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Introduction

This paper presents an introduction to a comparative study of numerical codes designed to solve
the Atmospheric Boundary Layer (ABL) flow in a proximity of complex terrain. The main aim
is to check what are the major differences between the predictions of different mathematical
models and what is the effect of various discretization methods on numerical results. This is
a basic step towards a detailed comparison of numerical simulations with either experimental
results obtained either on scaled down wind-tunnel model, or real size scaled data obtained
during on-location measurements.

Mathematical model(s)

The mathematical model for all of the numerical solvers presented here is based on the Reynolds
Averaged Navier-Stokes (RANS) equations. The turbulent closure differs from code to code.
The following governing system describes the flow of turbulent, incompressible media. It con-
sists of the conservation mass and linear momentum written using Reynolds-Averaged mean
quantities, i.e. velocityv = col(u, v, w) and pressurep. The densityρ is considered constant in
this case. The volume forces (gravity, Coriolis, etc.) are neglected.

The resulting system can be written in conservative form as:

∇ · v = 0 (1)
∂ρv

∂t
+∇ · (ρv ⊗ v) = −∇p +∇ ·

[

K
(

∇v +∇
T

v

)]

(2)

The turbulent diffusionK = µ + µ
T

is equal to sum of molecular (laminar) viscosityµ and
turbulent (eddy) viscosityµ

T
. The turbulent viscosity is evaluated using suitable turbulence

model.

Algebraic mixing length turbulence model

This model was chosen because of its simplicity and adaptation to atmospheric flows including
stratification.

According to idea of Prandtl1 we assume here the fluid parcel is an entity that moves a
distance (mixing length) ℓ keeping its original momentum. So the mixing length is in some way

1See e.g. the classical book [6]



p.
Colloquium FLUID DYNAMICS 2012

Institute of Thermomechanics AS CR, v.v.i., Prague, October 24 - 26, 2012

analogous to the mean free path in the description of molecular diffusion. This analogy leads to
a simple expression for the turbulent viscosityν

T

ν
T
= ℓ2

∥

∥

∥
∇v

∥

∥

∥
(3)

For Atmospheric Boundary Layer (ABL), it can be assumed thatthe horizontal velocity
gradients are negligible in comparison to the vertical one.Moreover we suppose that the vertical
velocity component tends to zero and also its gradients are negligible. The basic mixing length
model (originally proposed by Prandtl) was modified for boundary layer flows by Blackadar
(1962) and generalized for stability effects by Estoque andBhumralkar (1969). For the flow in
thermally stratified boundary layer the following stability functionG can be used:

ν
T
= ℓ2

[(∂ū

∂z

)2

+
(∂v̄

∂z

)2]1/2

G (4)

Where the functionG is given by :

G = (1 + β Ri)−2 for Ri > 0

G = (1− β Ri)2 for Ri ≤ 0
(5)

whereβ is a constant (≈ 3) andRi stands for (gradient) Richardson number.
In this way the problem of turbulent closure was reduced to the problem of finding some

suitable formula for the mixing lengthℓ. The general expression forℓ, given by von Kármán is:

ℓ =
−κ ∂|v|/∂z
∂2|v|/∂z2 (6)

Here the parameterκ = 0.36 − 0.41 is von Kármán’s constant. The simplest assumption that
can be made onℓ (inside the boundary layer) is that the mixing length is equal zero on the wall
and grows linearly with the distance from the surface.

ℓ = κ z (7)

This simple linear dependency can give good results in the proximity of wall. At larger distances
it is usually replaced by some suitable asymptotic valueℓ∞. This free-stream mixing length is
the tuning parameter that can either be evaluated by experimental fitting or estimated according
to some empirical formula.

The above approach was reported e.g. in [1], [5] or [2].

SSTk − ω turbulence model

This two-equation model was chosen as a step up from the elementary algebraic turbulence
model that only accounts for local velocity gradients. The aim was to better handle the turbu-
lence history in the flow, including large flow curvature and massive recirculation.

The main idea of this model is an attempt to locally use the better of classicalk − ǫ and
k − ω models, depending the flow regime. The experience shows, that k − ω model usually
performs best close to the wall, while thek−ǫ model performs better away from the wall. Thus,
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following the construction of the originalk − ω model of Wilcox, Menter (1993) created the
Shear Stress Transport (SST)k− ω model using the fact, that bothk− ǫ andk− ω models can
be formulated in the same way (just with different coefficients in the governing equations) and
then an automatic blending function can be used to smoothly switch between the two models,
depending on local flow conditions. The turbulent viscosityµ

T
= ρν

T
can be evaluated from

µ
T
=

ρ k

ω
(8)

The turbulent kinetic energyk and specific rate of its dissipationω can be computed using the
following set of transport equations:

∂ρk

∂t
+∇ · (ρkv) = ∇ ·

[(

µ+
µ

T

σk

)

∇k

]

+ P − β∗ρkω (9)

∂ρω

∂t
+∇ · (ρωv) = ∇ ·

[(

µ+
µ

T

σω

)

∇ω

]

+
γρ

µ
T

P − βρω2 + 2ρ
1− F1

σω2ω
∇k ·∇ω (10)

The production of turbulent kinetic energy is computed fromthe strain rate tensorS = (∇v +
∇

T

v)/2 as

P = µ
T
S2 where S =

√
2S : S (11)

The coefficients appearing in these equations are describede.g. in [3] or [4].

Numerical solvers

In this paper only the first two codes are discussed and compared:

Finite-Difference Semi-Implicit code

• semi-implicit time discretization

• central in space discretization of second order

• artificial compressibility method for pressure
resolution

• non-conservative form of advection terms

• algebraic turbulence closure

• artificial viscosity stabilization

Finite-Volume Explicit code

• explicit time-integration of Runge-Kutta type

• central in space discretization of second order

• artificial compressibility method for pressure
resolution

• conservative formulation of advection terms

• SSTk − ω turbulence closure

• non-oscillatory filter stabilization

Computational test case

The computational setup closely follows the experiments that were performed for the same
geometry in the environmental windtunnel of the Institute of Thermomechanics of the AS CR.
The numerical simulations were performed on a domain of the size of 8100× 5850 × 2700 m
(which corresponds to900 × 650 × 300 mm in the model scale). The domain is a part of the
region of a real opencast coal mine. This means that the lowerboundary of the computational
domain is formed by an impermeable, no-slip wall with quite complex terrain profile.
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Figure 1: Computational subdomain and its orography profile

Figure 2: Domain orography profile

The flow is determined by the inflow velocity profile prescribed atx = 0. At this boundary
the velocity is assumed to be parallel to thex-axis and given by a simple power-law profile,
i.e. u(z) = U

0
(z/H

BL
)1/7. The reference wind velocityU

0
= 10m · s−1 and boundary layer

thickness is set toH
BL

= 1350m. All other parameters (density, viscosity, . . . ) correspond to
air.
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Numerical results

The numerical simulations were performed on a structured, wall fitted grid with190×120×40
cells. The grid has horizontally homogeneous resolution (45 meters), while in the vertical
direction the grid is refined close to the wall with minimal cell size of 0.2m. The numerical
results presented hereafter were obtained using the semi-implicit finite-difference code2.

Figure 3: Structure of the computational grid.

The near wall streamlines are shown in the Fig. 4. The deviations of the flow respect the
terrain profile that is represented in the figure by the orography elevation contours.
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Figure 4: Streamlines in the near-wall layer (approx.1m above terrain).

2More results obtained using the other method will be presented during the lecture
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Fig. 5 shows the flow acceleration around the edges of orography
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Figure 5: Contours of the dominantu component of the velocity in the near-wall layer (approx.
1m above terrain).

Also the regions of ascending/descending flow properly follow the orography as expected.
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Figure 6: Contours of the vertical velocity componentw in a x − z plane of the symmetry of
the domain.

Conclusions & Remarks

The first numerical results have demonstrated that both codes produce results that meet our
expectations. This means the velocity field as well as the pressure and turbulent viscosity behave
as they should from the physical point of view. Also the spatial resolution of the numerical
simulations seems to be sufficient to capture the most important topographical features.

The comparison of results obtained using the two above described codes revealed some
important facts:
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• The flow field predictions from both models are close to each other. This indicates that the
mathematical models were successfully implemented into numerical codes. The question is,
which of them will produce results closer to reality, i.e. tothe experimental results.

• From the point of view of the computational efficiency, the finite-difference code runs signif-
icantly faster. This is caused by a simpler numerical schemebeing used, but also by the fact
that fewer (4 instead of 6) equations are solved due to only algebraic turbulence model. The
efficiency of the finite-volume solver has been significantlyimproved by a specific choice of
Runge-Kutta time-stepping scheme and also due to parallelization of the code using OpenMP.

• The finite-volume code seems to be more sensitive to the non-smooth geometry of the no-slip
wall. The question, whether this is caused by the turbulencemodel or by the discretizatiom
method, remains to be answered.

The future investigation will focus on detailed comparisonof numerical and experimental
results for given geometry. Further numerical tests will beperformed using other numerical
codes in order to estimate the variation of numerical predictions from code to code. This should,
together with the comparison with experimental data, provide some elementary information
about the reliability of numerical simulations.
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