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Abstract. This note deals with structured deformations introduced by Del Piero & Owen

[5–6]. As treated in the present paper, a structured deformation is a pair �g, G� where g

is a macroscopic deformation giving the position of points of the body and G represents

deformations without disarrangements. g is a map of bounded variation on the reference region

© and G is a Lebesgue integrable tensor valued map. For structured deformations of this level

of generality, an approximating sequence gk of simple deformations is constructed from the

space of maps of special bounded variation on © which converges in the L 1�©� sense to

�g, G� and for which the sequence of total variations of gk is bounded. Conversely, the L 1�©�
convergence to an apriori only integrable map and the above boundedness condition guarantees

that the limit will be a structured deformation of the above type. The condition is thus optimal.

Further, in the second part of this note, Limit Relation of Del Piero & Owen is established on

the above level of generality. This relation allows one to reconstruct the disarrangement tensor

M of the structured deformation �g, G� from the information on the approximating sequence.
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1 Introduction and results

This paper deals with the geometry of deformation of nonclassical continua modeled
as media capable of (first-order) structured deformations introduced by Del Piero
& Owen [5–6]. 1 The main objective of the theory of structured deformations is to
describe how a continuous body with microstructure will deform under the applied
forces.

In the original setting [5–6], a structured deformation is a triplet �K, g, G� of
objects whose nature will now be roughly described. The set K, the crack site,
is a subset of vanishing Lebesgue measure of the reference region ©, the map
g Ú © ∼ K r R

3, the deformation map, is piecewise continuously differentiable
and injective, and G is a piecewise continuous map from © ∼ K to the set of
invertible second order tensors describing deformation without disarrangements. The
following “accommodation inequality” is assumed:

0 ° m ² detG ² detD�a� g

in©∼K, withm a suitable constant, whereD�a� g is the classical derivative of g where
it exists.2 Within this context, a classical deformation is the triplet �K, g, Dg� with
g a continuously differentiable injective deformation function, and with G Ú¨ Dg

the deformation gradient, where D denotes the derivative (gradient) operation on
differentiable maps. A more general class of structured deformations is provided
by simple deformations which are triples �K, g, D�a� g� where g is only piecewise
smooth injective with jump discontinuities describing partial or full separation of
pieces of the body, and of G Ú¨ D�a� g. In view of these classes, where G coincides
with the deformation gradient, in the general case the tensor of deficit

M ¨ D�a� g − G (1.1)

measures the departure of �K, g, G� from the simple deformation �K, g, D�a� g�.
A substantial step towards a concrete interpretation of the tensor G is offered by

Approximation Theorem [5; Theorem 5.8]. That theorem shows that each structured
deformation �K, g, G� is a limit of a suitable sequence of simple deformations
�Kk , gk , D�a� gk� in the sense that

Kk r K, gk r g, D�a� gk r G (1.2)

with suitably defined convergences of the objects in (1.2). I note that the nontrivial
feature of the proof of Approximation Theorem lies in proving the injectivity of gk.
Moreover, Del Piero & Owen [5] prove the following Limit Relation for the tensor
M:

M�x� ¨ lim
ρr0
lim
krð

�4¹/3�−1ρ−3 �
J�gk� P B�x, ρ�

�gk� � nk dH
2 (1.3)

valid for any sequence (not just the one constructed in the proof of Approximation
Theorem) �Kk , gk , D�a� gk� satisfying (1.2) and any x X ©∼K, where B�x,ρ� is an

1 The reader is referred to the proceedings [7] and to the recent survey [3] for additional

references and for further developments.
2 Later we shall identifyD�a� g with the absolutely continuous part of the derivative of a map g

of bounded variation.
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open ball of center x and radius ρ, J�gk� is the set of all points of (jump) discontinuity
of gk, �gk� is the jump of gk at the points of J�gk�, nk is the normal to J�gk�, and
H
2 is the area measure.

To apply the relaxation techniques of the calculus of variations, Choksi & Fonseca
[4] later enlarged the space of structured deformations to contain all pairs �g,G�where
g is in 3 SBV �©,Rm� and G is in L 1�©,Mm � n�Ø Here m and n are positive integers,
the dimensions of the spaces Rm and R n of dependent and independent variables,
respectively. Thus, in addition to weaker regularity, the authors relax the injectivity
requirement and put the crack site K equal to ó. (The cracks are described by the
omnipresent discontinuities of g.)

Choksi & Fonseca [4] prove the following version of Approximation Theorem
(cf. [4; Theorem 2.12]).

Theorem 1.1. Let © ⊂ R n be a bounded open set and let �g, G� X L 1�©,Rm� �
L 1�©,Mm � n�. Then there exists a sequence gk in SBV �©,Rm� such that

gk r g in L 1�©,Rm� and D�a� gk ¨ G over ©Ø (1.4)

HereD�a� gk is the absolutely continuous part of the generalized derivative of gkØ The
statement of [4; Theorem 2.12] is narrower since (a) they assume, in accord with the
overall framework of [4], that g is in SBV �©,Rm� and (b) since they replace the
equality (1.4)2 by the weak   convergence in the sense of measures (although they
say that they will prove the equality). Their proof also shows that g X L 1�©,Rm�
suffices.

In connection with this generality, the question arises which additional informa-
tion beyond (1.4) can be imposed on the sequence gk if it is known that g belongs
to the smaller space BV �©,Rm� or even to SBV �©,Rm�Ø An answer, one of the two
goals of this note, given in the subsequent theorem, is proved for reference regions
represented by admissible domains (which is a mild restriction on © satisfied, e.g.,
by all open sets with lipschitzian boundary).4

Theorem 1.2 (Approximation Theorem). If © is an admissible domain in R n and

�g, G� X BV �©,Rm��L 1�©,Mm � n� then there exists a sequence gk X SBV �©,Rm�
such that in addition to (1.4) the total variationM�Dgk� of gk satisfies

sup !M�Dgk� Ú k ¨ 1, Ü) ° ðÛ (1.5)

hence we have the following convergence (without passing to a subsequence):

Dgk u
  Dg in M�©,Mm � n�Ø (1.6)

Thus the extra information stemming from the inclusion g X BV �©,Rm� is (1.5). It is
easy to see that conversely if �g, G� X L 1�©,Rm��L 1�©,Mm � n� is a pair satisfying

3 I use the standard notations for function spaces throughout this introduction: thusBV �©,Rn�,

SBV �©,Rn� are spaces of Rm valued maps on © of bounded variation and of special bounded

variation; L 1�©,Rm� and L 1�©,Mm � n� are spaces of (Lebesgue) integrable Rm orMm � n valued

maps on ©Ø M�©,Mm � n� is the space of Mm � n valued measures on ©. The reader is referred to

Sections 2 and 3, below, for detailed definitions.
4 See Definition 5.1, below.
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(1.4) and (1.5) with gk X SBV �©,Rm�, then necessarily g X BV �©,Rm�Û in this sense
(1.5) is optimal. (Both directions are very intuitive.) The proof of the boundedness in
the Approximation Theorem is based on the key observation in Lemma 5.1, below,
but otherwise the construction of the sequence essentially follows that of Choksi &
Fonseca. 5

The second goal of the present note is to give an analog to Limit Relation (1.3)
in the setting of maps of bounded variation.

Theorem 1.3 (Limit Relation). Let © be a bounded open subset of R n, let �g, G� X
BV �©,Rm� � L 1�©,Mm � n� and let gk X SBV �©,Rm� be a sequence satisfying

gk r g in L 1�©,Rm�, D�a� gk r G in L 1�©,Mm � n� (1.7)

and (1.6) (in particular, let gk be the sequence from Thorem 1.2). Then there exists a

subsequence of gk (not relabeled) such that the tensor M [see (1.1)] satisfies

M�x� ¨ ess lim
ρr0

lim
krð
κ−1n ρ

−n �
J�g
k
� P B�x, ρ�

�gk� � nk dH
n−1 (1.8)

for almost every point x of ©.

Here ess limρr0 is the essential limit as ρ r 0, i.e., the limit neglecting an exceptional
set of ρ’s of vanishing Lebesgue measure.6 Further, κn is the volume of the unit ball
in R n, J�gk� is the set of all points of jump discontinuity of gk, �gk� is the jump of
gk at the points of J�gk�, nk is the normal to J�gk�, and H

n−1 is the n− 1 dimensional
Hausdorff measure.7

The appendix to the present paper also outlines a proof of a weaker version of
Approximation Theorem which does not use Alberti’s theorem mentioned above. In
that version, the equality (1.4)2 is replaced by the convergence (1.7)2Ø

2 Preliminaries; notation; measures

Throughout, n is a positive integer, the dimension of the underlying space R n and m
is a positive integer, the dimension of the target space RmØ We denote by a ċ b the
scalar product in both these spaces and by | ċ | the euclidean norm. Further,Mm � n

is the set of all linear transformations from R n to RmØ The value of A X Mm � n on
x X R n is denoted by AxØWe denote by A ċB Ú¨ tr�ABT� the scalar product inMm � n

where AT XMn � m is the transpose of A and tr denotes the trace. We further denote

by |A| ¨
√

A ċ A the associated euclidean norm.
If f is a map with domain any setM and ifN ⊂ M then f |N denotes the restriction

of f to N Ø
The interior, closure and boundary of a set M ⊂ R n is denoted by intM, clM

and bdryM. As in the introduction, B�x,ρ� denotes the open ball in R n of center x

and radius ρ. The symbol κn denotes the volume of B�0, 1�Ø

5 In particular, Alberti’s theorem [1] (Theorem 3.4, below) is used in the same way as in [4].
6 See the definition in Section 2, below.
7 See Section 3 for precise definitions of these notions.
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Throughout, let © be an open subset of R n, later to be restricted by additional
requirements. In this section only, let Z be a finite dimensional inner product space.

We denote by L
n the Lebesgue measure in R n [9; Subsection 2.6.5] and if k is

an integer, 0 ² k ² n, we denote by H
k the k-dimensional Hausdorff measure in R n

[9; Subsections 2.10.2–2.10.60]; recall that H
n ¨ L

nØ If A ⊂ R n is a Borel set, we
denote by H

k A the restriction of H
k to A, which is the measure defined by

�H k A��B� ¨ H
k�AP B�, (2.1)

for each Borel set B ⊂ R nØ If A ⊂ R n is a Borel set and f a Z valued Borel
map defined H

k almost everywhere on A, integrable with respect to H
k on A, then

fH
k A denotes the Z valued measure on R n defined by

�fH
k A��B� ¨ �

A P B
f dH k , (2.2)

for each Borel set B ⊂ R nØ The definitions (2.1) and (2.2) also apply to k ¨ n, i.e., to
L
n ª H

n , resulting in L
n A and fL

n AØ
We denote by L 1�©,Z� the set of all (classes of equivalence of) Lebesgue

integrable maps on©with values in Z; we write | ċ |
L 1�©, Z� for the norm on L 1�©,Z�,

defined by

|f|
L 1�©, Z� ¨ �

©

|f| dLn

for each f X L 1�©,Z�Ø We denote by C ð
0 �©,Z� is the set of all of indefinitely

differentiable Z valued maps f on R n with compact support contained in ©Ø
We denote by M�©,Z� the set of all (finite) Z valued measures on ©Ø If � X

M�©,Z�, we denote by |�| the total variation (measure) of �, i.e., the smallest
nonnegative measure on © such that |��B�| ² |�|�B� for each Borel subset B of ©Ø
We denote by M��� the mass of �, defined by M��� ¨ |�|�©�Ø A standard result
is that

M��� ¨ sup"�
©

f ċ d� Ú f X C ð
0 �©,Z�, |f| ² 1 on ©*Ø (2.3)

We say that a measure � X M�©,Z� is supported by a Borel set A ⊂ © if ��B� ¨ 0
for every Borel set B ⊂ © such that AP B ¨ óØ The reader is referred [2; Chapter 1]
for further details of measures with values in finite dimensional inner product spaces.

If f is a Z valued map defined L
1 almost everywhere in an interval �0,ε� where

ε ± 0, we say that a X Z is an essential limit of f at 0 and write

a ¨ ess lim
ρr0

f�ρ� (2.4)

if there exists an L
1 null set N ⊂ �0,ε� such that

a ¨ lim
ρr0

ρX�0, ε�∼N
f�ρ�

where the last limit is the ordinary limit relative to a subset of �0,ε�Ø Note that unlike
the set N , the value a is uniquely determined, which justifies the notation (2.4).
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3 Maps of bounded variation, sets of finite perimeter and admissible

domains

We state some basic definitions and properties of the space BV of maps of bounded
variation, of the space SBV of maps of special bounded variation, of sets of finite
perimeter, and of admissible domains which will be needed in the sequel. For more
details, see [2, 8, 10], and [9].

Definition 3.1. We denote by BV �©,Rm� the set of all g X L 1�©,Rm� such that
there exists a measure Dg X M�©,Mm � n� satisfying

�
©

g ċ divT dLn ¨ − �
©

T ċ dDg (3.1)

for each T X C ð
0 �©,Rm � n�. Here divT is an Rm valued map on © such that

a ċ divT ¨ tr�D�TTa��

for each a X Rm whereD�TTa� denotes the classical derivative of the map TTaØ The
elements of BV �©,Rm� are called maps of bounded variation; the measure Dg is
uniquely determined by g and is called the weak (or generalized) derivative of gØ
We denote byM�Dg� the mass of the measure Dg as defined in Section 2 and call
M�Dg� the total variation of g. Equations (2.3) and (3.1) provide

M�Dg� ¨ sup "�
©

g ċ divT dLn Ú T X C ð
0 �©,Rm � n�, |T| ² 1 on ©*Ø è

The choice of T represented by a matrix function with only the �i, j� element
different from 0where i X  1, Ü ,m(, j X  1, Ü ,n(, reduces (3.1) to the usual index
definition of BV , as in, e.g., [2; Eq. (3.2)].

The set BV �©,Rm� is a Banach space under the norm

|g|BV �©, Rm� Ú¨ |g|
L 1�©, Rm� +M�Dg�Ø

Definition 3.2. Let g X L 1�©,Rm�Ø We say that g has an approximate limit at
x X © if there exists a X Rm such that

lim
ρr0
κ−1n ρ

−n �
B�x, ρ�

|g − a| dLn ¨ 0Ø

The value a is uniquely determined and is called the approximate limit of g at xØ The
complement S�g� ⊂ © in© of the set of all x X © where the approximate limit of g

exists is called the approximate discontinuity set of gØ è

Definition 3.3. Let g X L 1�©,Rm�Ø We say that x X © is an approximate jump

point of g if there exist a, b X Rm, a © b, and n X R n with |n| ¨ 1 such that

lim
ρr0
κ−1n ρ

−n �
B +�x, ρ, n�

|g − a| dLn ¨ 0, lim
ρr0
κ−1n ρ

−n �
B −�x, ρ, n�

|g − b| dLn ¨ 0Ø (3.2)

Here
B
±�x,ρ, n� ¨  y X B�x,ρ�, ± �y − x� ċ n ± 0(Ø
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The triplet �a, b, n�, if it exists, is uniquely determined to within the interchange of a

and b and a simultaneous change of the sign of nØ In any case, the product

�g� � n, (3.3)

occurring frequently below, is uniquely determined, where

�g� ¨ a − b

is the jump of g at x. We denote by J�g� the set of all approximate jump points of g

and call any ±n the normal of J�g� at xØ è

The following result describes the relationship between the sets S�g� and J�g�.

Theorem 3.4. If g X BV �©,Rm� then

(i) J�g� ⊂ S�g� and H
n−1�S�g�∼ J�g�� ¨ 0,

(ii) J�g� is countably �H n−1 ,n−1� rectifiable in the sense that H
n−1 almost all of J�g�

can be covered by countably many class 1 surfaces Ck, k ¨ 1, Ü , of dimension

n − 1 in R n.

The derivative of a map of bounded variation has the following well–known structure.
The subsequent treatment uses especially the jump and the absolutely continuous parts
of the derivative to be now introduced.

Theorem 3.5. If g X BV �©,Rm� then

(i) the derivative Dg has a unique decomposition

Dg ¨ D�a� g L
n © + D�c� g +D�j� g

whereD�a� g, the absolutely continuous part ofDg, is a map in L 1�©,Mm � n�,

D�c� g, the Cantor part of Dg, is a measure on © singular with respect to L
n

and diffuse with respect to H
n−1 , i.e., D�c� g is supported by a set of null Lebesgue

measure in R n and D�c� g�B� ¨ 0 for each Borel subset B of © of finite H
n−1

measure, and D�j� g, the jump part of Dg, is a measure absolutely continuous

with respect to H
n−1Ø

(ii) The jump part D�j� g is supported by J�g� and in fact

D�j� g ¨ �g� � n H
n−1 J�g�

where for every point x of J�g�, the value �g� � n is the product (3.3).
(iii) For L

n almost every point x of © we have

D�a� g�x� ¨ lim
ρr0
κ−1n ρ

−nD�B�x,ρ��Ø (3.4)

Definition 3.6. We denote by SBV �©,Rm� the set of all g X BV �©,Rm� with
D�c� g ¨ 0Ø The elements of SBV �©,Rm� are called maps of special bounded

variation. è

SBV �©,Rm� is a closed subspace of BV �©,Rm� under the norm | ċ |BV �©, Rm�Ø
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Theorem 3.7 (Alberti [1]). If © is bounded then for any G X L 1�©,Mm � n� there

exists a g X SBV �©,Rm� such that D�a� g ¨ GÛ moreover, there exists a constant

c X R depending only on © such that the map g as above can be chosen to satisfy

M�g� ² c|G|
L 1�©,Mm � n�Ø

We conclude this section with basic information on sets of finite perimeter and
on admissible domains. Sets of finite perimeter fall in the framework of BV as will be
explained below. For a subset of the class of sets of finite perimeter called admissible
domains (see below) we shall establish Approximation Theorem. The distinguishing
feature of admissible domains © is that maps from BV �©,Rm� have well defined
boundary values.

Definition 3.8. A set E ⊂ R n is said to have a finite perimeter if 1E X BV �R
n ,R�

where 1E denotes the characteristic function of EØThe perimeter of E isM�D 1E�ØThe
measure theoretic boundary of E is the set S�1E� which differs from the reduced

boundary bdry �E� Ú¨ J�1E� by a set of H
n−1 measure 0Ø è

Theorem 3.9. If E is a set of finite perimeter then for every x X bdry �E� the triplet

�a, b, n� as in Definition 3.3 can be chosen to be �0,1, n�x��Û with this choice n�x� is

uniquely determined and is called the measure theoretic normal to E at xØ Equations

(3.2) then imply the following well–known formulas

lim
ρr0
κ−1n ρ

−n
L
n�E P B+�x,ρ, n�� ¨ 0, lim

ρr0
κ−1n ρ

−n
L
n�B−�x,ρ, n� ∼ E�� ¨ 0

where n ¨ n�x�Ø One has

D 1E ¨ nH
n−1 bdry  EØ

Thus even 1E X SBV �R n ,R�Ø

Definition 3.10 ([10; Definition 5.10.1]). A bounded open set © ⊂ R n is said to be
an admissible domain if it has a finite perimeter and the following two conditions
are satisfied:
(i) H

n−1�bdry B∼ bdry  B� ¨ 0Û
(ii) there exists a constant M and for each x X bdry© there is a ball B�x, r� with

H
n−1�bdry  E P bdry ©� ² MH

n−1�© P bdry  E�

whenever E ⊂ cl©P B�x, r� is a set of finite perimeter. è

Each open bounded set with lipschitzian boundary is an admissible domain [10;
Remark 5.10.2]. The following two theorems describe the main virtues of admissible
domains.

Theorem 3.11 (See [10; Section 5.10]). If © is an admissible domain and g X
BV �©,Rm� then there exist a H

n−1 measurable map gbdry© on bdry© such that

�
©

g ċ divT dLn + �
©

T ċ dDg ¨ �
bdry�©�

Tn ċ gbdry© dH
n−1
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for every class 1 map T on © with values inMm � n which has a continuous extension

(again denoted by T) to cl© where n is the measure theoretic normal to ©Ø There

exists a c X R depending only on © such that

�
bdry©

|gbdry©| dH
n−1 ² c|g|BV �©, Rm�Ø

The map gbdry© is determined to within a change on a set of H
n−1 measure 0 and is

called the trace of gØ One has

lim
rr0
κ−1n r

−n �
B�y, r� P ©

|g − gbdry©�y�| dLn ¨ 0 (3.5)

for H
n−1 almost every point y of bdry©Ø

Theorem 3.12 (Cf. [10; Lemma 5.10.4]). If © is an admissible domain and g X
BV �©,Rm� then the extension g0 of g to R n equal to 0 outside © satisfies g0 X
BV �R n ,Rm�,

Dg0 ¨ Dg − gbdry© � n H
n−1 bdry©

and there exists a c X R depending only on © such that

|g0|BV �R n, Rm� ² c|g|BV �©, Rm�Ø

4 The BV setting of structured deformations

For the purpose of Approximation Theorem and Limit Relation (as stated in Section 1)
we enlarge the set SBV �©,Rm��L 1�©,Mm � n� of structured deformations of Choksi
& Fonseca [4] to form the set BV �©,Rm��L 1�©,Mm � n�Ø We furthermore interpret
the elements g X SBV �©,Rm� as the macroscopic deformations of the body ©
with macroscopic crack site J�g�Ø We note that the space of structured deformations
�K, g, G� of Del Piero & Owen [5] as described in Section 1 with K ¨ ó is a
subset of SBV �©,Rm��L 1�©,Mm � n� ⊂ BV �©,Rm��L 1�©,Mm � n�. In a general
�g, G� X BV �©,Rm� � L 1�©,Mm � n�, the map g is the possibly discontinuous
macroscopic displacement of the body© and G is a microscopic disarrangement.

5 Proof of Approximation Theorem

The proof of the approximation Approximation Theorem is based on the decomposi-
tion of R n into the disjoint union of sufficiently small cubes of equal edge length and
with faces parallel to the natural coordinate planes in R nØ Various maps involved in
the construction are then approximated by (generally) discontinuous maps constant
on the cubes (as in the present section) or by discontinuous maps linear on the cubes
(as in Section 7, below).

For each positive integer k consider the decomposition of R n into the system of
cubes

C�k , p� Ú¨ C/k + p, p X Zn/k (5.1)

where C Ú¨ �0,1�n , C/k Ú¨  x/k Ú x X C(, Zn is the set of n tuples of integers and
Z
n/k Ú¨  z/k Ú z X Zn(Ø

Let e1 , Ü , en be the natural orthonormal basis in R nØ
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Lemma 5.1. Let k be a positive integer, let f X C ð
0 �R n ,Rm� and let p, q X Zn/k be

such that P Ú¨ C�k , p� and Q Ú¨ C�k , q� are two adjacent cubes sharing the common

face F Ú¨ cl P P clQ © ó of normal n pointing from P to QØ Let m Ú P T Qr Rm be

defined by

m�x� ¨















a if x X P ,

b if x X Q,

where

a ¨ k n �
P

f dLn , b ¨ k n �
Q

f dLn (5.2)

are the averages of f over the two cubes. Then m X SBV �int�P T Q�,Rm�,

Dm ¨ �b − a	 � n H
n−1 F , D�a� m ¨ 0, (5.3)

and

M�Dm� ² �
P T Q

|Dn f| dLn (5.4)

where Dn f is the directional derivative of f in the direction nØ
Proof We only prove (5.4) since the other assertions of the lemma are immediate.
Let x X P be arbitrary and denote y�x� Ú¨ x + n/k so that y�x� X QØ Then

f�y�x�� − f�x� ¨ k−1
1

�
0

Dn f�x + tn� dt

and hence

|f�y�x�� − f�x�| ² k−1
1

�
0

|Dn f�x + tn�| dtØ (5.5)

We have

U Ú¨ | �
Q

f dLn − �
P

f dLn| ¨ | �
P

f�y�x�� dLn�x� − �
P

f�x� dLn�x�|

² �
P

|f�y�x�� − f�x�| dLn�x�Ø

Consequently, integrating (5.5) over P we obtain

U ² k−1
1

�
0

�
P

|Dn f�x + tn�| dLn�x�dt ¨ k−1
1

�
0

�
P+tn

|Dn f| dLndt

² k−1
1

�
0

�
P T Q

|Dn f| dLndt

¨ k−1 �
P T Q

|Dn f| dLnÛ

the last inequality above follows from P + tn ⊂ P TQ for each t X �0,1�Ø Multiplying
the just proved inequality

| �
Q

f dLn − �
Q

f dLn| ² k−1V , V Ú¨ �
P T Q

|Dn f| dLn

by k n we obtain
|b − a| ² k n−1V
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and a combination with (5.3)1 provides that the total variation (measure) |Dm|
satisfies

|Dm| ¨ |b − a|H n−1 F ² k n−1VH
n−1 F Ø

Integrating over R n we obtain

M�Dm� ¨ |Dm|�R n� ² k n−1VH
n−1�F� ¨ V

which is (5.4). è

Proposition 5.2. Let f X C ð
0 �R n ,Rm�Ø Then there exists a sequence mk X

SBV �R n ,Rm� such that

mk r f in L 1�R n ,Rm�, (5.6)

D�a� mk ¨ 0 on R n for all k ¨ 1, Ü , (5.7)

and

M�Dmk� ² 2n �
R n

|D f| dLnØ (5.8)

Proof For each positive integer k consider the decomposition of R n into the system
of cells as in (5.1). Let mk Ú R

n r R n be defined by

mk�x� ¨ f�k , p� (5.9)

for each x X R n, where p X Zn/k is uniquely determined by the requirement that
x X C�k , p� and where

f�k , p� ¨ k n �
C�k, p�

f dLnØ

Then mk is piecewise constant with the points of jump discontinuity of mk contained
in the union

n

U
i¨1

U
lXZ/k
Pk, i, l

where
Pk, i, l ¨  x X R n Ú x ċ ei ¨ l(

for any l X Z/kØ Here for each i ¨ 1, Ü ,n, the system

Sk, i ¨ !Pk, i, l Ú l X Z/k)

forms an equidistant system of parallel planes perpendicular to eiØ
We now fix k ¨ 1, Ü , and i ¨ 1, Ü ,n, and denote by Sk, i ⊂ R n the union

of the system Sk, i of planes perpendicular to ei. Next we apply Lemma 5.1 to each
pair of adjacent cubes C�k , p�, C�k , q� with p, q X Zn/k sharing a common face
perpendicular to eiØ Summing the inequality (5.4) over all such pairs, we obtain

M�Dmk Sk, i� ² 2 �
R n

|Dei
f| dLn

whereDei
f is the directional derivative of f in the direction eiØ Summing over all iwe

obtain (5.8). Relation (5.6) follows immediately from the well–known properties of
the piecewise constant approximations on system of cubes of decreasing edge length.
Finally (5.7) follows from the piecewise constant character of mkØ è
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Proof of Approximation Theorem; 5.3. By Alberti’s theorem (Theorem 3.7) there
exists h X SBV �©,Rm� such that

D�a� h ¨ G on ©Ø (5.10)

Put l Ú¨ g−h which is an element ofBV �©,Rm�Ø Since© is an admissible domain, the
extension l0 of l to R n equal to 0 outside © satisfies l0 X BV �R n ,Rm� by Theorem
3.12. Let fk be a sequence of mollifications of l0 on R n with the mollification
parameter tending to 0, so that fk X C ð

0 �R n ,Rm�,

�
R n

|D fk| dL
n ² M�D l0�, (5.11)

fk r l0 in L 1�R n ,Rm�

and hence in particular
fk|©r l in L 1�©,Rm�Ø (5.12)

Applying Proposition 5.2 with f replaced by fk we find that for each k there exists a
mk X SBV �R n ,Rm� such that

|mk − fk|L 1�R n, Rm� ° 1/k , (5.13)

D�a� mk ¨ 0 on R n (5.14)

and
M�Dmk� ² 2n �

R n

|D fk| dL
nØ (5.15)

We put
gk ¨ mk|© + h

for k ¨ 1, Ü , so that gk X SBV �©,Rm�Ø Equations (5.12) and (5.13) imply

mk|©r l in L 1�©,Rm� as k r ð

and hence we have (1.4)1. Further, (5.14) and (5.10) imply (1.4)2. Finally, (5.15),
(5.11) and h X SBV �©,Rm� imply (1.5). Assertion (1.6) then follows by an easy
argument that is left to the reader. è

6 Proof of Limit Relation

Lemma 6.1. Let © be bounded, let g be a map (not a class of equivalence) in

BV �©,Rm�, let x X © and let ε ± 0 be such that B�x,ε� ⊂ ©Ø Then for L
1 almost

every ρ X �0,ε�, g| bdryB�x,ρ� is the trace of g|B�x,ρ� X BV �B�x,ρ,Rm�Ø
Proof By the Lebesgue differentiation theorem there exists a Borel set E ⊂ © with
L
n�E� ¨ 0 such that for every y X ©∼ E we have

lim
rr0
κ−1n r

−n �
B�y, r� P ©

|g − g�y�| dLn ¨ 0Ø (6.1)

Since by Fubini’s theorem

0 ¨ L
n�E� ¨

ð

�
0

H
n−1�E P bdryB�x,ρ�� dL 1�ρ�,
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we see that for L
1 almost every ρ ± 0 we have

H
n−1�E P bdryB�x,ρ�� ¨ 0Ø

For every such a ρ X �0,ε� we have (6.1) for H
n−1 almost every y X bdryB�x,ρ�Û

hence in particular also

lim
rr0
κ−1n r

−n �
B�y, r� P B�x, ρ�

|g − g�y�| dLn ¨ 0

since B�x,ρ� ⊂ ©Ø A comparison with Equation (3.5) of Theorem 3.11 written for©
replaced by B�x,ρ� shows that g�y� coincides with the trace of g|B�x,ρ� for H

n−1

almost every y X bdryB�x,ρ�Ø è

Proof of Limit Relation; 6.2. We first note that by (1.7)1 we may pass to a subse-
quence of gk (not relabeled) such that |g − gk|L 1�©, Rm� ° 2

−k so that the function

��x� ¨
ð
�
k¨1

|g�x� − gk�x�|

satisfies

�
©

� dLn ² 1Ø (6.2)

Let x X © be fixed and let ε ± 0 be any number satisfying B�x, ε� ⊂ ©Ø Since

ð

�
0

�
bdryB�x, ρ�

� dH n−1dρ ¨ �
©

� dLn ² 1

by (6.2), there exists a subset N1 of �0,ε� with L
1�N1� ¨ 0 such that

�
bdryB�x, ρ�

� dH n−1 ª
ð
�
k¨1

�
bdryB�x, ρ�

|g − gk| dH
n−1 ° ð (6.3)

for every ρ X �0,ε� ∼ N1Ø Hence for every ρ X �0,ε� ∼ N1 we have �bdryB�x, ρ� |g −
gk| dH

n−1 r 0 and hence
gk r g (6.4)

in the Lebesgue space L 1�bdryB�x,ρ�,H n−1� on bdryB�x,ρ� relative to the mea-
sure H

n−1. By Lemma 6.1 for every k ¨ 1, Ü , there exists a subset Mk of �0,ε�
with L

1�Mk� ¨ 0 such that for every ρ X �0,ε� ∼ Mk the restriction of the map
gk| bdryB�x,ρ� is the trace of gk|B�x,ρ� X BV �B�x,ρ�,Rm�Ø Let

N ¨ N1 T
ð
U
k¨1
Mk

so that L
1�N� ¨ 0Ø For every ρ X �0,ε�∼ N we have

�
bdryB�x, ρ�

�gk � n dH n−1 ¨ �
B�x, ρ�

gk �D� dL
n + �

B�x, ρ�
� dDgk (6.5)

for all k ¨ 1, Ü , and for any � X C ð
0 �R n� where n is the normal to B�x,ρ�Ø The

limit using (6.4), (1.7)1 and (1.6) then gives

�
bdryB�x, ρ�

�g � n dH n−1 ¨ �
B�x, ρ�

g � D� dLn + �
B�x, ρ�

� dDg (6.6)
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and hence g| bdryB�x,ρ� is the trace of g|B�x,ρ� X BV �B�x,ρ�,Rm� for every
ρ X �0,ε�∼ N Ø In particular, for � ª 1 on R n we obtain form (6.5) and (6.6)

Dgk�B�x,ρ�� r �
bdryB�x, ρ�

g � n dH n−1 ¨ Dg�B�x,ρ��

i.e.,
Dgk�B�x,ρ�� r Dg�B�x,ρ��

as kr ð for each ρ X �0,ε� ∼ N Ø 8 Combining with (1.7)2 we then obtain

�Dgk −D�a� gkL
n ©��B�x,ρ�� r �Dg − G L

n ©��B�x,ρ�� (6.7)

as kr ð; noting that

Dgk −D�a� gkL
n © ¨ �gk� � nkH

n−1 J�gk�

where �gk� is the jump of gk on J�gk� and nk is the normal to J�gk�, we see that
(6.7) reads

lim
krð

�
J�g
k
� P B�x, ρ�

�gk� � nk dH
n−1 ¨ Dg�B�x,ρ�� − �

B�x, ρ�
G dLn (6.8)

for every ρ X �0,ε�∼N Ø This holds for every x X ©where N ¨ N�x�Ø Dividing (6.8)
by κnρ

n and using that (3.4) and

G�x� ¨ lim
ρr0
κ−1n ρ

−n �
B�x, ρ�

G dLn

hold simultaneously for L
n almost every x X ©, we see that for every such an x we

have
lim
ρr0

ρX�0, ε�∼N
lim
krð

�
J�gk� P B�x, ρ�

�gk� � nk dH
n−1 ¨ D�a� g − G�x�,

i.e., (1.8) holds. è

7 Appendix: Elementary proof of a weaker form of Approximation

Theorem

We here outline a proof of the following form of Approximation Theorem without
using Alberti’s theorem.

Theorem 7.1. If© is an admissible domain and �g, G� X BV �©,Rm��L 1�©,Mm � n�
then there exists two sequences mk , hk X SBV �©,Rm� such that

mk r g in L 1�©,Rm� and D�a� mk ¨ 0 over ©, (7.1)

hk r 0 in L 1�©,Rm� and D�a� hk r G in L 1�©,Mm � n� (7.2)

and

sup !M�Dmk� Ú k ¨ 1, Ü) ° ð, sup!M�D hk� Ú k ¨ 1, Ü) ° ðÛ (7.3)

consequently the sequence gk ¨ mk + hk X SBV �©,Rm� satisfies

8Which is otherwise not a direct consequence of (1.6).
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gk r g in L 1�©,Rm�, D�a� gk r G in L 1�©,Mm � n� (7.4)

and

sup !M�Dgk� Ú k ¨ 1, Ü) ° ð, Dgk u
  Dg in M�©,Mm � n�Ø

Proof (outline) We denote by g0 the extension of g toR n equal to 0 outside©Ø Since
© is an admissible domain, we have g0 X BV �R

n ,Rm� by Theorem 3.12. Let fk be a
sequence of mollifications of g0 on R n with the mollification parameter tending to 0Ø
Applying Proposition 5.2 in the same way as in the proof of Approximation Theorem
(Subsection 5.3) we find a sequence mk X SBV �R n ,Rm� such that |fk−mk|L 1�R n, Rm� °
1/kØ The sequence mk|© (again denoted mk) then satisfies (7.1) and (7.3)1Ø

Next, let G0 be the extension of G to R n equal to 0 outside© and put

hk�x� ¨ G�k , p��x − x�k , p��
for any x X R n where p X Zn/k is uniquely determined by the requirement x X
C�k , p�, x�k , p� is the barycenter of C�k , p� and

G�k , p� ¨ k n �
C�k, p�

G dLnØ

Then hk is easily seen to satisfy (7.2) and (7.3)2Ø è
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