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Abstract
A truncated three- and four-wave model of a fibre ring laser based on
modulation instability is developed. Stationary regimes of the laser are
studied through a linear stability analysis. The threshold power for the onset
of the modulation instability regime for the three-wave model is derived and
it is shown that no threshold exists in the four-wave model. The basic
features of models are compared with experimental results obtained for a
modulation instability fibre σ -laser.
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1. Introduction

Modulation instability (MI) refers to spontaneous growth of
sidebands at the expense of the continuous wave due to four-
wave mixing in a nonlinear dispersive medium [1, 2]. In
the anomalous group-velocity dispersion regime of an optical
fibre the phase mismatch between the pump and sidebands due
to dispersion is compensated by the action of self-phase and
cross-phase modulations [3]. The use of the initial amplitude
modulation for inducing the MI was suggested by Hasegawa
in 1984 [4] and observed in 1986 [5].

MI can be utilized in an optical pulse source with a high
repetition rate. Recently, Franco et al reported pulse trains
with repetition rates up to 130 GHz in an MI fibre ring laser
(FRL) [6]. Stable continuous operation with a well-defined
repetition rate was achieved in a fibre ring laser with a Fabry–
Perot etalon [7] and fibre σ -laser [8]. The main advantage
of the MI fibre laser is its simplicity. A high-repetition-rate
pulse train can be produced without expensive modulators
and electronic equipment. Moreover, repetition rates not
achievable by active mode-locking can be obtained.

In this paper we investigate the dynamics of an MI FRL.
The configuration of the laser is identical to the MI FRL
investigated by Nakazawa et al [7]. The MI FRL is composed
of a section of a nonlinear optical fibre, lumped amplifier,
Butterworth bandpass filter, Fabry–Perot etalon and output
coupler, as can be seen in figure 1. If changes of the pulses
per round trip are small, the evolution of the signal wave in the
MI FRL is governed by a complex Ginzburg–Landau equation

(CGLE), also known as a Haus master equation [9]:

i∂zu − β2

2
∂t t u + R|u|2u = ib∂t t u + ig(Q1)u − ilu (1)

where β2 is the dispersion, R is the nonlinear coefficient, b is
the filtering coefficient, l is the loss, g(Q1) = g0/(1 + Q1/Ps)

describes the action of saturable gain with Q1 = 1/T
∫ |u|2dt

corresponding to the average power, g0 is the unsatured gain
and Ps is the saturation power. Exact periodic solutions of
the CGLE are known for some special cases [10] and are not
available for the general equation (1). Therefore we have
developed two simple approximate models of the MI FRL.
The three-wave model corresponds to the MI FRL operation
with an odd spectrum (meaning odd number of lines in a
symmetrical spectrum) and the four-wave model simulates
the operation of the induced MI FRL with an even spectrum.
The results obtained by using the models are compared to the
experimental ones obtained with the MI fibreσ -laser. A similar
truncated three-wave model was used for the investigation of
MI dynamics in an optical fibre [11, 12] and synchronously
pumped passive resonator [13, 14].

2. Three-wave model of the fibre ring laser

Let us suppose that the MI FRL laser initially works in a
stationary CW regime. This means that it generates one strong
line at the frequency ω0. Let us allow for the evolution of
two sidebands with the detuning� defined by the free spectral
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Figure 1. Fibre ring laser. OA-optical amplifier, OI-optical isolator,
OC-output coupler, BPF-band-pass filter, FPE-Fabry–Perot etalon.

range (FSR) of the Fabry–Perot etalon. In the CGLE (1) we
substitute the superposition of these three colinearly polarized
monochromatic waves

u(z, t) = E0(z, t) + Es(z, t) + Ea(z, t) (2)

where
E0(z, t) = A0(z)

Ea(z, t) = Aa(z) exp

{
i

[
β2�

2

2
z − �t

]}

Es(z, t) = As(z) exp

{
i

[
β2�

2

2
z +�t

]}
.

We obtain the coupled system of three ordinary differential
equations for amplitudes and one for relative phase. Let the
sideband amplitude change slowly so that the amplifier gain
can track this slow change of loss caused by the redistribution
of energy between the frequency components and filtering.
Since the sidebands grow from noise, we can assume without
a large error that their initial amplitudes are the same. Using
the integrals of motion, these equations can be reduced to the
following system of coupled equations:

dη

dξ
= −2η(1 − η) sin ϕ + t (1 − η)η

dϕ

dξ
= (κ − 1) + 3η − 2(1 − 2η) cos ϕ

(3)

where the usual normalization [11] was used:

A j = |A j |eiϕ j j ∈ {0, a, s} ξ = RPz

P =
∑

j=0,a,s

|A j |2 η = |A0|2/P


k = β2�
2 κ = 
k/(RP)

ϕ = 
kz + ϕa + ϕs − 2ϕ0

t = − ln(T (�)2)/(RP L)

(4)

where T (�) is the transmission coefficient of the bandpass
filter for the detuning� and L is the length of the resonator. For
the derivation of this system of equations for an ideal single-
mode optical fibre (t = 0) see, for example, [11].

Our next objective will be to characterize the fixed points
of the coupled system of equations (3). The derivatives on
the left-hand sides of these equations vanish at the fixed point

[η0, ϕ0]. Using the linear stability analysis, it can be shown
that the stable fixed points of equations (3) are

[η0, ϕ0]

=




[
1, arccos

(
−κ+2

2

)]
for κ ∈ [−4; κ1] ∪ [κ2; 3]

[η(2)0 , ϕ
(2)
0 ] for κ ∈ [κ1;−1/2)

[η(2)0 , ϕ
(3)
0 ] for κ ∈ (−1/2, κ2]

(5)

where
κ1,2 = −2 ∓

√
4 − t2 (6)

and

η
(2)
0 = 5 + 3κ − 2t2 + |1 + 2κ|√4 − t2

7 − 4t2
(7)

ϕ
(2,3)
0 = arccos

(
−3

√
4 − t2 ∓ (8 − 2t2)

4
√

4 − t2 ∓ 6

)
= arcsin(t/2).

(8)
No fixed point exists for κ < −4, where dϕ/dξ < 0,
i.e. the phase ϕ(ξ) is a monotonically decreasing function.
Analogously, no fixed point exists for κ > 3 and the phase
ϕ(ξ) is a monotonically increasing function in this region.
The normalized pump η must be real-valued according to its
definition (4). This sets a limit t2 < 4 in (7), or equivalently
T exp(RP L) > 1. This inequality states that the loss caused
by filtration must be lower than the maximum non-depleted
MI gain achieved for η → 1 and ϕ = π/2.

Figure 2(a) shows the normalized central component
power η0 and the relative phase ψ0 in the fixed point of the
dynamical system as functions of the normalized detuning
κ . It can be seen that η = 1 for κ < κ1. This means that
all the power remains concentrated in the central component,
no modulation instability develops and the laser remains in
the CW regime. Above the threshold κ1, the pump becomes
depleted and the sideband amplitude increases due to the MI.
Solving equation (6) for κ1 with respect to P we get the
threshold power for the onset of MI:

Pth = D2 + 4 ln2(T )

−4DRL
D = β2�

2 L . (9)

The sidebands reach their maximum amplitude in the point
κ = −1/2, where an abrupt change of the phase occurs. The
phase depends on the transmission coefficient of the filter and
for weak filtration it is close to zero when κ < −1/2. Above
this point it is close to π . If we further increase κ we observe
a second threshold κ2. No MI can be observed above this
point. It also means that no MI can be observed for a normal
dispersion resonator, where κ > 0.

Having the coordinates η0 and ψ0 of the fixed point of the
dynamical system, we can reconstruct the pulse train in the
time domain

e(t, z) = E1 + E0 + E2

= √
Peiϕ0

{√
η0 +

√
2 − 2η0eiψ0/2 cos[�(t − t0)]

}

where t0 = −(ϕ1−ϕ2)/(2�). This is illustrated by figure 3(a)–
(c) for various normalized detunings κ . A clean pulse train
is generated for κ = −2. For κ = −0.6 we get small satellites
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Figure 2. Dependence of stable fixed points coordinates on
normalized detuning κ for three-wave model (a) and four-wave
model (b).
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(a)    Three-wave model
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κ=−0.6
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κ=−0.2
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(d )    Four-wave model
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κ=0.86
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Figure 3. Pulse train reconstruction in time domain for three-wave
model (a)–(c) and four-wave model (d)–(f ).

between the pulses. The phase changes its sign whenever the
intensity goes through zero. For κ = −0.2 small amplitude
and pronounced phase modulations of the generated signal are
obtained [12].

3. Four-wave model

If the bandpass filter is appropriately tuned in such a way that
the filter transmission maximum falls in between two peaks
of a Fabry–Perot etalon, a regime with an even spectrum is
achieved. Let us suppose that in the steady state of the laser
two lines (E2, E3) of the same amplitude initially exist. We
will allow for the evolution of two sidebands (E1, E4) with
the detuning � given by the FSR of the Fabry–Perot etalon.
Substituting the superposition of these four waves

u(z, t) = E1(z, t) + E2(z, t) + E3(z, t) + E4(z, t)

where

E2,3(z, t) = A2,3(z) exp

{
i

[
β2

2

(
�

2

)2

z ± �

2
t

]}

E1,4(z, t) = A1,4(z) exp
{

i
[
β2

2

(
3�

2

)2

z ± 3�

2
t

]} (10)

in the CGLE (1) and using a similar approach to that
in the three-wave model, we can derive six coupled
ordinary differential equations describing the evolution of four
amplitudes and two relative phases, which can be reduced,
using the assumption of initially equal sideband amplitudes and
integrals of motion, to the system of two coupled equations:

du1

dξ
= −(1 − 2u2

1)

{
1

4

√
2 − 4u2

1 sin(ψ1) + u1[sin(2ψ1)− δ]

}

dψ1

dξ
= (1 − 4u2

1)

(
1

2
− 2 cos2(ψ1)

)
(11)

+
cos(ψ1)

√
2 − 4u2

1

4u1
(8u2

1 − 1)− κ

where the following normalization was used:

A j = |A j |eiϕ j j = 1, 4

Pj = |A j |2 P =
4∑

j=1

P2
j u j = |A j |/

√
P

ψ1 = 2ϕ2 − ϕ3 − ϕ1 − κz

δ = t1 − t2 t1 = − ln(T ( 1
2�)

2)/(RP L)

t2 = − ln(T ( 3
2�)

2)/(RP L)

(12)

and T (�) is the transmission coefficient of the bandpass filter
for the detuning �. The linear stability analysis of this system
was performed and stable fixed points were found numerically.
An analytical expression for the fixed points in implicit form
was found only for a special case of δ = 0. The coordinates of
the stable fixed points numerically obtained for δ = −0.36 are
shown in figure 2(b) as a function of the normalized detuning
κ . We can see that the amplitude reaches its maximum value
for κ = 0. Moreover, no threshold for the onset of MI was
observed.

Having the coordinates u(0)1 and ψ(0)
1 of the fixed point of

the dynamical system, we can reconstruct the pulse train in the
time domain:

e(t, z) = E1 + E2 + E3 + E4 = 2
√

Peiβ2(κz/8+ϕ)

×
{

u(0)1 e−iψ(0)1 cos

[
3�(t − t0)

2

]
+ u(0)2 cos

[
�(t − t0)

2

]}

(13)

where t0 = (ϕ2 − ϕ3)/�. Analysing the generated pulse train
in the time domain, we can see that successive pulses have
different phases. This is a characteristic feature of the even
spectrum regime. The periodic solution may resemble a train
of bright solitons with alternating phase (figure 3(f )) or a train
of dark solitons (figure 3(e)).
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Figure 4. Experimental set-up of an MI σ -laser.
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Figure 5. Spectrum for normalized detuning (a) below the first
threshold κ1 (κ = −14.1), (b) above the second threshold κ2

(κ = 0.5).
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Figure 6. Spectra and autocorrelations for even spectrum regime
(a), (b), and odd spectrum regime (c), (d).

4. Experimental results

The MI fibre σ -laser described in detail in [8] was used in
experiments (figure 4). It acts essentially as a polarization
maintaining (PM) unidirectional ring laser and its behaviour
can be qualitatively described by the FRL models given in
sections 2 and 3. The σ -configurations have been chosen with
regard to the stability of the laser. The laser is composed
of an unidirectional PM loop and a bidirectional non-PM
branch connected together with a polarizing beamsplitter
(PBS). The non-PM branch contains ∼10 m of an Er/Yb-
doped optical fibre, pumped by an ytterbium fibre laser
with an available output power of up to 5 W at 1060 nm.
The pulses are formed in a section with a dispersion-shifted
fibre (DSF) that actually represents combinations of non-zero

dispersion fibres (NZDF) with dispersions of 1.6 ps2 km−1

and −5.35 ps2 km−1 and various lengths, allowing us to set an
appropriate average dispersion of the resonator. An average
nonlinear coefficient of fibres was taken to be R = 1.35 W−1

km−1 at a wavelength of 1560 nm. The spectral filtration is
achieved in a two-core fibre filter with a FWHM bandwidth
of 4.2 nm [8]. The birefringence variations of the non-PM
branch are compensated for by a Faraday mirror. At the
same time the Faraday mirror prevents spatial hole burning
from occurring in the active fibre. The PM loop contains
only an isolator, a 70% output coupler and the Fabry–Perot
etalon with a free spectral range of 107.2 GHz and a finesse
of 300 that defines the repetition rate of the laser. The
suppression of MI for normalized detuning below the first
threshold κ1 (an average dispersion of the resonator was β̄2 =
−21.64 ps2 km−1, corresponding to a normalized detuning of
κ = −14.1 for an intracavity signal power of 0.516 W and an
effective length was 233.5 m) and above the second threshold
κ2 (β̄2 = 0.86 ps2 km−1 corresponding to κ = 0.5 for an
intracavity signal power of 0.578 W and an effective length
was 225.5 m) is documented in figure 5. Here the sidebands
are strongly suppressed in the odd-spectrum regime. For the
same normalized detuningsκ , the sidebands are well developed
in the even-spectrum regime. The ratio of amplitudes of the
nearest sidebands to the main peaks for a normalized detuning
of κ = 0.5 is higher than for κ = −14.3 by an amount of
15 dB, consistent with the four-wave model that predicts a
difference of 18 dB. In an anomalous dispersion resonator and
for appropriate normalized detunings both the even- and odd-
spectrum regimes may exist, as can be seen in figure 6(a), (b).
For this configuration an average dispersion of the resonator
was β̄2 = −0.5 ps2 km−1 and the effective length of the
resonator was 345.5 m. The MI regime sets for the signal power
of 150±7 mW. This is in excellent agreement with an estimated
signal threshold power of 145 mW according to equation (9).
Consistent with the three-wave model, the threshold power
decreased to 100 mW when a Fabry–Perot etalon with a FSR
of 107 GHz was replaced by one with a FSR of 88.5 GHz.
Figure 6(c), (d) shows autocorrelations that correspond to
spectra in figure 6(a), (b). An apparent background in the
autocorrelation is caused by autocorrelating pulses with a large
duty cycle. This can be directly seen for the even-spectrum
regime where the intensity should go through zero between
the successive pulses. Qualitatively similar autocorrelations
can be obtained from pulse trains shown in figure 3. However,
direct comparison with predicted autocorrelations cannot be
done since real pulses are shorter than pulses obtained from
simple truncated models due to higher harmonic contents.

5. Conclusions

The three- and four-wave models of an MI-based fibre ring
laser were derived. Steady-state regimes of the MI FRL
were found and their asymptotic stability was analysed by
linear stability analysis. The three-wave model gives simple
analytical expressions, allowing us to estimate the MI regime
threshold power. The four-wave model predicts no threshold
for the onset of MI and allows for the induced MI regime in
FRL with a normal dispersion resonator. These features have
been verified experimentally using the MI fibre σ -laser.
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