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| Introduction

No—tension (masonry-like) materials [2, 6, 3, 5, 8] cannot support all stresses: only
negative semidefinite stresses are possible. Therefore, bodies made of no—tension
materials cannot support all loads, certain loads lead to the collapse of the body.
Therefore, the existence of the solution to the equilibrium equations can be proved
only under some restrictions on the loads. The existing proofs of the existence by
Anzellotti [2] and Giaquinta & Giusti [6] use a strong version of the safe load condition
which amounts to the assumption of the existence of a square integrable stress field
that balances the loads and is uniformly negative definite. However, the necessary
condition for the load in terms of stress is that the loads are balanced by a stress field



that is negative semidefinite. Indeed, the stress corresponding to the assumed solution
is negative semidefinite and balances the loads.

The purpose of this note is to present a different condition, which avoids the
strong version of the safe load condition. Apparently, the present condition may be
less restrictive in certain situations. Namely, our proof of the existence employs the
assumptions (i) that the loads can be balanced by a continuous negative semidefinite
stress field on the closure of the body and (ii) that the loads do not admit a suitably
defined collapse mechanisms. The above discussion shows that (i) is close to neces-
sary. As for (ii), we mention that collapse mechanisms are used in the engineering
limit analysis to identify the loads that lead to the collapse of the body. Collapse
mechanism is used in cooperation with (i) and for no—tension bodies designates the
displacement that amounts to the absence of compression of the body and performs
null work on the loads. The choice of the function space for such displacements is
subject to debate [4, 9]. Here we employ a novel space BD(cl2) of displacements
of bounded deformation on the closure cl £ of the body. This space is modeled on
a similarly constructed space of bounded variation on the closure of an open set by
Soucek [10]. A general element of BD(cl 2) is a pair (u, ) where u is in the classical
space of displacements of bounded deformation BD() [11-12] and 7 is a R” valued
measure on the boundary d(2 of the body £2 < R”. Here u represents the displacement
field in the interior of the body while 7 represents the deformation of the boundary.
The map u, being an element of BD(£2), has a well defined trace 7, on 902, we call this
trace the inner trace; analogously we call 7 the outer trace. The difference j := 7 — 7,
represents the jump in the deformation on the boundary. It turns out that each element
(u, 7) of BD(clQ2) has a well defined strain tensor E (u, T) which is a tensor valued
measure on the closure of the body. The restriction of E(u, 7) to @2 is just the strain
tensor of # interpreted as an element of BD(£2) while the restriction of E(u, 7) to 02
is the measure of the form %( j®n+n® j) where nis the outer normal to 9.

The internal energy of a no—tension body displays zero growth in the direction
of positive semidefinite strain; consequently the total energy functional (internal plus
the energy under the loads) is generally not coercive. The strong version of the safe
load conditionin [2, 6] is used to obtain the coercivity (which is then due to the energy
of the loads). Analogously the above conditions (i) and (ii) are used here to prove
the coercivity of the total energy functional. The proof under (i) and (ii) involves a
limiting procedure (see the proof of Theorem 7.4, below) in which one can obtain a
concentration of deformation towards the boundary of the body; hence the measure
7 on the boundary and the possibility of the strain on the boundary.

Under the coercivity, the proof of the existence of the solution goes along the
standard lines of the direct method of the calculus of variations: the equilibrium
solution belongs to a subset U (cl2) of the space BD(cl2) of finite internal energy
which is obtained as a weak limit of the minimizing sequence. The internal energy
is sequentially weakly lower semicontinuous by the results of [2, 6]; Condition (i)
is employed once more to prove the continuity of the energy of loads. Moreover, it
turns out that for the minimizer the inner and outer traces coincide, i.e., there is no
jump of the displacement on the boundary. Thus the solution is actually in BD(2).

We consider only the Neumann problem for simplicity but note that also the
Dirichlet problem can be treated by similar methods.



2 Notation

Throughout we use the conventions for vectors and second order tensors identical
with those in [7]. Thus Lin denotes the set of all second order tensors on R”, i.e.,
linear transformations from R” into itself, Sym is the subspace of symmetric tensors,
Sym ™ the set of all positive semidefinite elements of Sym; additionally, Sym ~ is the
set of all negative semidefinite elements of Sym. The scalar product of 4, B € Lin is
defined by 4-B = tr(ABT) and || denotes the associated euclidean norm on Lin. We
denote by 1 € Lin the unit tensor. If 4, B € Sym, we write A< Bif B— A Sym™.

We now introduce some terminology and notation for measures with values in a
finite dimensional vector space. We refer to [1; Chapter 1] for further details.

Let V' be a finite-dimensional vector space. By a V' valued measure in R” we
mean a map a from a system of all Borel sets in R” to ¥ which is countably additive,
ie., if B;, B,, ... s a disjoint family of Borel sets in R” then

a(UB,) = Zla(Bi).

Below we need the choices V' = Sym and V' = R”. We call the Sym valued measures
tensor valued measures; these will be used to model the fracture part of the strain
over the body. We call the R” valued measures vector valued measures. These will
be used to model the value of the displacement on the boundary of the body.

We shall also employ nonnegative measures ¢ defined on the system of all Borel
sets in R” with values in [0, co] of nonnegative numbers or co.

If 4 is a Borel subset of R” and @ a V' valued measure or a nonnegative measure,
we say that a is supported by 4 if a(4) = 0 for any Borel set 4 such that 4 N4 = @.
We denote by M (4, V') the set of all ¥ valued measures supported by 4 and if K < V/
is any set then M (4, K) denotes the set of all measures from M (4, V') which take
the values from K. We emphasize that the measures from M (4, V) or M(4,K) are
defined on all Borel subsets of R” but vanish outside 4.

If a, is a sequence in M(4, V') anda € M(4, V'), we say that @, weak * converges
to @ and write ¢, — aif [ f- da, — [, - da for each continuous functionf: 4 — V.

We denote by £” the Lebesgue measure in R” [1; Definition 1.52] and we denote
by #"! the n — I-dimensional Hausdorff measure in R” [1; Section 2.8]. If ¢ is a
nonnegative measure or a V' valued measure, we denote by ¢ L 4 the restriction of ¢
to a Borel set A © R” defined by

¢L A(B) = (4N B)

for any Borel subset B of R”. Thus if & is an » — 1 dimensional surface in R” then
H7~! L 8 is the area measure on 8.

If ¢ is a nonnegative measure, we denote by f¢ the product of the measure ¢ by
a ¢ integrable V' valued function /" on R”; one has

(f$)(4) = [ fdg

A



for any Borel subset 4 of R”.

The polar decomposition of measures says that if @ € M(4, V'), there exists a
pair (r,|a|) consisting of a Borel function r : 4 — V and of a nonnegative measure
|a| on 4 such that

a =r|a

and
lr(x)] =1 for |a| ae. xe4.

The measure |a| is unique and the function r is unique up to a change on a |a| null
set. The measure |a| is called the total variation measure of @, and r the amplitude.
We denote by M(a) the mass of @, defined by M(a) = |a|(R").

If 2 is an open subset of R” then C%(cl1£, V') denotes the space of all continuous
V' valued functions on the closure c1Q of 2, C!(c1, V) the space of all class 1 V'
valued functions on (2 such that both the function and its gradient have continuous
extensions to cl . Finally, C(} (02, V') denotes the space of all class 1 V' valued functions
on R” such that their supports are compact and contained in (2.

Throughout the paper ¢ denotes a general constant that changes from line to line
and that is independent of the local variables in the surrounding text.

3 No—tension materials

We here outline briefly the constitutive theory of no—tension materials. The response
of a no—tension material is completely determined by the tensor of elastic constants
C. Here and below C : Sym — Sym is a given linear transformation, such that

E-CE>0 forall EeSym,E +0, G.1)
E -CE,=E,-CE, forall E,E,eSym. '
We introduce the energetic scalar product (-, -) and the energetic norm || - || on Sym

by
(A,B)=A-CB, |A|=v(4,4)

for each 4, B € Sym.

Proposition 3.1. If E € Sym, there exists a unique triplet (T, E¢, ET) of elements
of Sym such that
E=E°+E",
T=CE"°,
TeSym~, EfeSym",
T-Ef=0.

Equivalently, the triplet (T, E®, E') is characterized by (3.2), , and

3.2)

E¢ is the orthogonal projection of E onto C ' Sym ™~ with respect to (-, -),

} 3.3)

E' is the orthogonal projection of E onto Sym ™ with respect to (-, -).

The reader is referred to [2, 6] or [3] for proofs. We define the stored energy w :
Sym — R by



Ww(E)=1T(E)-E= 1| IE|?

for any E € Sym where IT : Sym — C~!Sym ™ is the orthogonal projection onto
C!'Sym~ with respect to (-,-); E€ and E  are called the elastic and fracture parts
of the deformation E.

4 Projections of measures

Throughout this section let 4 be a Borel subset of R”. Later in this work, 4 will be the
closure of and open set with class 1 boundary. The following two results are proved
by Anzellotti [2] in the case 4 is an open set, but the relevant proofs hold verbatim if
4 1is a Borel set.

Theorem 4.1 (Cf. Anzellotti [2; Definition immediately preceding Lemma 2.2;
Lemma 2.6]). Let K be a closed convex cone in an finite dimensional space V
with inner product (-,-). Denote by K * the conjugate cone,

K+ ={4eSym:(4,B)<0 forall BeK}.

If a € M(A,V) then there exists a unique pair a,, a, of measures such that a, €
M(4,K), ay e MU, K1),

a=a +a,
and for any pair B,, B, of measures such that f; € M(4,K), p, € M(4,K*), and
a = py+f,,
we have
Bil 2 |ay|, 185 2 |as]
where | - | denotes the total variation measure with respect to the norm || - || derived
from (-,-).

The measure Pya := a, (respectively, P, 1 a := a,) is called the projection of @ onto
K (respectively, K 1).

Remark 4.2 (Cf. Anzellotti [2; Lemma 2.5]). Let K be a closed convex cone in an

inner product space V. Then the set M(A,K) is weak* sequentially closed in the
sense that if a, € M(4,K) and a,, — a for some a € M(A,V) then a € M(4,K).

5 The space BD(cl 2)

Throughout the rest of the paper, let 2 be a bounded open connected subset of R”
with class 1 boundary. We denote by BD(cl2) the set of all pairs (u,7) where
ue L'(Q,R") and 7 € M(9Q2,R") such that there exists a measure E(u,7) €
M(cl2,Sym) satisfying

[divT -ud®"+ | T-dE(u,7)= | Tn-dr (5.1
0

cl 02



for every T € C'(cl£,Sym). Here n is the (continuous) outer normal to 0. We call
7 the outer trace of (u, 7). It will be shown that the measure E(u, 7) is uniquely
determined by (u, 7). We call the elements of BD(cl 2) generalized displacements.

Let (u,7) € BD(clQ). By taking T € C3(2,Sym) in (5.1) we learn that u €
BD(Q), and E(u, 7) L Q1is the small strain tensor corresponding to u. Here BD(2)
is the classical space of displacements of bounded deformation [11-12]. We thus see
that £(u, ) L Q is uniquely determined by u. We denote the trace of u in the sense
of BD(Q) by T,(u, ) € L'(302,R") so that we have

[divT -ud®"+ [T -dE(w,7)= | Tn-T,(u,7)dH""" (5.2)
0 0

902

forevery T € C'(cl £, Sym). Subtracting (5.2) from (5.1) we obtain
| T-dE(u,7)= | Tn-d(z-T,(u,7)H"")

902 902

forevery T € C'(cl1£,Sym). The arbitrariness of T|df2 then implies that
E(u,r) L= (r-T,(u,7)H" ) On. (5.3)

Herea® b = %(a ® b+ b® a). Combining the uniqueness of E(u, ) L Q with (5.3),
we see that E(u, 7) is uniquely determined.
We introduce a norm | - | on BD(cl 2) by setting

0, 7)] = [ul,1 g + MCE(u, 7).

It is clear that the just defined | - | is a seminorm. Let us show that it is a norm,
ie., |(u,7)| = 0 implies u = 0, 7 = 0. Thus let |(u,7)| = 0, so that u = 0 and
E(u,7) = 0. Then the left hand side of (5.1) vanishes and hence also the right hand
side vanishes which by the arbitrariness of T gives z = 0. Thus (u, 7) is the null
element of BD(cl Q).

Remark 5.1. If 0 € M(002,R") then (0,0) € BD(cl2) with E(0,6) = 0 O n as
one easily finds. Considering (u, 7) + (0, 0) with (u,7) € BD(cl) fixed and o
varying over M (902, R"), we see that the two components # and 7 of any element of
BD(c1Q) are independent, with u restricted to belong to BD(£2). Thus

BD(clQ) = BD(2) X M(30).

Proposition 5.2. There exists a c € R such that
M(7) < ¢|(u, 7)| (54)

for every (u, ) € BD(cl2).

Proof (Cf. Soucek [10; Proof of Theorem 2(i)].) For every x € d(2 there exists an
orthogonal frame such that in this frame, n(x) = (1,...,1)/y/n. Then there exists
an open ball B(x,r_) such that n(y) = (n,(p),...,n,(y)) with n,(y) 2 1/(2y/n)
for every y € 92 n B(x,r,). We can then find a finite number of such balls B, :=
B(xk,rxk), k =1,...,K, which covers 9. Let ¢* be a partition of unity on 92
subordinated to the covering B, k =1,..., K. Then



M(7) < él M(o%) (5.5)

where 6% = ¢*7. Further,
M(o%) < ;M(aik) (5.6)

where % = (of,...,0%). Let i and k be fixed and let

C = {7] (S Cl(anBk), |77|C0(()_QmBk) < 1}

Next let us extend, without changing notation, an arbitrary # € C as a constant on lines
parallel to the x; coordinate axis (in the new coordinates). Let # be such an extended
function. We now apply (5.1) to T such that 7;, = n¢* and all other components
of T vanish (no summation convention throughout the proof). We obtain, writing

7 = (1,...,7,), and denoting by E;; the components of E(u, 1),
.[ nn; daik = .[ 77”i§0k dr;
9QNB, 9QNB,
= .[ (77§0k) dL" + .[ 77§0kdEii
Q0B ’ cl2ncl B,
= .[ 77§0ki”i dL" + .[ 77§0kdEii
Q0B ’ cl2necl B,

Since n; > 1/(2+/n), we have
o] = sup {[ndo : ne C}

<csup{ [ npXu,d":neC}+csup{ [ np“dE,:neC}

Q2nB, cl2ncl B,
<c | |u|dE"+cM(E),)
2nB,
< |(u, 7).
Summing over i and k and using (5.5) and (5.6) we obtain (5.4). O

6 No—tension bodies

We now apply the results of Section 4 to bodies made of no—tension materials. We
put
V =Sym,
(A,B) = CA- B forevery A4, B e Sym,
K=C!'Sym",
Kt =Sym*".
Furthermore, we denote by $r : M(clQ,Sym) — M(clQ,K) and Pt

M(cl2,Sym) — M(clQ,K*) the orthogonal projections of measures onto the
cones M(clQ,K) and M(cl2,K+) with respect to the scalar product (-, -).

We denote by U(cl2) the set of all (u,7) € BD(cl2) such that P E(u, ) is
absolutely continuous with respect to £ ” and the density, still denoted by Px E(u, 7),
satisfies

6.1)



E(u,7) =1 [ || 2B, 7)|2d2” < oo
0

where || - || is the norm corresponding to the scalar product (-,-). We call E(u, 7)
the internal energy of the displacement (u, 7). Furthermore in view of (3.3), we call
P E(u, T) the elastic strain and J’K L E(u, 7) the fracture strain corresponding to

the generalized displacement (u, 7).

Theorem 6.1. Let (u,,7,) € U(clQ) and let w € L"""V(QR"), F €
M(clQ,Sym) and T € M(Q,R"™) be such that

w —u in LD (0 RY),
u, > u in L'(Q,R"),

~ ) (6.2)
E(u,,7,) = F in M(cl,Sym),
T, =71 in M(3Q,R"),
and
E(u,,7,) <c (6.3)
for all k and some ¢ € R. Then (u,7) € U(clQ), F = E(u,7), and
liminf E(u,, 7,) 2 E(u, 7). (6.4)
k—

Proof We have
(j}divT-ukdéﬁ”+ | T-dE(u,,7,)= [ Tn- dr,

cl 02

forevery T € C'(cl£,Sym) and every k; the limit using (6.2) provides
|divT -udt"+ [ T-dF= | Tn-dr
0

cl2 02

which shows that (u,7) € BD(clQ) and F = E(u, 7). Furthermore, since (6.3)
holds, [2; Theorem 3.3] gives (6.4) and completes the proof. O

7 Collapse mechanisms and the coercivity of energy

We consider loads which consist of the body force b € L”(2,R") and the surface
traction s € C°(92, R"). The energy of a displacement (u, 7) € BD(cl2) under the
loads is given by
W(u,z)=[b-udt"+ | s- dr.
0

902

If (u, 7) € U(cl2), we define the total energy F(u, 7) by
F(u,7) = E(u,7) = W(u, 7).

Definition 7.1. We say that (u, 7) € BD(cl ) is a collapse mechanism if E(u, 7) €
M(cl1Q2,Sym™), W(u,7) =0,and E(u,7) + 0.



Remark 7.2. Let us say that the loads satisfy the uniform safe load condition if there
exists amap T € C°(cl2,Sym) such that

| T-dE(u,7) =W (u,7)

cln

for all (u,7) € BD(cl2) and
“T(x)- A= ey d|

for all 4 € Sym™, all x € cl£, and some &, > 0. Under the uniform safe load
condition there is no collapse mechanism. Indeed, assuming that (u, 7) € BD(cl Q)
is a collapse mechanism we obtain

0=-W(u,z)=- | T- dE(u, 1) ZeoM(E(u,‘r))

clQ

and hence E (u, 7) = 0 contrary to the assumption on (u, 7). Under the uniform safe
load condition one can actually modify the proofs in [2, 6] to prove that the total
energy is coercive in the sense that

F(u,7) 2 ¢, (E(u,7) + M(E(u,1))) -c,

for all (u, 7) € BD(cl2) some ¢, > 0 and some ¢, € R. (We here note that the proofs
in [2, 6] allow for a slightly more general condition that T is actually only square
integrable, defined almost everywhere with respect to £”.) The goal of this paper is
to relax the uniform safe load condition and to prove (a weaker, but still sufficient,
version of) the coercivity of the energy functional under the weaker assumption of
the absence of collapse mechanism.

Remark 7.3. (i) We have
M(G) <tr(G(cl2)) (7.1)

for every G € M(cl2,Sym™), and (ii) G — tr(G(clQ)) is a continuous linear
functional on M(cl2,Sym) (with respect to weak* convergence).

Proof (i):LetG € M(cl12,Sym™) and let 4 be a Borel set. Denote by 4,,i = 1,...,n,
the eigenvalues of the tensor G'(4) respecting the multiplicities. Then

1G(A)| = (éi})l/z < é 4| = é/li — tr(G(4))
Consequently,
M(G) = sup {é] 1G(4,)] : /Q]A" =clQ, A, A, =0 if k+1}
< sup {él tr(G(4,)) : k(:)]A,. =clQ, A, A, =0 if k+1}
= tr(G(cl2))

i.e., we have (7.1). (ii): This follows immediately by noting that tr(G(clQ)) =
[ 01+ dG where 1 stands for the function on ¢l 2 that is identically equal to the unit
tensor 1. O
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Theorem 7.4 (Coercivity). Assume that the following two conditions hold:
(1) the loads (b,s) have an admissible equilibrating stress field in the sense that
there exists a T € C(clQ,Sym ) such that

| T -dE(u,7) =W (u,7) (7.2)

clQ

for every (u, ) € BD(clQ);
(i1) the loads do not admit a collapse mechanism.
Then the total energy is coercive in the sense that for every sequence (u,,T,) €
U(cl Q) such that the sequence F(u,, 7, ) is bounded from above we have that the
sequences M(|E(u,,7,)|) and E(u,, 7,) are bounded.

Proof Consider the sequence (u,, 7,) € U(cl2) such that the sequence F(u,, 7,)
is bounded. We have

Flup.7,) =3 [ES||?Pde” - [T-Egde" — [ T-dE{<c<w (7.3)
0 0

cl
where _ _
Ef = PeE(u,v,), Ef =P E(u,1)).

We note that the third integral in (7.3) is nonpositive since T < 0 and E[ > 0. Thus

we have
VIERIPde - [ T-Efd2" <c
0 0

and using
~ [T EZdL" 2 ~|T|, 55 sy (] | EEIZdL")"?
0 0
we obtain
S TIEZIPdE" = T 200 sym) (I EE]I2d2") 2 <.
0 0
This implies that the sequence E(u,, 7,) =1 [, ||EZ||>d£" is bounded.

To prove that the sequence |E (u,, 7,)| is bounded, assume on the contrary that
the mass M(|E (u,, 7,)|) of the sequence |E (u,, 7,)| satisfies

M(|E(u,,7,)]) = . (7.4)
We have
M(|E(uy, 7,)|) < M(|EF|) + M(|Ef])
=(I)HE/?Hde‘ﬁ”+M(|EZI)
< ;z"(m‘/z(rjl IEZ)?dL") "> + M(| E]).

The boundedness of the sequence [, || EZ|| > d£" proved above and (7.4) then imply
M(|E[]) = .

The sequence F, := (Ef + Ef)/M(|Ef]) is bounded in mass, i.e., sup{ M(F, ),k =
1,...} < co. Indeed, M(EZ)/M(|Ef|) — 0 while Ef /M(|E[|) has mass equal to 1.
The sequence F, is the sequence of strains of the sequence of displacements (v,, o';.)
where v, = u, /M(|E[f|) and o, = 7, /M(|E[]).
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Let R be any linear operator from BD(£2) to the subspace of rigid body displace-
ments such that Ro = v for any rigid body displacement [12; Remark 1.1, Chapter
II, Section 1]. By passing from v, to v, — Rv, we can assume that Rv, = 0 without
affecting the energy and the strain tensor. By the Sobolev inequality for BD(Q2) [12;
Remark 2.5, Chapter II, Section 2] we have

|vk|Ln/(n—l)(_Q’Rn) < CM(Fk) - C
and thus the sequences

and

|vk|Ln/(n—l)(_Q’Rn) |vk|L1(_Q,R”)

are bounded. As also M(F,) is bounded, it follows from Proposition 5.2 that also
the sequence M(o,) is bounded. Hence we can find a subsequence, still denoted
by v,, and an element v € L/ "~V (Q,R") and measures F € M(cl2,Sym) and
o e M(00Q,R") such that

v, = v in L""7D(Q,RY),

v, >v in L'(Q,R"),
F,—F in M(cl,Sym),
o, — 0o in M(IQ,R").

(7.5)

By Theorem 6.1, (v, 0) € BD(cl2) and E(v, o) = F.
The rest of the proof shows that (v, o) is a collapse mechanism.
Dividing (7.3) by M( |E ,f |) we obtain

%(I)HFlszdi"— IIQT- dF, < c/M(|Ex])

where wehaveput F¢ = Py F, F{ = £, F,.Thelimitusing F§ — 0inL>(£2, Sym)
gives

W(v,0)= | T-dF=0. (7.6)
cln
Furthermore, by the above, FZL” — 0in M(cl£,Sym) and hence
F{=F —F%" —~F in M(clQ,Sym). (1.7)

Since Ff € M(cl1Q,Sym ™), we also have
F=E(v,0)eMclQ,Sym™) (7.8)

by Remark 4.2. In view of (7.6) and (7.8), to prove that (v, o) is a collapse mechanism,
it now remains to be showed that E(v, o) + 0. But (7.1) gives

1=M(F)) <tr(Ff(cl2)) — tr(F(clQ))
by (7.7). Thus tr F > 1and hence F = E(v, o) ¥ 0. O

Remark 7.5. Assume that the loads satisfy Conditions (i) and (ii) of Theorem 7.4.
Then s - n < 0 everywhere on 04).

Proof Let x € 902 be fixed and consider a displacement (0, ad,) € BD(EI Q) where
a € R” is arbitrary and ¢, is the Dirac measure supported by x. Then E(0,ad,) =
a © n(x)d, and applying (7.2) to this generalized displacement we obtain
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T(x)n(x) -a=s(x)-a

hence T(x)n(x) = s(x) by the arbitrariness of a. Consequently, s(x) - n(x) =
T(x)n(x) - n(x) <0ie., s(x)-n(x) < 0. Furthermore, if s(x) - n(x) = 0 then
the generalized displacement (0, n(x)d,) has positive definite strain tensor, viz.,
n(x)®n(x)o, and W(0,n(x)d(x)) = 0.Thus (0, n(x)d, ) is a collapse mechanism,
a contradiction. Hence s(x) - n(x) < 0. O

8 The existence of solution to the equilibrium problem
We now state the main result of this note.

Theorem 8.1. Assume that Conditions (1) and (i1) of Theorem 7.4 hold. Then there
exists a (u,7) € U(cl ) which minimizes the total energy F on U(cl2). For this
solution, the inner and outer traces coincide, T = T,(u, ) H" L.

Proof Let
I:=inf{F(u,7):(u,7) e U(clQ)}

we have I € [—o0, ). Let (#,,7,) be a minimizing sequence, i.e., a sequence such
that
Flu,7,) > I

Let R be the linear transformation as in the proof of Theorem 7.4. As in that
proof, we can assume that Ru, = 0 for all k. By Theorem 7.4, the sequences
|E((u,,7,)|and E(u,, 7,) are bounded. The boundedness of | E(u,, 7, )| and Propo-
sition 5.2 imply that also the sequence M(o,) is bounded and by the Sobolev in-
equality also [, ,./(,1) , g, iS bounded. Then there exist u & L/ n=D(Q,R"),
F e M(clQ2,Sym) and 7 € M(302,R") such that (6.2) hold for some subsequence,
still denoted (u,, 7, ). Hence by Theorem 6.1 we have (u,7) € U(cl2) and (6.4).
By the assumptions on the loads we have

W (u,,7,) > Wu, 1)

and thus
I = lil£ninf Flu,,7,) 2 F(u,7) 1.
—> 0

Thus (u, 7) € U(cl2) which minimizes the total energy F on U(cl2).
To prove the second part of the assertion, assume that 7 + T,(u, 7)#" ! and
consider the generalized displacement (u, T,(u, 7)J¢"1). Prove that

F(u, T,(u,7)H" ") < F(u, 7).

Indeed, since the projection of the measure E(u, 7) onto C ' Sym ™ is absolutely
continuous with respect to the measure £”, we see that the singular measure
E(u,7) L3Q = (7 — T,(u,7)H""") O n takes its values from Sym *. This oc-
curs if and only if 7 — T,(u, 7)H"~! = ¢pn where ¢ is a scalar positive valued finite
measure. Moreover, ¢ is not identically equal to 0 since the measure E(u, 7) L 002
is different from 0. Then

W(u, ) - W T,(u,7)H"") = | s-ndp<0

902
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because s - n < 0 everywhere on 042, see Remark 7.5. As clearly

E(u,7) = E(u, T;(u, 7)H"™"),

we have

F(u,7) > F(u, T, (u,7)F" 7).

But this is a contradiction with (u, 7) being a minimizer of the total energy. O

Acknowledgment This research was supported by RVO: 67985840.

9 References

1

10

11

12

Ambrosio, L.; Fusco, N.; Pallara, D.: Functions of bounded variation and free
discontinuity problems Oxford, Clarendon Press (2000)

Anzellotti, G.: A class of convex non-corecive functionals and masonry-like
materials Ann. Inst. Henri Poincaré 2 (1985) 261-307

Del Piero, G.: Constitutive equations and compatibility of the external loads for
linear elastic masonry-like material materials Meccanica 24 (1989) 150-162
Del Piero, G.: Limit analysis and no-tension materials Int. J. Plasticity 14 (1998)
259-271

Di Pasquale, S.: New trends in the analysis of masonry structures Meccanica 27
(1992) 173-184

Giaquinta, M.; Giusti, E.: Researches on the equilibrium of masonry structures
Arch. Rational Mech. Anal. 88 (1985) 359-392

Gurtin, M. E.: An introduction to continuum mechanics Boston, Academic Press
(1981)

Lucchesi, M.; Padovani, C.; Pasquinelli, G.; Zani, N.: Masonry Constructions:
Mechanical Models and Numerical Applications Berlin, Springer (2008)
Lucchesi, M.; Silhavy, M.; Zani, N.: On the choice of functions spaces in the limit

analysis for masonry bodies Journal of Mechanics of Materials and Structures
(2012) Preprint. In the press.

Soucek, J.: Spaces of functions on domain Q, whose k-th derivatives are measures
defined on Q Casopis pro péstovani matematiky 97 (1972) 1046

Strang, G.; Témam, R.: Functions of bounded deformation Arch. Rational Mech.
Anal. 75 (1980) 7-21

Temam, R.: Problémes mathématiques en plasticité Paris, Gauthier—Villars
(1983)


http://www.tcpdf.org

