

 $\begin{aligned} \mathbf{Tenzor a jeho transformace při rotaci souřadnicové soustavy} \\ & \forall \mathsf{ektor}: \mathbf{a} = a_x \mathbf{x}^0 + a_y \mathbf{y}^0 + a_z \mathbf{z}^0 = \sum_i a_i \mathbf{x}_i^0, \mathbf{v} \, , \mathsf{maticovém}^{"} \, \mathsf{vyjádřen}^{"} \quad \mathbf{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\ & \mathsf{Tenzor 2. \, \check{r} \acute{a} \mathsf{du}: \quad \mathbf{\bar{T}} = \sum_i \sum_j T_{ij} \mathbf{x}_i^0 \mathbf{x}_j^0. \quad \mathsf{Dyadický součin vektorů: } \mathbf{ab} = \sum_i \sum_j a_i b_j \mathbf{x}_i^0 \mathbf{x}_j^0 \\ & \mathsf{V} \, \mathsf{maticovém vyjádřen}^{"} \quad \mathbf{T} = \begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{xx} & T_{zy} & T_{zz} \end{pmatrix} = \begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{pmatrix} \\ & \mathsf{Tenzor 3. \, \check{r} \acute{a} \mathsf{du}: \quad \mathbf{\tilde{r}} = \sum_i \sum_j \sum_k r_{ijk} \mathbf{x}_i^0 \mathbf{x}_j^0 \mathbf{x}_k^0 \quad \mathsf{Tenzor 4. \, \check{r} \acute{a} \mathsf{du}: } \mathbf{\bar{c}} = \sum_i \sum_j \sum_k \sum_l c_{ijkl} \mathbf{x}_i^0 \mathbf{x}_j^0 \mathbf{x}_k^0 \mathbf{x}_l^0 \\ & \mathsf{Skalární součiny tenzorů: } \mathbf{T} \cdot \mathbf{a} = \left(\sum_i \sum_j T_{ij} \mathbf{x}_i^0 \mathbf{x}_j^0 \right) \cdot \sum_k a_k \mathbf{x}_k^0 = \sum_i \sum_j \left(T_{ij} \mathbf{x}_i^0 \sum_k \mathbf{x}_j^0 \cdot \mathbf{x}_k^0 a_k \right) \\ & = \sum_i \sum_j \left(T_{ij} \mathbf{x}_i^0 \sum_k \delta_{jk} a_k \right) = \sum_i \sum_j T_{ij} a_j \mathbf{x}_i^0 = \sum_i b_i \mathbf{x}_i^0, \\ & b_i = \sum_j T_{ij} a_j \end{aligned}$

Tenzor a jeho transformace při rotaci souřadnicové soustavy - II Dvojný skalární součin: $\overline{\mathbf{T}}: \overline{\mathbf{S}} = \sum_{i} \sum_{j} \sum_{k} \sum_{l} T_{ij} S_{kl} \left[\mathbf{x}_{i}^{0} \left(\mathbf{x}_{j}^{0} \cdot \mathbf{x}_{k}^{0} \right) \right] \cdot \mathbf{x}_{l}^{0}$ $= \sum_{i} \sum_{j} \sum_{k} \sum_{k} T_{ij} S_{kl} \delta_{il} \delta_{jk} = \sum_{i} \sum_{j} T_{ij} S_{ji}$ Rotace souřadnic: původní soustava $\mathbf{x}_{1}^{0}, \mathbf{x}_{2}^{0}, \mathbf{x}_{3}^{0}$, pootočená $\mathbf{x}_{1}^{0'}, \mathbf{x}_{2}^{0'}, \mathbf{x}_{3}^{0'}$. Matice směrových kosinů: $\alpha_{ij} = \mathbf{x}_{i}^{0'} \cdot \mathbf{x}_{j}^{0} = \cos(x_{i}', x_{j})$ Matice zpětné transformace $\beta_{ji} = \mathbf{x}_{j}^{0} \cdot \mathbf{x}_{i}^{0'} = \cos(x_{j}, x_{i}') = \cos(x_{i}', x_{j}) = \alpha_{ij}, \quad \alpha^{-1} = \alpha^{T}$ Zřejmě $\mathbf{x}_{i}^{0'} = \sum_{j} \left(\mathbf{x}_{i}^{0'} \cdot \mathbf{x}_{j}^{0} \right) \mathbf{x}_{j}^{0} = \sum_{j} \alpha_{ij} \mathbf{x}_{j}^{0}, \quad \mathbf{x}_{j}^{0} = \sum_{i} \beta_{ji} \mathbf{x}_{i}^{0'} = \sum_{i} \alpha_{ij} \mathbf{x}_{i}^{0'}$ Transformace vektoru: $\mathbf{a} = \sum_{i} a_{i}' \mathbf{x}_{i}^{0'} = \sum_{j} a_{j} \mathbf{x}_{j}^{0} = \sum_{j} \sum_{i} \alpha_{ij} a_{j} \mathbf{x}_{i}^{0'}; \quad a_{i}' = \sum_{j} \alpha_{ij} a_{j}$ Analogicky $T_{ij}' = \sum_{k} \sum_{l} \alpha_{ik} \alpha_{jl} T_{kl}, \quad r_{ijk}' = \sum_{l} \sum_{m} \sum_{n} \alpha_{il} \alpha_{jm} \alpha_{kn} r_{bmn},$ $c_{ijkl}' = \sum_{m} \sum_{n} \sum_{p} \sum_{q} \alpha_{im} \alpha_{jn} \alpha_{kp} \alpha_{lq} c_{mnpq}$ atd. Sumační symbol se často vynechává, sčítá se přes opakující se symboly

Základy krystalooptikyŠíření vln v anizotropním prostředíČasově harmonicky proměnné pole beze zdrojů: $\rho = 0$, J = 0 $\mathscr{E}(\mathbf{r},t) = \operatorname{Re}\left\{\mathbf{E}(\mathbf{r})e^{-i\omega t}\right\} = \frac{1}{2}\left\{\mathbf{E}(\mathbf{r})e^{-i\omega t} + c.c.\right\}$, $\mathscr{H}(\mathbf{r},t) = \operatorname{Re}\left\{\mathbf{H}(\mathbf{r})e^{-i\omega t}\right\} = \frac{1}{2}\left\{\mathbf{H}(\mathbf{r})e^{-i\omega t} + c.c.\right\}$ Šíření vln se řídí Maxwellovými rovnicemi $\nabla \times \mathbf{E} = i\omega \mathbf{B}$, $\nabla \times \mathbf{H} = -i\omega \mathbf{D}$,
 $\mathbf{D} = \varepsilon_0 \mathscr{E} \cdot \mathbf{E}$, $\mathbf{B} = \mu_0 \mathbf{H}$.Další dvě rovnice jsou přímým důsledkem prvých: $\nabla \cdot \mathbf{B} = 0$, $\nabla \cdot \mathbf{D} = 0$.Anizotropie je popsána vztahem mezi \mathbf{E} a \mathbf{D} : $\mathbf{D} = \varepsilon_0 \mathscr{E} \cdot \mathbf{E} = \varepsilon_0 \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{xx} & \varepsilon_{zy} & \varepsilon_{zy} \end{pmatrix} \cdot \mathbf{E}$ Z obecných zákonů termodynamiky lze odvodit, že tenzor relativní permitivity ε
v bezeztrátovém prostředí je *hermitovský;* my se budeme zabývat prostředími popsanými reálným symetrickým ε_{x} .

Reálný symetrický tenzor $\boldsymbol{\varepsilon}$ je možno **diagonalizovat** rotací (volbou) souřadnicového systému;
v nové souřadnicové soustavě má tenzor relativní permitivity $\boldsymbol{\varepsilon}$ diagonální tvar $\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix} = \begin{pmatrix} n_1^2 & 0 & 0 \\ 0 & n_2^2 & 0 \\ 0 & 0 & n_3^2 \end{pmatrix}$ Z obecných vlastností symetrických matic plyne, že
vlastní vektory tenzoru (*krystalografické osy* tenzoru)
jsou tři a jsou vzájemně ortogonální.Klasifikace anizotropních prostředí: $\varepsilon_{xx} \neq \varepsilon_{yy} \neq \varepsilon_{zz}, n_1 \neq n_2 \neq n_3$ opticky dvojosé prostředí (nejobecnější; krystaly) $\varepsilon_{xx} = \varepsilon_{yy} \neq \varepsilon_{zz}, n_1 = n_2 \neq n_3$ opticky jednoosé prostředí (krystaly, polymery, ...)Šíření rovinných vln v anizotropním prostředíE = $\mathbf{e}_0 e^{i k_0 \mathbf{l} \cdot \mathbf{r}}, \mathbf{H} = \mathbf{H}_0 e^{i k_0 \mathbf{l} \cdot \mathbf{r}}, k_0 = \frac{2\pi}{\lambda}, \mathbf{l} = \frac{\mathbf{k}}{k_0}, \mathbf{l} = n \mathbf{l}^0$ Fázová rychlost šíření:

Vztahy mezi vektory pole Analogicky s přechodem $\partial/\partial t \rightarrow -i\omega$ lze snadno odvodit, že pro $e^{ik_0 l \cdot \mathbf{r}}$ $\nabla \rightarrow ik_0 \mathbf{1}$ Pak $ik_0 \mathbf{l} \times \mathbf{E}_0 = i\omega\mu_0 \mathbf{H}_0$, $ik_0 \mathbf{l} \times \mathbf{H}_0 = -i\omega \mathbf{D}_0$, $\mathbf{D}_0 = \varepsilon_0 \varepsilon \cdot \mathbf{E}_0$. Odtud $\mathbf{H}_0 = \frac{k_0}{\omega\mu_0} \mathbf{l} \times \mathbf{E}_0 = \frac{\sqrt{\mu_0 \varepsilon_0}}{\mu_0} \mathbf{l} \times \mathbf{E}_0 = Y_0 \mathbf{l} \times \mathbf{E}_0$, $Y_0 = \sqrt{\frac{\varepsilon_0}{\mu_0}}$, $Z_0 = Y_0^{-1} = \sqrt{\frac{\mu_0}{\varepsilon_0}}$. $\mathbf{D}_0 = -\frac{k_0}{\omega} \mathbf{l} \times \mathbf{H}_0 = -\frac{1}{c} \mathbf{l} \times \mathbf{H}_0$, $\mathbf{E}_0 = -\frac{k_0}{\omega\varepsilon_0} \varepsilon^{-1} \cdot (\mathbf{l} \times \mathbf{H}_0) = -Z_0 \varepsilon^{-1} \cdot (\mathbf{l} \times \mathbf{H}_0)$. Závěry: 1. Trojice vektorů \mathbf{D}_0 , \mathbf{H}_0 , I tvoří pravotočivou ortogonální soustavu vektorů; 2. Vektory \mathbf{E}_0 a \mathbf{H}_0 jsou vzájemně ortogonální; 3. Vektory \mathbf{D}_0 a \mathbf{E}_0 nejsou obecně vzájemně rovnoběžné; 4. Vektory \mathbf{E}_0 , \mathbf{D}_0 , \mathbf{H}_0 jsou vzájemně soufázové; 5. Směr šíření energie (Poyntingova vektoru) není rovnoběžný s vlnovým vektorem, $\mathbf{S} = \frac{1}{2} \operatorname{Re} \{\mathbf{E}_0 \times \mathbf{H}_0^*\} = \frac{1}{2} \mathbf{E}_0 \times \mathbf{H}_0 = \frac{1}{2} Y_0 \mathbf{E}_0 \times (\mathbf{l} \times \mathbf{E}_0) = \frac{1}{2} Y_0 [\mathbf{l} (\mathbf{E}_0 \cdot \mathbf{E}_0) - \mathbf{E}_0 (\mathbf{l} \cdot \mathbf{E}_0)]]$. $|\mathbf{l}| = n$.

Po úpravě dostaneme $\Phi(\omega,\mathbf{l}) = \varepsilon_{xx}l_x^4 + \varepsilon_{yy}l_y^4 + \varepsilon_{zz}l_z^4 + \varepsilon_{xx}l_x^2 \left(l_y^2 + l_z^2\right) + \varepsilon_{yy}l_y^2 \left(l_x^2 + l_z^2\right) + \varepsilon_{zz}l_z^2 \left(l_x^2 + l_y^2\right) \\ - \varepsilon_{xx}\varepsilon_{yy}(l_x^2 + l_y^2) - \varepsilon_{xx}\varepsilon_{zz}(l_x^2 + l_z^2) - \varepsilon_{yy}\varepsilon_{zz}(l_y^2 + l_z^2) + \varepsilon_{xx}\varepsilon_{yy}\varepsilon_{zz}$ $\Phi(\omega,\mathbf{l}) \text{ je tedy polynom 4. stupně v každé z proměnných } l_x, l_y, l_z, \text{ symetrický vůči inverzi os.}$ Řešením (např. l_z pro zadané l_x, l_y) jsou tedy 2 hodnoty $l_{z1,2}$ a 2 hodnoty $l_{z3,4} = -l_{z1,2}$. Plocha $\Phi(\omega,\mathbf{l}) = 0$ je tedy plochou 4. stupně, tzv. plochou vlnových vektorů. Ukážeme, že energie se šíří kolmo k ploše vlnových vektorů. Směr šíření energie určuje grupová rychlost, $\mathbf{v}_g = \frac{1}{k_0} \nabla_1 \omega, v_{gx} = \frac{1}{k_0} \frac{\partial \omega}{\partial l_x}$ atd. Poněvadž $\frac{\partial \Phi}{\partial \omega} d\omega + \nabla_1 \Phi \cdot d\mathbf{1} = 0, \quad d\omega = -\frac{1}{\frac{\partial \Phi}{\partial \omega}} \nabla_1 \Phi \cdot d\mathbf{1}, \text{ a tedy}$ $\mathbf{v}_g = -\frac{1}{k_0} \frac{1}{\frac{\partial \Phi}{\partial \omega}} \nabla_1 \Phi.$ Směr šíření energie je tedy rovnoběžný s normálou k ploše vln. vektorů.

Prostředí s optickou aktivitou – *chirální prostředí* Optická aktivita = stáčení roviny polarizace lineárně polarizované vlny. Chirální prostředí je prostředí **bez translační symetrie.** Konstituční relace pro chirální prostředí lze zavést různým způsobem. Jeden z možných je $\mathbf{D} = \varepsilon_0 \boldsymbol{\varepsilon} \cdot \mathbf{E} - \frac{i}{c} \mathbf{g} \cdot \mathbf{H},$ $\mathbf{B} = \mu_0 \mathbf{H} + \frac{i}{c} \mathbf{g} \cdot \mathbf{E},$ Šíření rovinné vlny v chirálním prostředí Rovinnou vlnu popisují vztahy $\mathbf{E} = \mathbf{E}_0 e^{i\mathbf{k}\cdot\mathbf{r}}, \quad \mathbf{H} = \mathbf{H}_0 e^{i\mathbf{k}\cdot\mathbf{r}}, \quad \mathbf{k} = k_0 \mathbf{l} = \omega \sqrt{\mu_0 \varepsilon_0} \mathbf{l} = \frac{\omega}{c} \mathbf{l} = \frac{2\pi}{\lambda} \mathbf{l}.$ Rotace dá $\nabla \times \mathbf{E} = i\mathbf{k} \times \mathbf{E}_0 e^{i\mathbf{k}\cdot\mathbf{r}} = ik_0 \mathbf{l} \times \mathbf{E}_0 e^{i\mathbf{k}\cdot\mathbf{r}}, \qquad \mathbf{l} \times \mathbf{E}_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \mathbf{H}_0 + i\mathbf{g} \cdot \mathbf{E}_0, \\ \nabla \times \mathbf{H} = i\mathbf{k} \times \mathbf{H}_0 e^{i\mathbf{k}\cdot\mathbf{r}} = ik_0 \mathbf{l} \times \mathbf{E}_0 e^{i\mathbf{k}\cdot\mathbf{r}}; \qquad -\mathbf{l} \times \mathbf{H}_0 = \varepsilon \sqrt{\frac{\varepsilon_0}{\mu_0}} \mathbf{E}_0 - i\mathbf{g} \cdot \mathbf{H}_0.$ $Z \text{ prvé rovnice vypočítáme } \mathbf{H}_{0} : \mathbf{H}_{0} = \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \left(\mathbf{1} \times \mathbf{E}_{0} - i\mathbf{g} \cdot \mathbf{E}_{0} \right).$ Dosazením do druhé rovnice dostaneme $-\mathbf{1} \times \left(\mathbf{1} \times \mathbf{E}_{0} - i\mathbf{g} \cdot \mathbf{E}_{0} \right) = \varepsilon \cdot \mathbf{E}_{0} - i\mathbf{g} \cdot (\mathbf{1} \times \mathbf{E}_{0} - i\mathbf{g} \cdot \mathbf{E}_{0})$ Rovnici pak můžeme upravit do tvaru $[\mathbf{I}^{2} \mathbf{I} - \mathbf{1}\mathbf{1} + i(\mathbf{1} \times \mathbf{g} + \mathbf{g} \times \mathbf{1}) - \varepsilon + \underbrace{\mathbf{g}}_{\substack{\mathbf{g}}\\ \text{zanedbáme,}\\ \text{člen malý 2. řádu}}] \cdot \mathbf{E}_{0} = \mathbf{0}, \text{ kde } \mathbf{1} \times \mathbf{g} = \sum_{m,n=1}^{3} (\mathbf{1} \times \mathbf{x}_{m}^{0}) \mathbf{x}_{n}^{0} g_{mn},$ $\mathbf{g} \times \mathbf{1} = \sum_{m,n=1}^{3} \mathbf{x}_{m}^{0} (\mathbf{x}_{n}^{0} \times \mathbf{1}) g_{mn}.$ V souřadnicové soustavě, v níž je ε diagonální, má rovnice tvar $\begin{bmatrix} i_{j}^{2} + i_{z}^{2} - \varepsilon_{xx} & -i_{z}^{1}(g_{xx} + g_{yy}) i_{z} - g_{x} i_{z} - g_{y} i_{y} \end{bmatrix} - i_{y} i_{z} - i[(g_{xx} + g_{xz}) i_{y} - g_{yx} i_{z} - g_{y} i_{z} \end{bmatrix} \cdot \begin{bmatrix} E_{0x} \\ E_{0y} \end{bmatrix} = \mathbf{0}.$ Disperzní rovnice pro rovinnou vlnu v chirálním prostředí: det [.1] = 0 ... plocha 4. stupně v souřadnicích $(l_{x}, l_{y}, l_{z}).$

Latropní chirální prostředí $g = gI, \quad \varepsilon = \varepsilon I; \quad \text{volme } 1 = l_z z^0 = l_z x_3^0.$ Pak disperzní rovnice přejde na tvar $\begin{pmatrix} l_z^2 - \varepsilon & -2i gl_z & 0 \\ 2i gl_z & l_z^2 - \varepsilon & 0 \\ 0 & 0 & -\varepsilon \end{pmatrix} \cdot \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = \mathbf{0}.$ Poslední rovnice má řešení $E_z = 0.$ Další dvě mají netriviální řešení, pokud $(l_z^2 - \varepsilon)^2 - 4g^2 l_z^2 = 0,$ Poněvadž prakticky vždy $g \ll \varepsilon,$ získáme obecný vztah $l_z = \pm \sqrt{\varepsilon + g^2} \pm g \approx \pm \sqrt{\varepsilon} \pm g = \pm n \pm g;$ pro amplitudy pole získáme $\frac{E_y}{E_x} \approx 2i \frac{gl_z}{l_z^2 - \varepsilon} \approx \pm i.$ Vlastní vlny izotropního chirálního prostředí jsou tedy *kruhově polarizované* a šíří se s indexem lomu $n \pm g.$

Dynamika elastického prostředí; šíření akustických vln Analogie Newtonovy silové rovnice $\mathbf{F} = m \cdot \frac{d^2 \mathbf{r}}{dt^2}$ pro element objemu látky $\frac{\partial^2}{\partial t^2} \int_V \rho \, \boldsymbol{\xi} \, dV = \oint_A \mathbf{T} \cdot d\mathbf{A} = \int_V \nabla \cdot \mathbf{T} \, dV$, a tedy $\rho \frac{\partial^2 \xi_j}{\partial t^2} = \sum_k \frac{\partial T_{jk}}{\partial x_k}$. Po dosazení za **T** a s uvážením symetrie **S** dostaneme $\rho \frac{\partial^2 \xi_j}{\partial t^2} = \sum_{klm} c_{jklm} \frac{\partial^2 \xi_m}{\partial x_k \partial x_l}$, což je **vlnová rovnice** pro $\boldsymbol{\xi}$. Rovinná akustická vlna: $\boldsymbol{\xi} = \boldsymbol{\xi}_0 e^{i(\mathbf{K}\cdot\mathbf{r}-\Omega t)}, \mathbf{K} = \frac{\Omega}{v_a} \mathbf{n}^0$, $K = \frac{2\pi}{\Lambda}$. Dosazením získáme $\sum_m \left(\sum_{kl} c_{jklm} n_k n_l - \rho v_a^2 \delta_{jm}\right) \xi_{0m} = 0$... soustava 3 lineárních rovnic pro 3 složky amplitudy $\boldsymbol{\xi}_0$. Jinak: úloha pro vlastní čísla $\rho \, v_a^2$ a vlastní vektory $\boldsymbol{\xi}_0$ pozitivně definitní reálné symetrické matice s prvky $\sum_{kl} c_{jklm} n_k n_l \Rightarrow$ obecně existují 3 vlastní čísla a 3 vlastní vektory vzájemně ortogonální. V každém směru \mathbf{n}^0 se mohou šířit 3 akustické vlny vzájemně ortogonálně polarizované, s různými fázovými rychlostmi.

Některé vlastnosti akustických vln Z energetické bilance elastických kmitů lze odvodit výraz pro akustický Poyintingův vektor $\mathbf{\Pi} = -\mathbf{T} \cdot \dot{\mathbf{\xi}}$ Grupová rychlost šíření \mathbf{v}_g je rovnoběžná s $\mathbf{\Pi}$, přičemž platí $\mathbf{v}_g \cdot \mathbf{n}^0 = v_a \Rightarrow |\mathbf{v}_g| \ge v_a$ (!!!) V izotropním prostředí $c_{11} = c_{22} = c_{33}$, $c_{12} = c_{13} = c_{23}$, $c_{44} = c_{55} = c_{66} = \frac{1}{2}(c_{11} - c_{12})$ Volme pro jednoduchost $\mathbf{n}^0 = \mathbf{z}^0$. Pak $\begin{pmatrix} c_{44} - \rho v_a^2 & 0 & 0 \\ 0 & c_{44} - \rho v_a^2 & 0 \\ 0 & 0 & c_{11} - \rho v_a^2 \end{pmatrix} \cdot \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad v_{a||} = \sqrt{\frac{c_{11}}{\rho}}, \quad v_{a\perp} = \sqrt{\frac{c_{44}}{\rho}} < v_{a||}$ Normovaný akustický vlnový vektor \mathbf{I}_a , $\mathbf{\xi} = \mathbf{\xi}_0 e^{i\Omega(\mathbf{I}_a \cdot \mathbf{r} - t)}, \sum_m \left(\sum_{kl} c_{jklm} l_k l_l - \rho \delta_{jm} \right) \mathbf{\xi}_{0m} = 0$, $\det \left[\left(\sum_{kl} c_{jklm} l_k l_l - \rho \delta_{jm} \right) \right] = 0$ je rovnice plochy vlnových vektorů (6. stupně!) Teoretické základy akustooptické interakce Elastická deformace \overline{S} způsobí změnu tenzoru (elektrické) impermitivity $\overline{\eta} = \overline{\varepsilon}^{-1}$, $\Delta \overline{\eta} = \overline{p} : \overline{S}$, $\Delta \overline{\varepsilon} = -\overline{\varepsilon} \cdot \overline{p} : \overline{S} \cdot \overline{\varepsilon}$, kde \overline{p} je tenzor fotoelastických konstant. Poněvadž \overline{S} i $\overline{\varepsilon}$ jsou symetrické tenzory 2. řádu, musí být \overline{p} tenzor 4. řádu, *symetrický vůči záměně prvých dvou a/nebo druhých dvou indexů*, $p_{ijkl} = p_{jikl} = p_{ijlk} = p_{jilk}$. Pokud se v materiálním prostředí šíří *rovinná akustická vlna s vektorem elastické výchylky* $\vec{\xi}(\vec{r},t) = \vec{\xi}_0 \exp(i\vec{K} \cdot \vec{r} - i\Omega t)$, dojde k modulaci permitivity dané *reálným výrazem* $\Delta \overline{\varepsilon}(\vec{r},t) = -\overline{\varepsilon} \cdot \overline{p} : \left\{ \frac{1}{2} \nabla \left[\vec{\xi}_0 e^{i(\vec{K} \cdot \vec{r} - \Omega t)} \right] + c.c. \right\} \cdot \overline{\varepsilon}$ $= \frac{\Omega}{v_a} \overline{\varepsilon} \cdot \overline{p} : \vec{n} \vec{\xi}_0 \cdot \overline{\varepsilon} \sin(\vec{K} \cdot \vec{r} - \Omega t) = \Delta \overline{\varepsilon} \sin(\vec{K} \cdot \vec{r} - \Omega t)$. Modulace permitivity způsobená akustickou vlnou má tedy tvar *rovinné postupné vlny*.

Elastooptický a fotostrikční efekt

Předchozí analýza brala v úvahu pouze působení akustické vlny na optické záření a nikoli naopak.

Celková změna vnitřní energie objemové jednotky látky při současném působení

elektrického pole a elastické deformace je $dU = \vec{E} \cdot d\vec{D} + \vec{T} : d\vec{S}$.

 $\text{Zřejmě} \ \ \vec{D} = \varepsilon_0 \left(\overline{\varepsilon} + \Delta \overline{\varepsilon} \right) \cdot \vec{E} = \varepsilon_0 \left(\overline{\varepsilon} - \overline{\varepsilon} \cdot \overline{\overline{p}} : \overline{S} \cdot \overline{\varepsilon} \right) \cdot \vec{E}.$

Zavedeme nový termodynamický potenciál $V = U - \vec{E} \cdot \vec{D}, \ dV = -\vec{D} \cdot d\vec{E} + \vec{T} : d\vec{S}.$

V musí tedy mít nezávislé proměnné \vec{E} a \overline{S} . Pak ale

$$\frac{\partial V}{\partial E_j \partial S_{lm}} = -\frac{\partial D_j}{\partial S_{lm}} = \varepsilon_0 \varepsilon_{jr} \varepsilon_{ks} p_{rslm} E_k = \frac{\partial T_{lm}}{\partial E_j}; \quad \text{integraci získáme}$$

$$T_{rs} = \underbrace{c_{rslm} S_{lm}}_{\text{elastická}} + \frac{1}{2} \varepsilon_0 \varepsilon_{jl} \varepsilon_{km} p_{lmrs} E_j E_k.$$

$$\underbrace{fotostrikce}_{\text{fotostrikce}} \text{ (stimulovaný Brillouinův jev)}$$

 $\varepsilon \approx 2$, $p \approx 0.2$, $c \approx 10^{10} \div 10^{11}$ N.m⁻². Pro typické hodnoty $S \approx 10^{-6}$, $E \approx 10^{6}$ V.m⁻¹ je 1. člen řádu 10^{4} až 10^{5} , druhý řádu 10^{-1} až 10^{0} ; je tedy zanedbatelný.

Zavedeme parametry
$$\begin{split} &\Delta \varphi = \frac{k_0 n_1 L}{\cos \theta_i}, \quad Q = \frac{2\pi \lambda L}{n\Lambda^2 \cos \theta_i}, \quad \alpha = -\frac{k}{K} \sin \theta_i = -\frac{n\Lambda}{\lambda} \sin \theta_i. \\ &\text{Dosazením rozvoje do vlnové rovnice dostaneme po zanedbání malých členů vyšších řádů soustavu diferenciálních rovnic 1. řádu$$
 $<math display="block">\begin{aligned} &\frac{\partial E_q(z)}{\partial z} = \frac{\Delta \varphi}{2L} \Big(E_{q+1}(z) - E_{q-1}(z) \Big) + \frac{iqQ}{2L} (2\alpha - q) E_q(z), \qquad q = 0, \pm 1, \pm 2, \dots \end{aligned}$ Pro přehlednost soustavu rozepišme: $\begin{aligned} &\frac{d}{dz} \begin{bmatrix} \vdots \\ E_{-1} \\ E_{0} \\ E_{1} \\ \vdots \end{bmatrix} = \begin{bmatrix} -i(2\alpha + 2)\frac{Q}{2L} & \frac{\Delta \varphi}{2L} & 0 & \cdots & \cdots \\ -\frac{\Delta \varphi}{2L} & -i(2\alpha + 1)\frac{Q}{2L} & \frac{\Delta \varphi}{2L} & 0 & \cdots \\ 0 & -\frac{\Delta \varphi}{2L} & -i(2\alpha - 1)\frac{Q}{2L} & \frac{\Delta \varphi}{2L} & 0 \\ \dots & 0 & -\frac{\Delta \varphi}{2L} & -i(2\alpha - 2)\frac{Q}{2L} \end{bmatrix} \cdot \begin{bmatrix} \cdots \\ E_{-1} \\ E_{0} \\ E_{1} \\ \dots \end{bmatrix} \end{aligned}$

Braggův režim

Braggův režimDífrakční účinnostFázový synchronismus: $\eta = \left| \frac{E_{d,1}(L)}{E_{d,0}(0)} \right|^2 = \left(\frac{\Delta \varphi}{2\sigma} \right)^2 \sin^2 \sigma$ $\Delta k_z L \approx 0, \text{ t.j. } \vec{k}_i \pm \vec{K} \approx \vec{k}_d$
(podmínka zachování kvaziimpulsu).Platí $\frac{\Delta \varphi}{2} = \frac{2\pi n_1}{2\lambda \cos \theta_i} L \approx \frac{\pi}{2\lambda} n^3 p S_0 L$. S_0 můžeme vyjádřit jako $S_0 = \sqrt{\frac{2\Pi}{\rho v_a^3}}$,
kde $\Pi = \frac{1}{2} \rho v_a^3 S_0^2$ [W.m⁻²] je hustota akustického výkonu. Pak $\frac{\Delta \varphi}{2} = \frac{\pi}{2\lambda} n^3 p S_0 L = \sqrt{\frac{n^6 p^2}{\rho v_a^3}} \frac{\pi^2 L^2}{2\lambda^2} \Pi = \sqrt{\frac{\Pi}{\Pi_0}}$, kde $\Pi_0 = \frac{2\lambda^2}{\pi^2 L^2 M_2}$, a
 $M_2 = \frac{p^2 n^6}{\rho v^3}$ je činitel akustooptické kvality materiálu.Pri fázovém synchronismu $\Delta k_z L = 0$ je difrakční účinnost $\eta = \sin^2 \frac{\Delta \varphi}{2} = \sin^2 \sqrt{\frac{\Pi}{\Pi_0}},$
pro $\eta \leq 0.7$ Ize v dobrém přiblížení psát $\eta \approx \frac{\Pi}{\Pi_0} \left(\frac{\sin(\Delta k_z L/2)}{\Delta k_z L/2} \right)^2.$

Difrakční účinnost v přiblížení malých účinností (Gordonova-Dixonova metoda) $\eta \approx \frac{\pi^2}{2\lambda^2} M_2 \Pi_a L^2 \underbrace{\left(\frac{\sin(K\theta L/2)}{K\theta L/2}\right)}_{\text{vyzaťovaci charakteristika}} 2 \underbrace{\left(\frac{\sin\left[\frac{1}{2}N_m(K\theta s - \varphi)\right]}{\frac{1}{2}N_m(K\theta s - \varphi)}\right)}_{\text{vyzaťovaci charakteristika}} 2 \underbrace{\left(\frac{\sin\left[\frac{1}{2}N_m(K\theta s - \varphi)\right]}{\frac{1}{2}N_m(K\theta s - \varphi)}\right)}_{\text{vyzaťovaci charakteristika}} 2 \underbrace{\left(\frac{1}{2}N_m(x, \theta s - \varphi)\right)}_{\text{vyzaťovaci charakteristika}}} 2 \underbrace{\left(\frac{1}{2}N_m(x, \theta s - \varphi)\right)}_{\text{vyzaťovaci charakteristika}} 2 \underbrace{\left(\frac{1}{2}N_m(x, \theta s - \varphi)\right)}_{\text{vyzaťovaci charakteristika}} 2 \underbrace{\left(\frac{1}{2}N$

Materiál	optická propust. (µm)	$\begin{pmatrix} n \\ (n_o, n_e) \end{pmatrix}$	M ₂ ×10 ¹⁵	$\frac{v_a}{(\text{km/s})}$	$\begin{bmatrix} Z_a \\ (kg/m^2s) \end{bmatrix}$	Akust. polarizac e
Tavený křemen	0,2 4,5	1,457	1,56 ∥ 0,47 ⊥	5,96 3,76	13,12	L
Sklo SF59	0,46 2,5	1,95	19,1	3.26	20,5	L
LiNbO ₃	0,5 4,5	2,202 2,286	7	6,57	30,6	L
PbMoO ₄	0,4 5,5	2,262 2,386	36,3∥ 36,1⊥	3,63	25,22	L
TeO ₂	0,35 5	2,26 2,412	34.5⊥ 25,6∥	4.2	25,2	L
		opt. akt.	1200	0.616	3,7	5
Hg_2Cl_2	0,4 30	1,97 2,65	506 640	1,62 0.34	11,6 2,4	L S
GaP	0,6 10	3,31	44,6	6,32	26,1	L

$$\begin{split} Buzení \ akustické \ vlny \ piezoelektrickým \ měničem \ (2) \\ & \frac{\partial T_{\alpha}}{\partial t} = c_{\alpha\alpha}^{D} \frac{\partial u_{l}}{\partial x} - h_{l\alpha} \frac{\partial D_{l}}{\partial t}, \\ & \frac{\partial E_{1}}{\partial t} = -h_{l\alpha} \frac{\partial u_{l}}{\partial x} + \eta_{11}^{S} \frac{\partial D_{1}}{\partial t}, \ \alpha = \begin{cases} 1 = (11) \ \text{pro} \ l = 1, & \text{v závislosti na ,,polarizaci"} \\ 6 = (12) \ \text{pro} \ l = 2, & (\text{směru kmitání)} \\ akustické \ vlny. \end{cases} \\ & \frac{\partial T_{a}}{\partial x} = \rho \frac{\partial u_{l}}{\partial t}, \end{cases} \\ & \text{Pro harmonický časový průběh } e^{j\Omega t} \quad \text{všech veličin můžeme soustavu rovnic integrovat} \\ & \text{od } x = 0 \ \text{do } x = d \ \text{s okrajovými podmínkami} \ T_{\alpha}(0) = T_{1}, \ T_{\alpha}(d) = T_{2}, \ u_{l}(0) = u_{1}, \ u_{l}(d) = u_{2}. \end{aligned} \\ & \text{Po formálních úpravách můžeme výsledek zapsat ve tvaru} \\ & T_{1} = \frac{Z_{a}}{j \tan \theta} u_{1} + \frac{Z_{a}}{j \sin \theta} u_{2} + \frac{h_{l\alpha}}{i\Omega} J_{za}^{Z} = \sqrt{c_{\alpha\alpha}^{D}\rho} = \rho v_{a} \ \text{je akustická impednace,} \\ & T_{2} = \frac{Z_{a}}{j \sin \theta} u_{1} + \frac{Z_{a}}{j \tan \theta} u_{2} + \frac{h_{l\alpha}}{j\Omega} J_{za} = 0 \ \partial t = 0 \ \partial t$$

Γ

Materiál	ρ (g/cm ³)	mód	orientace	k	ε_r	v_a (km/s)	$Z_a = \rho \cdot v_a$
α -SiO ₂ 32	2.65	L S	X Y	0.098 0.137	4.58 4.58	5.75 3.85	15.2 10.2
LiNbO ₃ 3m	4.64	L S	36°Y 163°Y	0.49 0.62	38.6 42.9	7.4 4.56	33.9 20.8
LiTaO ₃ 3m	7.45	L S	47°Y X	0.29 0.44	42.7 42.6	7.2 4.22	55.2 31.4
ZnO 6mm	5.68	L S	Z 43°Y	0.282 0.322	8.84 8.63	6.40 3.21	36.4 18.4
In	7.3	L S				2.3 1.44	16.8 10.5
Au	19	L S				3.24 1.20	62.5 22.8
Ag	10.5	L S				3.65 1.61	38.0 16.7
Sn	7.2	L S				3.32 1.67	23.9 12.0

Teoretické základy elektrooptického jevu (2)Poněvadž $\overline{\varepsilon}$ je symetrický tenzor, musí být tenzoř invariantní vůči záměně první dvojice indexů, $r_{jkl} = r_{kjl}$, a tenzor \overline{s} invariantní vůči záměně indexů v první a druhé dvojici, $s_{jklm} = s_{jkml} = s_{kjlm} = s_{kjml}$ To umožňuje zavést zkrácenou Voigtovu notaci $r_{jkl} \Rightarrow r_{\alpha l}, \quad s_{jklm} = s_{\alpha \beta},$ $\alpha, \beta = 1, 2, 3 \text{ pro (11), (22), (33),}$ $\alpha, \beta = 4, 5, 6 \text{ pro (23)} = (32), (13) = (31), (12) = (21).$ Poněvadž $\Delta \overline{\eta} = \tilde{r} \cdot \vec{E}_v + \overline{s} : \vec{E}_v \vec{E}_v$, jednotky elektrooptických tenzorů jsou $[\tilde{r}] = m/V (\text{prakticky pm/V}), \quad [\overline{s}] = m^2/V^2$

$$\begin{split} \text{Uastnosti některých významných elektrooptických materiálů (1)} \\ \text{Diektrické krystaly skupiny ADP} \\ \text{pštované z vodního roztoku, hygroskopické } \\ \text{odová grupa symetrie 42m} \\ \\ \text{ADP: } r_{41} = 23.11 \, \text{pm/V}, \quad n_o = 1.522 \\ r_{63} = 8.5 \, \text{pm/V}, \quad n_e = 1.4773 \\ \text{KDP: } r_{41} = 8 \, \text{pm/V}, \quad n_o = 1.5074 \\ r_{63} = 11 \, \text{pm/V}, \quad n_e = 1.4661 \\ \\ \text{DKDP} r_{41} = 26 \, \text{pm/V}, \quad n_o = 1.502 \\ r_{63} = 24.1 \, \text{pm/V}, \quad n_e = 1.462 \end{split}$$

$$\begin{split} \text{Amplitudový modulátor v KDP řezu Z (2)} \\ \text{Disperzní rovnice je } (l_z^2 - n_o^2)^2 - (n_o^4 r_{63} E_v)^2 &= 0, \text{ která má řešení} \\ l_{z1,2} &= \sqrt{n_o^2 \pm n_o^4 r_{63} E_v} \cong n_o \pm \frac{1}{2} n_o^3 r_{63} E_v = n_o \pm \Delta n, \Delta n = \frac{1}{2} n_o^3 r_{63} E_v. \\ \text{Vlastní vlny musejí splňovat rovnici} & \begin{pmatrix} l_z^2 - n_o^2 & n_o^4 r_{63} E_v \\ n_o^4 r_{63} E_v & l_z^2 - n_o^2 \end{pmatrix} \cdot \begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ neboli} \\ \frac{E_y}{E_x} &= -\frac{n_o^4 r_{63} E_v}{l_z^2 - n_o^2} = \mp 1; \text{ vlastní vlny jsou tedy lineárně polarizované pod úhlem 45°} vůči souřadnicovým osám \\ \text{Vstupní polarizace } \vec{E}_{in} &= E_0 \vec{x}^0 \text{ se tak rozloží na dvě složky s polarizacemi } \vec{e}_{1,2}^0 = \frac{1}{\sqrt{2}} (\vec{x}^0 \pm \vec{y}^0), \\ \vec{E}_{in} &= E_0 \vec{x}^0 = \frac{1}{\sqrt{2}} E_0 (\vec{e}_1^0 + \vec{e}_2^0). \quad \text{Šíření na vzdálenost } z \text{ je pak popsáno vztahem} \\ \vec{E} (z) &= \frac{e^{ik_0 n_o z}}{\sqrt{2}} E_0 (\vec{e}_1^0 e^{ik_0 \Delta n z} + \vec{e}_2^0 e^{-ik_0 \Delta n z}) = e^{ik_0 n_o z} E_0 (\vec{x}^0 \cos k_0 \Delta n z + i\vec{y}^0 \sin k_0 \Delta n z). \\ \text{Na výstupu za polarizátorem propouštějícím složku } \vec{y}^0 \text{ se tak objeví intenzita záření} \\ I(L) &= \left| E_y(L) \right|^2 = E_0^2 \sin^2 k_0 \Delta n L = I(0) \sin^2 k_0 \Delta n L. \end{split}$$

Fázový modulátor v LiNbO₃ (2) Změna fáze při průchodu úsekem délky *L* vlivem přiloženého napětí je pro různé polarizace $E_x(L) = E_0 e^{ik_0 n_c} L e^{-i\frac{1}{2}k_0 n_o^3 r_{13} E_v L}, \qquad \Delta \varphi_o = -\frac{1}{2}k_0 n_o^3 r_{13} L E_v,$ $E_z(L) = E_0 e^{ik_0 n_c} L e^{-i\frac{1}{2}k_0 n_o^3 r_{33} E_v L}, \qquad \Delta \varphi_e = -\frac{1}{2}k_0 n_e^3 r_{33} L E_v.$ Na rozdíl od "podélného" EO jevu je nyní $E_v = U/d$, kde *d* je vzdálenost elektrod. Půlvlnné napětí je definováno jako napětí potřebné pro dosažení změny fáze o π : $U_{\pi} = E_v d = \frac{\lambda}{n_o^3 r_{13}} \frac{d}{L} \quad \text{pro } E_{in} = E_x, \quad \text{Pro LiNbO}_3 \ U_{\pi} \cong 5.3 \frac{d}{L} \ [\text{kV}] \text{ pro } E_x,$ $U_{\pi} = E_v d = \frac{\lambda}{n_e^3 r_{33}} \frac{d}{L} \quad \text{pro } E_{in} = E_z.$

	4102NF	4104NF	4101NF	4103
Туре (1)	Broadband AM	Broadband AM	Resonant AM	Resonant AM
Operating Frequency	DC-200 MHz	DC-200 MHz	0.01-250 MHz	0.01-250 MHz
Wavelength Range	500-900 nm	900-1600 nm	500-900 nm	900-1600 nm
Material	LiNbO3	LiNbO3	LiNbO3	LiNbO3
Maximum Vn ⁽²⁾	160 V @ 532 nm	300 V @ 1000 nm	16 V @ 532 nm	30 V @ 1000 nm
On:Off Extinction Ratio (3)	50:1	50:1	50:1	50:1
Maximum Optical Intensity (4)	0.5 W/mm ² @ 532 nm	1 W/mm ² @ 1300 nm	0.5 W/mm ² @ 532 nm	1 W/mm ² @ 1300 nr
Aperture Diameter	2 mm	2 mm	2 mm	2 mm
Insertion Loss ⁽⁵⁾	<0.3 dB	<0.3 dB	<0.3 dB	<0.3 dB
RF Bandwidth	200 MHz	200 MHz	2-4% freq.	2-4% freq.
RF Connector	SMA	SMA	SMA	SMA
Input Impedance	10 pF	10 pF	50 Ω	50 Ω
Maximum RF Power	10 W	10 W	1 W	1 W
VSWR	NA	NA	<1.5	<1.5
	Ø	•		

Elektrooptické fázové	modulátory	(Newport)
-----------------------	------------	-----------

	4006	4002	4004	4005	4001NF	4003NF
Type ⁽¹⁾	Broadband	Broadband	Broadband	Resonant	Resonant	Resonant
Operating Frequency	DC-100	DC-100 MHz	DC-100 MHz	0.01-250	0.01-250 MHz	0.01-250 MHz
Wavelength Range	360-500 nm	500-900 nm	900-1600 nm	360-500 nm	500-900 nm	900-1600 nm
Material	MgO:LiNbO ₃	MgO:LiNbO ₃	MgO:LiNbO ₃	MgO:LiNbO3	MgO:LiNbO ₃	MgO:LiNbO ₃
Modulation Depth	40 mrad/V @ 364 nm	30 mrad/V @ 532 nm	15 mrad/V @1000 nm	0.27 - 0.8 rad/V @ 364 nm	0.2 - 0.6 rad/V @ 532 nm	0.1 - 0.3 rad/V @ 1000 nm
Maximum Vn ⁽²⁾	79 V @ 364 nm	105 V @ 532 nm	210 V @ 1000 nm	3.8 - 11.7 V @ 364 nm	5 - 16 V @ 532 nm	10 - 31 V @ 1000 nm
Maximum Optical Intensity ⁽⁴⁾	0.1 W/mm ² @ 364 nm	2 W/mm ² @ 532 nm	4 W/mm ² @ 1064 nm	0.1 W/mm ² @ 364 nm	2 W/mm ² @ 532 nm	4 W/mm ² @ 1064 nm
Aperture Diameter	2 mm	2 mm	2 mm	2 mm	2 mm	2 mm
RF Bandwidth	100 MHz	100 MHz	100 MHz	2-4% freq.	2-4% freq.	2-4% freq.
RF Connector	SMA	SMA	SMA	SMA	SMA	SMA
Input Impedance	20 pF	20 pF	20 pF	50 Ω	50 Ω	50 Ω
Maximum RF Power	10	10 W	10 W	1	1 W	1 W
VSWR	NA	NA	NA	NA	<1.5	<1.5

AO modulátory	Model	Operating Wavelength Range	Crystal Material	Active Aperture (mm)	Typical Risetime (ns)	Modulation Bandwidth (MHz)	Center Freq. (MHz)
	<u>M1134-FS80L</u>	UV	Fused Silica	3	55	10	80
pro UV a viditelnou	<u>1211-5-UV</u>	UV	Quartz	5	113	5	110
oblast	M1088-FS110L	UV	Fused Silica	3	55	10	110
οριαστ	<u>1211-UV</u>	UV	Quartz	2	57	20	150
	<u>1212-2-949</u>	UV	Quartz	2	25	20	150
	1212	UV	Quartz	1	10	30	1/5
	<u>1212-248</u>	UV	Quartz	1	10	30	200
	1201E 1	VIS	Glass	17	46	7	40
	1201E-1	VIS	Glass	3	93	10	70
	OAM1060	VIS	TeO2 (S)	2	1000	0.2	80
	M1115-ES80L-3	VIS	Fused Silica	3(H)x14(W)	170	10	80
	1205C-x	VIS	PbMo04	1/2/3	25	15	80
	M1133-aQ80L	VIS	Quartz	1.5/2	114	10	80
	OAM1020	VIS	TeO2 (S)	3	1000	0.2	110
	1211	VIS	Quartz	2	57	10	110
	1211-3-985	VIS	Quartz	2.7	57	20	110
	1206C	VIS	PbMo04	1	15	25	110
	1206C-833	NUV, VIS	TeO2	1	15	25	110
	1206C-2-1002	NUV, VIS	TeO2	2	30	25	110
	1250C-829A	NUV, VIS	TeO2	0.45	9	50	260
	<u>1250C</u>	VIS	PbMo04	0.75	10	50	200
	1250C-848	VIS	TeO2	0.5	7	50	200
	1250C-974	VIS	TeO2	0.4	7	50	200
	M1067-T200L	VIS	TeO2	0.2	7	50	200

AO modulátory	Mo	del	Operating Wavelength Range	Crysta Materi	al al	Acti Apert (mr	ve ure n)	Typical Risetime (ns)	Modulatio Bandwidt (MHz)	n Center h Freq. (MHz)
oro minacervenoù obiast	<u>1201</u>	IE-2	NIR	Glass	5	1.7	7	93	3.8	40
	120	2-4	NIR	Glass	5	4(H)x1	4(W)	350	10	40
	M1137-	SF40L	NIR	Glass	5	1.5	5	191	10	40
	1205C	-x-NIR	NIR	PbMo	04	17	2	25	15	80
	1205C	-1023	NIR	PbMo	04	0.6	;	25	15	80
	12050	<u>C-843</u>	NIR	PbMo	04	0.5	5	25	15	80
	<u>M1142-</u>	SF80L	NIR	Glass	5	0.5	i i	40	15	80
	M1080	-T80L	NIR	TeO2	2	1.6	i i	77	15	80
	M1135	-T80L	NIR	TeO2	2	3		245	15	80
	12060	C-NIR	NIR	PbMo	04	1		15	25	110
	12500	C-868	NIR	TeO2	2	0.5	i i	7	25	150
	12500	2-NIR	NIR	PbMo(04	0.7	5	10	50	200
	<u>1207</u>	<u>'B-3</u>	IR	Ge		3		70	8	40
	<u>12</u>	<u>10</u>	mid-IR	Ge		4		500	10	81 / 105
	<u>1208-6</u>	5-4(M)	mid-IR	Ge		6(H)x1	4(W)	500	10	50
	1207	<u>'B-6</u>	IR	Ge		6		700	10	40
	<u>1208-6</u>	- <u>955M</u>	IR	Ge		6(H)x1	4(W)	700	10	40
	<u>1209-7</u>	-993M	IR	Ge		7(H)x1	4(W)	830	10	40
	1209-7-	1064M	IR	Ge		7(H)x1	4(W)	830	10	40
	1209-7-	-1112M	IR	Ge		7(H)x1	4(W)	830	10	40
	1209-9-	1010M	IR	Ge		9(H)x2	0(W)	830	2.5	40
	AOM	<u>5x0-H</u>	IR	Ge		7(H)x3	0(W)	830	10	40 / 50
Mnohokanálové	Model	Channels	Spectral Range (µm)	Material	Ac Ape (m	tive rture nm)	Typic Riseti (ns)	cal Info me Ba	ormation ndwidth /MHz)	Center Freq. (MHz)
AO modulatory	M1140	4	0.45-0.67	PbMoO4	0	.7	25		15	110
	8080	8	0.45-0.67	PbMoO4	0	.7	36		9	80
	M8080C	8	0.488-0.633	PbMoO4	0	.5	55		6	80
	M9080C	8,collinear	0.45-0.67	PbMoO4	0	.7	36		9	90
	G7060	6	2.5-11.0	Ge	0	.8	70		5	70

Aktuality v oblasti akustooptických a elektrooptických součástek

43

deflektory	Model	Operating Wavelengths	Material	Resolution	Time Aperture (us)	Sweep Bandwidth (MHz)	Center Freq. (MHz)
	<u>1211-5BS-1045</u>	UV	Quartz	35	0.87	40	110
	D1155-T75S	405nm	TeO2 (S)	140	14.5	10	75
	<u>1205C-2</u>	VIS	PbMoO4	16	0.55	30	80
	<u>LS55-V</u>	VIS	TeO2 (S)	450	11.3	40	80
	LS110-VIS	VIS	TeO2 (S)	1100	22.7	50	100
	LS110A-VIS-XY	VIS	TeO2 (S)	750x750	15	50	100
	<u>OAD948</u>	488nm	TeO2 (S)	600	12.3	50	100
	<u>OAD1020</u>	532nm	TeO2 (S)	600	12.3	50	100
	<u>1206C-1002</u>	NUV, VIS	TeO2	35	0.7	50	110
	<u>OPP834</u>	VIS	PbMoO4	520	5.2	100	200
	1250C-BS-960A	VIS	PbMoO4	192	1.6	120	190
	OAD1550-XY	1550nm	TeO2 (S)	200x200	10	20	40
	LS110-NIR	NIR	TeO2 (S)	1100	22.7	25	50
	LS110A-NIR-XY	NIR	TeO2 (S)	375x375	15	25	50
	1205C-x-804B	NIR	PbMoO4	66	1.6	40	80
	OAD1121-XY	810nm	TeO2 (S)	500x500	13	40	80
	LS55-NIR	NIR	TeO2 (S)	450	11.3	40	80
	D1135-T110L	NIR	TeO2	35	0.7	50	110
	1250-BS-926	NIR	PbMoO4	70	1	70	145
	1250C-BS-943A	NIR	PbMoO4	190	1.6	120	185
	1000 000 0000				0.5		
	1208-6BS-955M		Ge	50	2.5	20	40
	1209-78S-986		Ge	50	2.5	20	40
	AOM6x0-H		Ge	100	5.5	20	40/50
	LS50XY		Ge	50x50	1.27	40	70
	LS600-1011		Ge	436	10.9	40	70
	LS600-4	IK	Ge	545	13.6	40	/0

Model	Operating Wavelengths	Material	Active Aperture (mm)	Center Frequency (MHz)	Frequency Range (MHz)
OAM1059-V31	633nm	TeO2 (S)	1.5	10	+/- 0.5
<u>OAM1059A</u>	633nm	TeO2 (S)	1.5	15	+/- 1.0
<u>1201E-1</u>	VIS	Glass	1.7	40	+/- 7.0
<u>1201E-2</u>	NIR	Glass	1.7	40	+/- 7.0
<u>OAM1141-T40-2</u>	633nm	TeO2 (S)	2	40	+/- 1.0
OAM1141-T80-2	633nm	TeO2 (S)	2	80	+/- 1.0
1205-1054	VIS	PbMo04	1	80	+/- 5
1205-1069	VIS	PbMo04	1	160	+/- 5
M1141-P80-1	VIS	PbMo04	1	80	+/- 5
1205-1118	VIS	PbMo04	2	80	+/- 5
1205C-1-869	VIS,NIR	PbMo04	1/2	80	+/- 20
1206C	VIS.NIR	PbMo04	1	110	+/- 25
1250C	VIS.NIR	PbMo04	0.75	200	+/- 50
1250C-829A	NUV.VIS	TeO2	0.45	260	+/- 50
OPP-1	VIS	PbMoO4	1.5	300	+/- 100
1210	mid-IR	Ge	4	81 / 105	+/- 10
1207B-6	IR	Ge	6	40	+/- 10
1207B-3-80	IR	Ge	3	80	+/-25

Мо	del	Cooling	Centre Frequency (MHz)	Material	Active Aperture (mm)	Max RF Power (W)	Damage Threshold (MW/cm2)
Q1072	-SF24L	Conduction	24	SF10	1.5	5	>300
Q1058C	SFxxL-H	Conduction	24/27	SF10	1.0/1.5	5	>300
Q1025	TxxL-H	Conduction	27/80	TeO2	1.0	3	>250
Q1025-	SFxxL-H	Conduction	41/80	SF10	1.0	3	>300
Q1080C	-TxxL-H	Conduction	41/68/80	TeO2	1.5	4	>250
<u>Q1087</u>	-aQ80L	Conduction	80	Quartz	1.0	6	>500
Q1137-	SFxxL-H	Conduction	41/80	SF57	1.0 / 1.5	6	>300
<u>Q1162-</u>	<u>SFxxL-H</u>	Conduction	41/80	SF10	1.0	6	>300
				-			
<u>Q1119-a</u>	<u>IQxxL-H</u>	Conduction	41/80	Quartz	1.0 / 1.5	10	>500
<u>Q1119-</u>	SxxL-H	Conduction	41/80	Fused Silica	1.0 / 1.5	10	>500
<u>Q1133-</u>	aQxxL-H	Conduction	41/68/80	Quartz	1.0 to 2.0	10	>500
<u>Q1133-</u>	- <u>SxxL-H</u>	Conduction	41/68/80	Fused Silica	1.0 / 1.5	10	>500
				-			
<u>Q1062-</u>	-SxxL-H	Water	24/27	Fused Silica	1.5 to 6.0	60	>500
<u>Q1062-</u>	-SxxS-H	VVater	24/2/	IF.Silica (Shear)	1.5 to 5.5	60	>500
<u>Q1083-</u>	-SxxL-H	VVater	24/2//41	Fused Silica	1.5 to 6.0	60	>500
Q1083-F	-SXXS-H	VVater	24/27/41	F.Silica (Shear)	1.5 to 5.5	60	>500

Model	Spectral Range	Active Aperture (sq.	Acceptance Angle	Optical Bandwidth	Drive Frequenc
	(µm)	mm)	(Deg.)	(nm)	(MHz)
AOLF-615-1049	VIS	2.5x2.5	3.5 - 4.5	1.0 - 6.0	109 - 65
AOLF-615-1082	VIS	2.5x2.5	3.5 - 4.5	1.0 - 6.0	109 - 65
AOTF614-08	VIS,NIR	5x5	3.5 - 6.0	1.0 - 22.0	140 - 35
AOTF614-16	VIS,NIR	5x5	2.5 - 4.2	0.6 - 11.0	140 - 35
AOTF614-24	VIS,NIR	5x5	3.5 - 6.0	0.4 - 7.0	140 - 35
A OTE000 44	NID	5.5	-	0.0.07.0	05 00
AOTF920-14	NIR	5x5	3.4 - 6.1	2.0 - 27.0	95 - 26
A01F920-20	NIR	5X5	2.6 - 4.9	1.5 - 18.5	95 - 26
AOTE1221	INIK mid ID	5X5 77	2.0 - 5.0	1.0 - 15.5	95-20
AOTEACCO OLO	mid-ik	1X1	5	30-50	24 - 39
AUTE1110 VR	1550nm	3X3	-	Z	81-84
			5.7 (nominal)	Valiable	110 45
0011		0x0	+ (nonnal)	1.0 - 12	1 110 - 45

