)
)

(ρ− ρ∗)+ +

∫ t

0

µ g∗(ρ)(ρ− ρ∗)+

≤

∫ t

0

(

π(ρ∗)− π(ρ)
)

(ρ− ρ∗)+ ≤ c

∫ t

0

|(ρ− ρ∗)+|2

and the assertion is obtained by the Gronwall argument. The second inequality
follows from the monotonicity of β. Moreover, the lower bounds can be checked
in a similar way. To prove (4.3), we set wi(t) = µi(t)g

′(ρi(t)) − π(ρi(t)), ξi(t) =
wi(t) − ρ̇i(t), i = 1, 2. We have (ξ1 − ξ2)(ρ1 − ρ2) ≥ 0 almost everywhere. The
function sign(ξ1 − ξ2) (with sign(0) = 0) is bounded and measurable, and so is
sign(ρ1 − ρ2). We now claim that by testing the identity

(ξ1 − ξ2) + (ρ̇1 − ρ̇2) = w1 − w2 (4.6)

by sign(ξ1 − ξ2), we infer that

|ξ1 − ξ2|+
d

dt
|ρ1 − ρ2| ≤ |w1 − w2| a.e. in (0, T ). (4.7)

Indeed, this is obvious for all t such that sign(ξ1 − ξ2)(t) = sign(ρ1 − ρ2)(t) or such
that ξ1(t) = ξ2(t). The remaining case is sign(ξ1 − ξ2)(t) 6= 0, sign(ρ1 − ρ2)(t) = 0.
For almost all t with this property, we have ρ̇1(t) = ρ̇2(t),

d
dt |ρ1 − ρ2|(t) = 0, and

(4.7) follows. Using the Lipschitz continuity properties in (2.10) and integrating
(4.7) over (0, t), we obtain for t ∈ (0, T )

∫ t

0

|ξ1 − ξ2|(s) ds+ |ρ1 − ρ2|(t)

≤ c

(

|ρ10 − ρ20|+

∫ t

0

(

(1 + µ1)|ρ1 − ρ2|+ |µ1 − µ2|
)

(τ) dτ

)

.

On the other hand, (4.6) yields
∫ t

0

|ρ̇1 − ρ̇2|(s) ds ≤

∫ t

0

(

|w1 − w2|+ |ξ1 − ξ2|
)

(s) ds

and (4.3) follows from the sum of the last two inequalities.

Next, if (µ, ρ, ξ, u) is a solution to problem (2.35)–(2.38), it is clear that, for
almost all x ∈ Ω, the functions µ(x, ·) and ρ(x, ·), and the constant ρ0(x) satisfy the
assumptions of Lemma 4.1. Thus, the first part of Theorem 2.6 concerning bounds
(2.44) is proved. We derive an interesting consequence.
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Corollary 4.2. Under the assumptions of Theorem 2.6, let (µ, ρ, ξ, u) be a solu-

tion to problem (2.35)–(2.38) satisfying the regularity conditions specified in Theo-

rem 2.3. Then

µ ∈ L∞(Q) and ∂tρ ∈ L∞(Q). (4.8)

Proof. We already know that both ξ and π(ρ) are bounded. Moreover, µg′(ρ)
belongs to L∞(0, T ;H)∩L2(0, T ;L6(Ω)) since µ does so and g′(ρ) is bounded. We
see that also ∂tρ belongs to such a space, just by comparison in (2.37). It follows
that ∂tρ ∈ L7/3(0, T ;L14/3(Ω)) by (2.55). From this and assumption (2.45), we
derive the boundedness of µ. Indeed, we can reproduce the proof carried out in [7,
Fifth a priori estimate], since that proof acts only on the equation for µ and works
provided that an estimate of ∂tρ in L7/3(0, T ;L14/3(Ω)) is known. At this point, by
comparing in (2.37) once more, we conclude that ∂tρ is bounded as well.

Remark 4.3. The analogous estimate

ρ∗ ≤ ρσ ≤ ρ∗ a.e. in Q (4.9)

for the solution to problem (2.26)–(2.28) also holds provided that

ρ∗ ≤ ρ0σ ≤ ρ∗ a.e. in Ω. (4.10)

We prove one of the inequalities (4.9), the other one being similar. We proceed
as in the proof of Lemma 4.1, testing (2.27) by (ρσ − ρ∗)+ and integrating. By
accounting for the second inequality (4.10), we easily obtain

1

2

∫

Ω

|(ρσ − ρ∗)+(t)|2 + σ

∫

Qt

|∇(ρσ − ρ∗)+|2

+

∫

Qt

(

ξσ − ξ∗
)

(ρσ − ρ∗)+ +

∫

Qt

(

ξ∗ + π(ρ∗)
)

(ρσ − ρ∗)+

≤

∫

Qt

(

π(ρ∗)− π(ρσ)
)

(ρσ − ρ∗)+ +

∫

Qt

µσ g
′(ρσ)(ρσ − ρ∗)+.

Now, we observe that all the terms on the left-hand side are nonnegative, the third
one thanks to (2.40) and the monotonicity of β (as before, the integrand vanishes
whenever ρσ ≤ ρ∗), the last one due to (2.41). Concerning the right-hand side,
we show that the last integrand is nonpositive. Indeed, g′ is decreasing (see (2.9)),
whence g′(ρσ) ≤ g′(ρ∗) ≤ 0 if ρσ > ρ∗, and µσ ≥ 0. By taking all this into account
and owing to the Lipschitz continuity of π (cf. (2.11)), we can apply the Gronwall
lemma and conclude that (ρσ − ρ∗)+ = 0, i.e., ρ ≤ ρ∗ a.e. in Q.

Remark 4.4. A sufficient condition for (4.10) to hold at least for small σ is that
ρ0σ is given by (2.20) and the hypotheses of Theorem 2.6 are reinforced by also
assuming that

either inf ess ρ0 > ρ∗ and sup ess ρ0 < ρ∗ or ξ∗ ≤ 0 ≤ ξ∗. (4.11)

The proof is rather simple and we show just one of the desired inequalities since the
other one is quite similar. We test (2.20) by (ρ0σ − ρ∗)+. We easily obtain

∫

Ω

|(ρ0σ − ρ∗)+|2 + σ

∫

Ω

|∇(ρ0σ − ρ∗)+|2 + σ

∫

Ω

(ξ0σ − ξ∗)(ρ0σ − ρ∗)+

=

∫

Ω

(ρ0 − ρ∗ − σξ∗)(ρ0σ − ρ∗)+. (4.12)
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In the first case (4.11), we set δ := ρ∗ − sup ess ρ0 and take σ∗ > 0 such that
σ∗ |ξ∗| ≤ δ. Then, for σ ≤ σ∗, we have ρ0 − ρ∗ − σξ∗ ≤ −δ + σ∗|ξ∗| ≤ 0 a.e. in Ω,
so that the right-hand side of (4.12) is nonpositive. In the second case (4.11), the
same conclusion trivially holds. As the last two terms on the left-hand side are
nonnegative (since (2.40) holds, β is monotone, and the third integrand vanishes
whenever ρ0σ ≤ ρ∗), we conclude that (ρ0σ − ρ∗)+ = 0, whence ρ0σ ≤ ρ∗.

Proof of the second part of Theorem 2.6. Assume thus that κ(µ, ρ) = κ0
and set for simplicity κ0 = 1. The system now reads

〈∂tu(t), v〉+

∫

Ω

∇µ(t) · ∇v =

∫

Ω

µ g′(ρ) ∂tρ v

for all v ∈ V and a.a. t ∈ (0, T ), (4.13)

u = (1 + 2g(ρ))µ a.e. in Q, (4.14)

∂tρ+ ξ + π(ρ) = µ g′(ρ) and ξ ∈ β(ρ) a.e. in Q, (4.15)

µ(0) = µ0 and ρ(0) = ρ0 a.e. in Ω. (4.16)

Let (µi, ρi, ξi, ui), i = 1, 2 be two solutions of (4.13)–(4.16). We integrate (4.13) in
time from 0 to t and subtract the equation with index 2 from the one with index 1.
We test the result by v = (µ1 − µ2)(t) and obtain, by virtue of Corollary 4.2, that

∫

Ω

(u1 − u2)(µ1 − µ2)(t) +
1

2

d

dt

∫

Ω

∣

∣

∣

∣

∫ t

0

∇(µ1 − µ2)dτ

∣

∣

∣

∣

2

≤ c

∫

Ω

(

|µ1 − µ2|(t)

∫ t

0

(|µ1 − µ2|+ |ρ1 − ρ2|+ |∂tρ1 − ∂tρ2|) (τ)dτ

)

. (4.17)

In addition, from Lemma 4.1 (see, in particular, (4.3)) and Hölder’s inequality it
follows that

∫

Ω

(
∫ t

0

|∂tρ1 − ∂tρ2|(τ) dτ

)2

≤ c

∫

Ω

(
∫ t

0

(|ρ1 − ρ2|+ |µ1 − µ2|)(τ) dτ

)2

, (4.18)

∫

Ω

|ρ1 − ρ2|
2(s) ≤ D

∫ s

0

∫

Ω

(

|ρ1 − ρ2|
2 + |µ1 − µ2|

2
)

(τ) dτ (4.19)

for every t, s ∈ [0, T ], thanks to the boundedness for µ1 ensured by Corollary 4.2.
Note that the constant D in (4.19) is marked for later reference.

Now, we observe that the inequalities

(u1 − u2)(µ1 − µ2) ≥ |µ1 − µ2|
2 − 2µ1

(

g(ρ1)− g(ρ2)
)

(µ1 − µ2)

≥
1

2
|µ1 − µ2|

2 − c|ρ1 − ρ2|
2

hold a.e. in Q. Thus, by integrating (4.17) from 0 to s, s ∈ (0, T ), and ignoring a
positive term on the left-hand side, we obtain

∫ s

0

∫

Ω

|µ1 − µ2|
2(t) dt ≤ c

∫ s

0

∫

Ω

|ρ1 − ρ2|
2(t) dt+ c

(
∫ s

0

∫

Ω

|µ1 − µ2|
2(t) dt

)1/2

×

(

∫ s

0

∫

Ω

(
∫ t

0

(|µ1 − µ2|+ |ρ1 − ρ2|+ |∂tρ1 − ∂tρ2|) (τ)dτ

)2

dt

)1/2

. (4.20)
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Hence, using Young’s inequality and (4.18), we have that
∫ s

0

∫

Ω

|µ1 − µ2|
2(t) dt ≤ c

∫ s

0

∫

Ω

|ρ1 − ρ2|
2(t) dt

+c

∫ s

0

∫

Ω

(
∫ t

0

(|µ1 − µ2|+ |ρ1 − ρ2|) (τ)dτ

)2

dt. (4.21)

We now multiply (4.21) by 2D and add it to (4.19). Thus, we obtain an inequality
of the form Φ(s) ≤ c

∫ s

0
Φ(t)dt, with

Φ(s) =

∫

Ω

|ρ1 − ρ2|
2(s) +

∫ s

0

∫

Ω

|µ1 − µ2|
2(t) dt.

From the Gronwall argument, it is straightforward to deduce that Φ(s) = 0 for all
s, hence, µ1 = µ2, ρ1 = ρ2, which implies uniqueness.

The L2 bound for ∂tµ can be established in the following way. Assume first that
µ0 ∈ W . We extend µ by µ0 and ρ by ρ0 for t < 0. Then, equation (4.13) can be
written as

〈∂tu(t), v〉+

∫

Ω

∇µ(t) · ∇v =

∫

Ω

ψ(t) v for all v ∈ V and a.a. t ∈ (0, T ), (4.22)

where ψ is defined by ψ(t) =
(

µg′(ρ)∂tρ
)

(t) for t > 0 and ψ(t) = −∆µ0 for t < 0.
We observe that ψ ∈ L∞(−T, T ;H) thanks to Corollary 4.2 and to our assumption
on µ0. Next, we integrate (4.22) in time from (t−h) to t for any fixed t ∈ (0, T )
and a small h > 0, with the intention to let h tend to zero, and test the resulting
equality by µ(t)− µ(t− h). We obtain

∫

Ω

(

u(t)− u(t− h)
)(

µ(t)− µ(t− h)
)

+
1

2

∫

Ω

d

dt

∣

∣

∣

∣

∫ t

t−h

∇µ(τ) dτ

∣

∣

∣

∣

2

=

∫

Ω

(
∫ t

t−h

ψ(τ) dτ

)

(

µ(t)− µ(t− h)
)

≤
1

4

∫

Ω

|µ(t)− µ(t− h)|2 +

∥

∥

∥

∥

∫ t

t−h

ψ(τ) dτ

∥

∥

∥

∥

2

H

≤
1

4

∫

Ω

|µ(t)− µ(t− h)|2 + c h2 (4.23)

Now, we recall that (4.14) holds, that g is nonnegative and Lipschitz continuous,
and that µ and ∂tρ are bounded by Corollary 4.2. Hence, we easily derive that

(

u(t)− u(t− h)
)(

µ(t)− µ(t− h)
)

≥ |µ(t)− µ(t− h)|2 − 2µ(t) |g(ρ(t))− g(ρ(t− h))| |µ(t) − µ(t− h)|

≥ |µ(t)− µ(t− h)|2 − c h |µ(t)− µ(t− h)| ≥
1

2
|µ(t)− µ(t− h)|2 − c h2.

Therefore, by integrating (4.23) from 0 to T , forgetting the nonnegative term that
involves ∇µ, and rearranging, we obtain

∫ T

0

∫

Ω

|µ(t)− µ(t− h)|
2
dt ≤ c h2 + c

∫

Ω

∣

∣

∣

∣

∫ 0

−h

∇µ0 dτ

∣

∣

∣

∣

2

≤ c h2.

As h > 0 is arbitrarily small, this implies that ∂tµ ∈ L2(Q). At this point, we are
allowed to use the Leibniz rule for the time derivative ∂tu; then, from (4.13)–(4.14)
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we infer that the equation
(

1 + 2g(ρ)
)

∂tµ+ µg′(ρ)∂tρ−∆µ = 0 (4.24)

holds at least in the sense of distributions. By comparison, we deduce that ∆µ ∈
L2(Q), whence µ ∈ L2(0, T ;W ). Using the identity

−

∫

Ω

∂tµ∆µ =
1

2

d

dt

∫

Ω

|∇µ|2 a.e. in (0, T ),

we see that ∇µ ∈ L∞(0, T ;L2(Ω)). Thus, the regularity (2.46) is established if
µ0 ∈W .

Let now µ0 ∈ V ∩ L∞(Ω) be arbitrary, and consider a sequence {µ0
k} ⊂ W

bounded in L∞(Ω) and converging to µ0 in V as k → ∞. Let (µk, ρk, ξk, uk) be the
corresponding solutions to (4.13)–(4.16). Then, we can use equation (4.24) written
with the index k and test it by ∂tµk. We obtain

∫

Ω

|∂tµk(t)|
2 +

1

2

d

dt

∫

Ω

|∇µk(t)|
2 ≤

∫

Ω

|ψk(t)| |∂tµk(t)|, (4.25)

with an obvious choice of ψk ∈ L2(Q) bounded in this space (even better) inde-
pendently of k. By time integration, it is straightforward to obtain a bound for
‖∂tµk‖L2(Q) and for ‖∇µk‖L∞(0,T ;H) independent of k. Then, by weak star com-
pactness we infer that

µk → µ̃ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V )

at least for a subsequence, which implies (see, e.g., [16, Cor. 4, p. 85]) strong conver-
gence in C0([0, T ];H). In particular, µ̃(0) = µ0. On the other hand, (µk, ρk, ξk, uk)
satisfies the estimates stated in Lemma 4.1 and the boundedness properties for µk

and ∂tρk given by Corollary 4.2, which are uniform with respect to k. This yields
weak or weak star limits ρ̃ and ξ̃. Moreover, strong convergence in L1(Q) for {ρk}
and {∂tρk} is ensured via a Cauchy sequence argument based on (4.3), integration
over Ω, and Gronwall’s lemma. Hence, {µk}, {ρk}, {∂tρk} converge strongly in

Lp(Q) for every p ∈ [1,∞). At this point, it is not difficult to verify that (µ̃, ρ̃, ξ̃, ũ),
with the corresponding ũ, actually solves problem (2.35)–(2.38) and thus coincides
with the unique solution (µ, ρ, ξ, u). Therefore, the proof is complete.
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