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Hynek Lavička1, Tomáš Lichard2, and Jan Novotný2,3
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Abstract

The recent crisis revived interest in financial transaction taxes (FTTs) as
a means to offset negative risk externalities. However, up-to-date academic
research does not provide sufficient insights into the effects of transaction
taxes on financial markets as the literature has here-to-fore been focused too
narrowly on Gaussian variance as a measure of volatility. In this paper, we ar-
gue that it is imperative to understand the relationship between price jumps,
Gaussian variance, and FTTs. While Gaussian variance is not necessarily a
problem in itself, the non-normality of return distribution caused by price
jumps affects not only the performance of many risk-hedging algorithms but
directly influences the frequency of catastrophic market events. To study the
aforementioned relationship, we use an agent-based model of financial mar-
kets. Its results show that FTTs may increase the variance while decreasing
the impact of price jumps. This result implies that regulators may face a
trade-off between overall variance and price jumps when designing optimal
tax. However, the results are not robust to the size of the artificial market as
non-linearities emerge when the size of the market is increased.
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Abstrakt

Současná krize oživila zájem o daň z finančńıch transakćı (DFT) jako
zp̊usobu omezeńı negativńıch externalit na finančńıch trźıch. Bohužel, současný
výzkum na poli finančńıch trh̊u nepřináš́ı dostatečně hluboký náhled na dopad
zavedeńı daně z finančńıch transakćı na fungováńı trh̊u, nebot’ se současná lite-
ratura zaměřuje př́ılǐs úzce na gaussovskou varianci jakožto mı́ru volatility. V
tomto článku ukazujeme nezbytnost studováńı vztahu mezi cenovými skoky,
Gaussovskou varianćı a DFT. Zat́ımco gaussovská variance nemuśı být sama o
sobě problém, ne-normalita distribuce výnos̊u zp̊usobená cenovými skoky ne-
gativně ovlivňuje nejen výkonnost zajǐst’ovaćıch algoritmů, ale je př́ımo spjata
s frekvenćı katastrofických událost́ı na trźıch. Abychom pochopili výše uve-
dené vztahy, použ́ıváme model finančńıch trh̊u založený na multiagentńım
př́ıstupu. Výsledky ukazuj́ı, že regulátor je při nastavováńı optimálńı daně
postaven před volbu mezi ńızkou celkovou volatilitou a ńızkým počtem ce-
nových skok̊u. Analýza dále ukazuje, že výsledky záviśı na velikosti trhu,
nebot’ pro větš́ı trhy se zvětšuje nelinearita v odezvě systému na DFT.
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1 Introduction

James Tobin first proposed a tax on spot conversions of one currency into another (Tobin,

1978) in the aftermath of the Bretton-Woods system’s break-up as a way to mitigate

short-term financial round-trip excursions into another currency. His intention was “to

throw some sand in the wheels of our excessively efficient international money markets”

(p.154). He and his co-authors offered more arguments in favor of the tax in Eichengreen,

Tobin, and Wyplosz (1995). But Tobin’s idea was just a specific application of Keynes’s

idea of a tax on transactions mitigating the effect of speculation on financial markets

(Keynes, 2006). However, the name ‘Tobin tax’ is today often used to denote not only

foreign exchange transaction taxes, but financial transaction taxes (FTTs) in general.

Therefore, the following text uses these terms interchangeably.

The debate on the merits of Tobin-like taxes has not so far reached a definite conclu-

sion. The proponents of the tax claim that an increased transaction cost affects short-

term high volume trading (speculation) more than long-term positions, decreasing market

volatility and thus potential for crashes. In this regard, the tax can be thought of as a

Pigovian tax on a negative risk externality, as increased volatility can decrease welfare and

efficiency. The opponents of the Tobin tax generally claim that it can, in fact, increase

volatility by decreasing market liquidity or that speculative trading serves to stabilize

prices around the long-run equilibrium. Although recently the debate has been gaining

new traction in political circles, it is often driven more by ideology and politics rather than

rigorous academic research. The academic debate has been historically driven mostly by

theoretical models although more recently, simulation and empirical studies have been

gaining some ground. However, both theoretical predictions and empirical evidence are

so far mixed.

The arguments against the tax are often based on the efficient market hypothesis

(EMH from now on; see Fama, 1965), which implies speculators cannot destabilize mar-

ket, as rational arbitrageurs would trade against them and drive prices towards their

fundamental level. However, as De Long, Shleifer, Summers, and Waldmann (1990) first

showed in an early study, this result is not robust to the choice of arbitrageurs’ risk
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aversion and length of their trading horizon as more risk averse rational traders may

not be willing to trade against noise traders. Another argument against FTTs claims

that speculative trading provides liquidity and helps to incorporate new information into

the prices. Opposing models argue that externalities, imperfect information, and other

frictions may cause inefficiencies, and that in these cases, FTTs can help economy reach

the second best outcome.

Another strand of literature is focused on the microeconomic behavior of the financial

market agents. Earlier examples of heterogeneous agent models include Palley (1999),

who combined noise traders (which were shown in prior literature to increase volatility,

see e.g. De Long et al., 1990) with the literature analyzing the Tobin tax. He identified

conditions under which such a tax drives out noise traders, thus benefiting fundamental

traders, lowering volatility, and leading to higher efficiency. Also, he concluded that there

is a trade-off between costs and benefits because Tobin tax may discourage fundamental

traders, as well. Westerhoff (2003) used a model with fundamentalist and chartist traders

in foreign exchange markets. In this model, a low tax rate first crowds out chartism, but

higher rates lead to misalignment due to a decreasing number of fundamentalists. Using

a different approach, Mathevet and Steiner (2012) show in a dynamic global game that in

an imperfect information setting transaction taxes may stop sudden investment reversals

under certain conditions, thus increasing welfare.

The empirical evidence on this issue is scant (one of the reasons is that the tax has

never been adopted in its true form as a global tax) and, as we will argue, methodologically

problematic. Few papers that tried to estimate the effect empirically (estimating the effect

of transaction taxes either on local foreign exchange or financial markets) offer support for

all possible sides of the debate. The side that found evidence against the transaction tax

includes Umlauf (1993) who, based on time series data on equity returns in Sweden, found

that by introducing transaction tax, the volatility measured by the conditional variance

went up and trading volumes down. Moreover, the author argued that a significant

amount of trading activity moved to London. However, it must be noted that the Swedish
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transaction tax of one percent (later increased to two percent) was higher1 than what

Tobin proposed originally (0.5 percent), and the author himself notes that “appropriate

theoretical foundations are lacking” making the estimation imprecise and warns against

“generalizing from a single data point” (ibid. p. 239). Aliber, Chowdhry, and Yan (2003)

examined the effect of transaction costs in general on volatility (defined as the standard

deviation of prices) in foreign exchange rates for four different currencies and found a

positive relationship as well. The opposite result, in support of proponents of the Tobin

tax, can be found in Liu and Zhu (2009), who found that lowering of transaction costs in

Japan led to higher volatility, implying a negative correlation between transaction costs

and volatility. Finally, a third group of literature has not found any significant effect—see

e.g. Hu (1998), who studied the effects of stock transaction tax on market volatility and

turnover taking advantage of 14 tax changes that occurred in the stock markets of Hong

Kong, Japan, South Korea, and Taiwan during the period 1975-1994.

We see two major issues that are left rather unexplored. First, a scale effect arguably

plays a major role (Tobin tax was meant to be a global tax). Small markets like Sweden

does not have a significant impact on the world economy, so if speculative trading moves

abroad, it does not alter the volatility on these foreign markets, but may very much

hurt trade volumes domestically. However, if the market is large enough, there will

be an impact on foreign market as well. Second, perhaps more importantly, we argue

that studies have ignored a significant source of information by focusing on conditional

variance as a single measure of volatility. Concerning the first point, some work has

already been done. Westerhoff and Dieci (2006) studied the phenomenon in a model

with heterogeneous agents, who can trade in different markets and can choose a trading

strategy (e.g. a fundamentalist vs. chartist). The importance of strategies evolve over

time according to their fitness. They find that the tax decreases volatility in the market

where it was imposed while increasing it in the other. The opposite effect of transaction

tax on volatility in a two-market framework was obtained by Mannaro, Marchesi, and
1Note although the tax rate was initially 0.5 percent and later increased to one percent, this tax was

nominally borne by both sides of the transaction implying the overall tax rate of one percent and two
percent, respectively.
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Setzu (2008), who used the methodology of agent-based models (ABMs). They used four

types of traders with different strategies, who can trade in a maximum of two markets.

However the relative share of strategies is kept fixed exogenously, but agents may choose

where to trade and whether to trade at all. On the other hand, one of the few more

recent studies, Bianconi, Galla, Marsili, and Pin (2009), concluded that a transaction

tax decreases volatility. Their ABM based on Minority Game framework used again

fixed strategies that were randomly distributed across agents at the beginning of the

simulation.

Our second—more important and thus far unexplored—point is that all of these stud-

ies focused on conditional Gaussian variance as a measure of volatility. They ignore

additional source of volatility—price jumps. The literature suggests (Merton, 1976, or

Giot, Laurent, & Petitjean, 2010) that the volatility of most financial instruments can be

decomposed into two parts: a regular Gaussian component and a price jump component.

Many models that aim to estimate conditional variance, such as various GARCH models2,

ignore the price jump component while allowing the realized variance to deviate from the

Gaussian distribution. However, as we show in this paper, the link between price jumps

and conditional variance is not that straightforward—the measure of one may rise while

the measure of the other decreases. A higher conditional variance does not have to be a

problem per se because it does not necessarily lead to a leptokurtic return distribution.

Fat tails, which have become a stylized fact of financial markets, are better explained by

price jumps, so even if the transaction tax increases conditional variance, its effect on

price jump frequency may be the opposite, thus making the distribution less fat-tailed.

If this is the case, the tax would not only improve the prediction power of standard as-

set pricing models that use normal distribution but, given that catastrophic events are

non-normal in nature, it would lead to a higher stability of financial markets. However,

the relationship between transaction taxes and price jumps has here-to-fore been rather

ignored in the literature.

This paper argues that it is crucial to understand the effect of the Tobin tax on price
2For an overview see Hamilton (1994).
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jumps. As Andersen, Benzoni, and Lund (2002) and Andersen, Bollerslev, and Diebold

(2007) show, price jumps are present in the majority of price time series; therefore, their

presence should be the subject of research. Price jumps can have a serious adverse impact

on the predictive power of pricing formulae and on the calculation of the estimates of

the financial variables. Moreover, price jumps are the source of non-normality and may

cause black-swan events on financial markets.3

While the presence of price jumps in the data is well established, the literature dis-

agrees on their origin. One branch of literature (Merton, 1976; Lee & Mykland, 2008

or Lahaye, Laurent, & Neely, 2011) considers new information a primary source of price

jumps, while other authors, like Joulin, Lefevre, Grunberg, and Bouchaud (2008) and

Bouchaud, Kockelkoren, and Potters (2006), conclude that price jumps are mainly caused

by a local lack of liquidity with news announcements having a negligible effect. The third

branch—behavioral finance literature (e.g. Shiller, 2005)—suggests that price jumps are

caused by the behavior of market participants themselves. For analyzing the two latter

views, the ABM methodology is especially appropriate since it allows for the explicit

modeling of interactions among market participants.

The principal contribution of this paper is to study the relationship between price

jumps and variance, and how transaction taxes affect them. The rest of the paper is

organized as follows. We describe the agent-based model for a simulation of the artificial

financial markets in Section 2. Furthermore, in Subsection 2.2, we model the impact of

the FTT on the price process and provide estimators to quantify this effect. Section 3

discusses the results of our analysis. We discuss the importance of the results and avenues

for further research in Section 4.

2 Modeling financial markets with transaction tax

This section introduces the framework to model the financial transaction tax in financial

markets and its impact on the distribution of log-returns with a special focus on extreme
3For illustrations of changes in the pricing formulae caused by price jumps see Pan (2002) or Broadie

and Jain (2008). Brooks, Černý, and Miffre (2011) discuss the effect of higher moments on optimal
allocations within a utility-based framework.
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price movements. We use the agent-based computational model by Raberto, Cincotti,

Focardi, and Marchesi (2003) and Mannaro et al. (2008). Their modeling framework

replicates the stylized facts of the financial returns and therefore, in the subsequent part,

we implement recent understanding from the financial econometrics to assess properly

the response of the extreme price movements to the FTT.

2.1 The agent-based model

We study the relationship between the price process and the FTT using an agent-based

model (ABM). ABMs are especially appropriate for studying the impact of FTTs on

financial markets because:

1. They allow for the explicit modeling of said transactions (interactions);

2. They allow for the modeling of each agent independently.

Thus explicitly modeled micro interactions lead to the emergence of macro properties

(bottom-up approach). Our basic model is based on the methodology of Raberto et al.

(2003) and Mannaro et al. (2008), who present an agent-based model of artificial ex ante

heterogeneous traders, which leads to the price dynamics of financial assets satisfying the

well-known stylized facts of clustering volatility, non-zero skewness, and higher kurtosis,

or price jumps. In particular, we consider four types of agents based on their behavior:

random traders, fundamentalist traders, momentum traders, and contrarian traders. We

use the parameters calibrated by Raberto et al. (2003) and Mannaro et al. (2008) so that

the price series generated match the usual stylized facts of financial markets. It is worth

pointing out out that the four types of trading agents can be related to various types

of institutional traders in the market ranging from noise retail traders to sophisticated

hedge funds. To illustrate, the momentum traders can be a representation of the real-

world marginal retail investors following the moving averages as well as the large algo

funds, who employ advanced algorithms to capture the emergence of trend channels.

The agent-based modeling procedure itself is performed as follows (analogously to

Lavička, Lin, & Novotný, 2010): We set initial conditions of the model including the
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number of interacting agents and various model-specific parameters described below.

Then, we let the economy evolve step by step until a pre-determined number of steps (or

trading days) is reached. At every step, we record the closing price, the overall traded

amount of assets, the amount of assets sold and bought by each trader group, total

demand and total supply by each trader group, wealth in each trader group, and the tax

revenue.

In our specification, we assume that every agent acting in the markets is working in the

same time scale. This means that every agent has the same computational and trading

ability to react to the price movements. We stress this fact by denoting every such moment

as a trading day. However, it is important to keep in mind that this is for presentation

purposes only and every such step could be called a trading millisecond, which would

seemingly mimic the “continuous-time” operations of current financial markets.

Finally, we assume fixed strategies for all the agents throughout the paper. This means

that an agent cannot change the strategy as time passes based on the performance of such

strategy. The reason for this assumptions is three-fold. First, we want to observe the effect

of the introduction of the FTT on the immediate markets. Keeping the same proportion

of traders with different trading strategies allows us to understand the different pressure

caused by the FTT on different trading strategies. Second, trading agents usually stick

to one strategy and do not switch often. For instance, the macro hedge fund is not very

likely to switch its trading strategy to high-frequency algorithmic trading as it would be

too costly, and it would send a misleading signal to potential investors. This does not

mean that such a fund will not evolve; however, the development will rather be in the

form of improvements to macro research and in experimentation with different macro

models. Finally, the different agents with different strategies may represent the different

parts of one legal entity. The professional trader will usually try a set of strategies

and keep an independent track of them as it would be convenient for back-testing and

risk management. Similarly, a large investment bank will have as its subsidiaries different

hedge funds that will explore different strategies. These hedge funds will have independent

accounting and will very likely be independent legal entities. As the agents differ in their
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wealth and all the trading strategies are proportional to the trading wealth, our model

covers all of the above cases.

2.1.1 Trader types

Our artificial market consists of traders distributed evenly into four groups based on their

decision rules (random, fundamentalist, momentarian, and contrarian). At any given time

t, an agent i is characterized by her cash holdings (ci(t)) and asset holdings (ai (t)), in

addition to the strategy she follows.

Random traders Random traders (denoted asR) do not follow any particular strategy—

with equal probability they issue a buy or a sell order. They are a proxy for traders that

trade for their private reasons independent of the market situation, or who follow noisy

information. Such a type of trader may include those who need to hedge their positions,

institutional investors, or long-term traders who aim to trade over a horizon exceeding

any horizon considered in this study.

If random traders buy (sell), the limit price of their buy (sell) order is determined as:

lbi = p (t) ·X , (1)

lsi = p (t)
X

, (2)

where X ∼ N (µ, si) . The standard deviation si of this Gaussian distribution is deter-

mined as:

si = k · σi (ωi) , (3)

where σi (ωi) is the standard deviation of the log-returns computed based on window

length following uniform distribution ωi ∼ U [2, 5]. Parameter k is set to 1.9. As Mannaro

et al. (2008) argue, the dependence on past variance simulates a GARCH-type memory.

The problem may arise when si becomes so large that the realization of N (µ, si) becomes
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negative. We solve this problem by setting the sell or buy order to zero in these cases.

The traded amount is random and determined as follows:

qbi = UN
(
0,
⌊
ci (t) /lbi

⌋)
, (4)

qsi = U (0, ai (t)) , (5)

where
⌊
ci (t) /lbi

⌋
is an integer-valued quantity denoting the maximum amount of stocks

the trader is able to buy for the price lbi with bXc denoting the highest integer smaller

than X and UN (i, j) being an integer-valued uniform distribution, which draws integers

between i and j, inclusively.

Fundamentalist traders Fundamentalist traders (F ) base their decisions on their

beliefs about the fundamental price of assets. Such traders are assumed to be endowed

with enough faculty to process all available information ranging from macro-economic

fundamentals to accounting variables. As a consequence, they have perfect knowledge of

the fundamental price and try to arbitrage the difference between the current price and

the fundamental price as they know the system is mean reverting towards the fundamental

price. Such traders include macro hedge funds or traders who closely follow particular

companies/sectors.

If a fundamentalist trader i decides to buy or sell, he buys/sells the following amount

of assets

qbi = min
(⌊

ci (t)
pf

⌋
,

⌊
k · |p (t)− pf |

pf
· ci (t)
pf

⌋)
, (6)

qsi = min
(
ai (t) ,

⌊
k · |p (t)− pf |

pf
· ai (t)

⌋)
, (7)

which depends on the current (p (t)) and the fundamental (pf ) price of the asset, with

parameter k being the same as in the random traders’ case. In effect, these traders are

arbitrageurs who try to take advantage of the differences between market and fundamental
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price of assets.

Momentum traders Momentum traders—denoted as T—follow trends. They buy

when the price goes up and sell when it goes down. Momentum trading strategies are

still popular among investors, and this type of trader, thus, represents algorithmic hedge

funds, whose algorithms predict the continuation of the trend, or, for instance, retail

traders who bet on the combination of the signals involving moving averages and thus

fully rely on technical analysis. Momentum traders can also contribute to the building up

of bubbles as their behavior is inherently based on herding and involves positive feedback.

Each momentum trader is assumed to look back at the history based on an id-

iosyncratic time window ωi, which is randomly drawn from a normal distribution as

ωi ∼ U [3, 20] at the beginning of the simulation. This setup mimics the wide variety of

trading strategies. If a momentum trader i decides to issue an order, the limit price li is

computed as:

li = p (t) ·
[
1 + k · p (t)− p (t− ωi)

ωip (t− ωi)

]
, (8)

where k is the same parameter as in previous cases. Conditional on the decision to sell

(if li < p (t)) or to buy (if li > p (t)), the exact quantities are computed as follows:

qbi = min
(⌊

ci (t)
li

⌋
,

⌊
ci (t)
li
· u ·

[
1 + k · |p (t)− p (t− ωi)|

ωip (t− ωi)

]⌋)
, (9)

qsi = min
(
ai(t),

⌊
ai(t) · u ·

[
1 + k · |p (t)− p (t− ωi)|

ωip (t− ωi)

]⌋)
, (10)

where u ∼ U (0, 1).

Contrarian traders Similarly to momentum traders, contrarian traders (C) follow

technical analysis of trends; however, they expect that if the price is rising, it is going to

fall soon, so they try to sell near the maximum and vice versa. These traders benefit from

the herding behavior of momentum traders. Thus, by introducing negative feedback into
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the market, they inadvertently lean against forming bubbles.

This implies that their behavioral rules are the same as those of momentum traders,

only in the opposite direction. In particular, the decision to sell (buy) occurs if the

li > p (t) (li < p (t)), with all the other variables remaining the same.

2.1.2 Price clearing mechanism

The market clearing price p∗ is determined as the intersection of the demand and supply

curves. More specifically, the orders are sorted by price: sell orders whose price satisfies

sv ≤ p∗ from the lowest to highest, and buy orders whose price satisfies bu ≥ p∗ from

the highest to lowest. These buy and sell orders are then matched from the bottom of

the list while there is at least one pair to be matched. In case the last buy or sell order

is satisfied only partially, p∗ is determined as a weighted average of the bid and the ask

price. Based on this matching, variables ai and ci are updated accordingly for each trader

who made an exchange.

The provided model thus generates for every trading day a market price along with

the volume and other market characteristics describing the profile of each of the four

trading groups. In the following, we focus on the price-generating process, which by

construction, satisfies the standard stylized facts known in the market, see Mannaro et

al. (2008); Raberto et al. (2003).

2.1.3 Tax collection

The main goal of this paper is to analyze the impact of introding FTT on the properties—

in particular, higher moments—of the price generating process. In this framework, the

tax rate is imposed on both sides of the transaction. More precisely, it is added on top

of the price for buyers, and subtracted from the sell price for sellers. Thus, the effective

tax rate is twice the nominal tax rate in our model.

Every trade thus causes a decrease of money supply available for traders in the market,

as a fraction of the turnover is collected. In order to prevent the ever-decreasing money

supply, every 60 days we return tax revenues into the system as a lump sum divided
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among traders while maintaining the existing distribution of the money. Such a lump

sum return represents both the returns on the money flows and can be also interpreted

as the dividend payouts; however, the preserved money distribution constraint does not

support the latter interpretation.

2.1.4 The price-generating process

The provided set of strategies offers a diverse combination of micro-based strategies,

which gives rise to both sides of the trading book with a wide distribution of the de-

manded/supplied assets. The price clearing mechanism based on the law of supply and

demand, then, implies the price-generating process, which satisfies the basic stylized facts

as shown by Raberto et al. (2003) and Mannaro et al. (2008). The provided framework

thus represents a natural laboratory to study the impact of financial frictions on markets

and their particular impact on price dynamics. For that purpose, we introduce in the

following section the standard formalism from the financial econometrics literature and

focus on the dependence between price jumps of a realized price path and the amount of

the imposed FTT.

2.2 Model of price process

We consider a one-dimensional asset log-price process, X, that takes the form of the Ito

semi-martingale described by the following stochastic differential equation:

dXt = ηtdt+ σtdBt +
ˆ
<
x · µ (dt, dx) , (11)

where B (t) is a standard Brownian motion, see Jacod and Shiryaev (1987) for an intro-

duction in this field. Such a price model is a suitable and general candidate to model the

log-price process in a realistic setup and thus tends to be appropriate in our agent-based

framework, which yields a price process satisfying the stylized facts.

The spot volatility σt is a càdlàg process bounded away from zero almost surely. The

drift ηt is, in our case, identically equal to zero4. Variable µ (dt, dx) is an integer-valued
4The fundamental price in our model is fixed, which is equivalent to a world with zero deterministic
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random measure that captures a jump in Xt over a time interval [t, t+ dt). Thus the

jump arrives to the market whenever ∆Xt ≡ Xt − Xt− 6= 0. Let us further define a

jump intensity dt⊗ νt (dx), where νt (dx) is some non-negative measure with a constraint
´
< (x2 ∧ 1) νt (dx) <∞. More precisely, we assume large price jumps with finite activity.

As a result, for any fixed interval [0, T ], there is a finite number of time moments t such

that ∆Xt 6= 0.

For a certain fixed interval [0, T ] the jump term with a corresponding jump intensity νt

gives rise to a finite number of price jumps. More precisely, a finite number of ti ∈ [0, T ]

exists such that Ui ≡ ∆Xti > 0 in the limit, with i = 1, . . . , NT . In such a case, we

observe exactly NT price jumps. The term νt thus affects both the Ui and the grid

TT = {t1, . . . , tNT
}, including its cardinality.

2.2.1 Financial transaction tax

The Tobin tax in the model affects the trading habits of the agents in the economy

and thus the random processes in Equation(11). In particular, the process driving the

Gaussian volatility and the jump measure depends on the tax rate τ :

σt → σt (τ)

νt → νt (τ)
. (12)

Estimating the functional dependence between the spot processes in Equation(12)

and the FTT is not a straightforward task as the randomness in the spot processes would

be a confounding factor.5 Any test would therefore require a comparison of the random

processes that depend on the current state of the world. A possible solution would be

to use filtering techniques to extract the latent processes σt (τ) and νt (τ). Another and

more intuitive solution employed in this paper is to use the integrated variables and

measure the impact of the FTT over a certain time horizon on the integrated quantities.

In particular, we focus on the first four moments and assess the distributional properties

interest rates. An alternative and equivalent explanation is that our model describes de-trended data.
The provided framework is valid even in the case of a general CAR process with locally persistent price
process at a given sampling frequency.

5Recall that σt itself is a random process with a structure similar to the log-price equation.
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of the log-returns rt as a function of the FTT. In addition, as per νt (τ) measure, we

estimate the number of price jumps per given sample path and analyze the impact of the

FTT on the frequency of price jumps.

2.2.2 Estimating the number of price jumps

Estimating the price jump contribution to the overall quadratic variance is one way to

assess the role of price jumps in the price process. Alternatively, we may directly identify

the overall amount of price jumps. For a given sampling frequency, we thus assess the

cardinality of the set of returns, which contain at least one price jump.

To test for the presence of a price jump in a particular return, we employ a test

developed by Lee and Mykland (2008). As Hanousek, Kočenda, and Novotný (2012)

argue, this test is optimal with respect to Type-II errors. It is based on the bipower

variance suggested by Barndorff-Nielsen and Shephard (2004) for underlying processes

following Eq.(11). The test statistic is based on the results of the extreme value theory.

More precisely, the key quantity is the distribution of maximum returns normalized by

the spot integrated variance. The spot quadratic variance is estimated using the bipower

variance over a moving window capturing the immediate past movements of the price

process. Namely, the test statistic developed by Lee and Mykland (2008) is defined as:

maxt∈An |Lt| − Cn
Sn

→ ξ , (13)

where An is the tested region with n observations, and Lt = rt/ˆ̂σt, Cn = (2 lnn)1/2

µ1
−

lnπ+ln(lnn)
2µ1(2 lnn)1/2 , Sn = 1

µ1(2 lnn)1/2 , µ1 = E (|z|) with z ∼ N (0, 1), and where ˆ̂σt stands for the

spot bipower variance defined as:

ˆ̂σ
2
t = 1

T − 1

t−1∑
u=t−T+1

|ru| |ru−1| . (14)

Note that the term µ−2
1 is included in coefficients Cn and Sn.

Lee and Mykland (2008) show that under the null hypothesis of no price jump, the ran-

dom variable ξ follows the standard Gumbel distribution function P (ξ ≤ x) = exp (e−x).
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The number of price jumps detected in this way is then counted for a given window, in

our case 120 days.

2.3 Simulation procedure

The artificial financial market described above is used for extensive Monte Carlo sim-

ulations in a modified Zarja C++ environment for agent-based modeling developed in

Lavička (2010).6 To evaluate the robustness of the results to initial conditions, we run

different specifications varying the total set of agents in the economy, the relative share

of different traders, and the probability of trading p described in Section 2.1.1. A list of

these specifications can be seen in Table 1.

Table 1: Simulation parameters

Population
Distribution

p Population
Distribution

p Population
Distribution

p Population
Distribution

p
(R:F:M:C) (R:F:M:C) (R:F:M:C) (R:F:M:C)

400 40:30:15:15 0.1 400 40:10:25:25 0.1 10,000 40:10:25:25 0.1 100,000 40:10:25:25 0.1

800 40:30:15:15 0.1 400 40:30:22:8 0.1 10,000 40:30:22:8 0.1 100,000 40:30:22:8 0.1

10,000 40:30:15:15 0.01 400 40:30:8:22 0.1 10,000 40:30:8:22 0.1 100,000 40:30:8:22 0.1

10,000 40:30:15:15 0.05 400 20:30:25:25 0.1 10,000 20:30:25:25 0.1 100,000 20:30:25:25 0.1

10,000 40:30:15:15 0.004 400 20:50:15:15 0.1 10,000 20:50:15:15 0.1 100,000 20:50:15:15 0.1

100,000 40:30:15:15 0.1 400 40:50:05:05 0.1 10,000 40:50:05:05 0.1 100,000 40:50:05:05 0.1

100,000 40:30:15:15 0.05 400 60:10:15:15 0.1 10,000 60:10:15:15 0.1 100,000 60:10:15:15 0.1

100,000 40:30:15:15 0.0004 400 60:30:05:05 0.1 10,000 60:30:05:05 0.1 100,000 60:30:05:05 0.1

For all of the specifications above, the initial wealth of agent i both in cash and stocks

is set as follows. First, the overall cash is divided proportionally among the trader groups.

Within the trader groups, the cash is divided following the Zipf law. After fixing the tax

rate, which remains the same for a given specification, agents begin to interact according

to their respective decision rules. Every simulation run is composed of 3,600 trading

sessions, or trading days, which corresponds to 15 years. The first five years of market

operations are then considered as the initialization period, and those data are not taken

into account. Every simulation run is then repeated 200 times for each tax rate. The tax

rate is varied from zero to three percent in 0.05 percentage point increments.

At the end of every trading day of each simulation, we collect the following data: the
6Downloadable from http://sourceforge.net/projects/politeconomy/.
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market price of the traded asset, the daily traded volumes, and the behavior and wealth

(both in terms of assets and cash) of the different trader types. As a result, for every

level of the Tobin tax, we obtain 200 samples of 10 trading years worth of daily data.

This sample is large enough for robust statistical inferences.

3 Results

This section reports the results of a baseline model with 400 traders and a robustness

check with 10,000 traders. The baseline corresponds to the specifications used in previous

studies and thus directly extends the existing literature. The robustness check allows us

to determine if there is any nonlinear scale effect that would interact with the effect of

the Tobin tax. The results for other specifications presented in Table 1 are available upon

request; however, their qualitative nature supports the findings reported in this section.

3.1 A market with 400 traders

In this subsection, we report the results of a simulation with 400 traders, distributed into

four trader groups described in Section 2.1.1. More precisely, our baseline market consists

of 40 percent of random traders, 30 percent of fundamentalist traders, and 30 percent of

chartists (divided evenly between trend followers and contrarians).

3.1.1 Price Behavior

Figure 1 shows the first four moments of the distribution of log-returns with 95 percent

confidence bands. It is evident from the figures that the tax has an insignificant effect

on the mean and skewness of the distribution. A comparison of variance and kurtosis

shows that at low levels a rise in the tax has a negative effect on variance but increases

kurtosis. From approximately a 0.5 percent tax, the trend is reversed—variance goes

up but kurtosis decreases, making the distribution more Gaussian, albeit with a higher

standard deviation.

Figure 2 depicts the first, fifth, 95th, and 99th percentiles of the return distribution.
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Figure 1: The first four moments of the log-return distribution for N = 400
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.

Clearly, the distribution of returns widens as the second moments suggest. The role of the

fourth moments, in particular the suppression of heavy tails, partially compensates for

the widening of the distribution. However, the percentile analysis does not fully capture

the interplay between the second and fourth moments. This, in turn, corresponds to a

well-accepted inability of the standard percentile based VaR measures to efficiently deal

with extreme price movements.

In conclusion, a plain comparison of the first four moments supports the well-accepted

belief of market practitioners that FTT will increase the market volatility. This is usually

interpreted as a bad signal when markets lose their depth. However, figures also show

that the fourth moment—the proxy for fat tails—decreases after reaching certain critical

value (around the tax rate of 0.5 percent). This can make the story which considers

the volatility and the FTT more intricate. Such a pattern suggests that FTT makes the

returns less fat-tailed and thus eliminates black-swan events. In the following sections,

we focus more in detail on extreme events and answer the question whether the decrease

in black-swan events caused by the Tobin tax really offsets the cost of higher Gaussian
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Figure 2: Percentiles for N = 400
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.

volatility.

3.1.2 Jump statistics

In the following text, we explore the rate of price jump arrivals in greater detail as neither

momentum-based tools nor percentile analysis can properly assess the role of extreme

returns. We employ the test statistics in Equation (13) with a 95 percent confidence

interval and identify price jumps in the entire sample for each tax rate. In addition to

overall price jumps, we also study upward and downward jumps separately.

Figure 3 depicts the number of identified price jumps as a function of the tax rate. The

rate of overall, upward and downward price jump arrivals increases with an increasing tax

rate at first, and this increase reaches the maximum at 0.5 percent tax. In conclusion, in

order to decrease the number of price jumps, the tax rate in the model has to be higher

than approximately one percent. This intuition is in line with the pattern exhibited by

variance and kurtosis in Figure 1. In addition, the figures also suggest that increasing

the tax rate beyond two percent may have an adverse effect as the number of price jump
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arrivals tend to slightly increase though due to the error bars, this effect is not statistically

significant.

Figure 3: Number of jumps for N = 400
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.

3.1.3 Aggregate market data

In this part, we focus on the aggregate market data other than the price process, which

was discussed above. Namely, we analyze the amount of traded volumes as a function of

the Tobin tax as decrease in liquidity is allegedly one of the main costs of FTTs.

Figure 4 depicts the relationship between traded volumes and the tax rate. The results

clearly show that the traded volume is not a monotonic function of the tax rate but rather

is maximized around the tax rate of 0.15 percent, which corresponds to the overall tax

rate of 0.3 percent. The effect of increasing the volume after introducing a small tax

rate opposes the wide-spread market intuition of a strong negative FTT impact mainly

through an adverse effect on the traded liquidity. Our model shows, however, that such

an effect is not necessarily the case though for larger values of the tax rate, the volume

drops dramatically.

Let us turn our attention to Figure 5, where we analyze the response of the supply and

demand to the imposed tax rate. Both demand and supply are monotonically decreasing

with the tax rate. Therefore, the presence of slight concavity in the volume function with
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Figure 4: Average trading volume for N = 400

4
5

6
7

8
9

0 .5 1 1.5 2 2.5 3
Tobin tax (%)

Volume

Note: The bands represent a 95% confidence level from the Monte Carlo simulation.

a local maxima in the traded volume occurs through the price channel. Namely, the basic

intuition behind the demand and supply curve suggests that with decreasing volumes on

both sides of the market, the volume of trading would decrease as well, keeping all other

properties unchanged. However, that is not what we see, and therefore, the price process

is thus affected by the FTT in a nonlinear way. Truly, the nonlinear response of the price

process is supported by Figure 1 as discussed above.

Therefore, the effect of a small FTT on financial markets is such that it makes traders

decrease, on average, the price demanded when selling assets while being able to offer a

higher price when buying. Such an effect is purely a dynamic consequence of the model

and cannot be derived based on the foundations of the model. It clearly stresses the fact

that the interaction between agents can play a crucial role.

3.1.4 Market microstructure

To determine what exactly drives these results, we now turn our attention to the micro-

structure of our artificial market. More precisely, we focus on changes in the aggregate

behavior of the four trading groups caused by the variation in the tax rate. Figure 6

reports the average daily inventories—assets and cash—for the four groups as a function

of the Tobin tax. For random and contrarian traders, an increase in the tax rate has a
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Figure 5: The average supplied and demanded volumes for N = 400
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.

negative effect on both asset and money stocks. Trendists’ wealth and inventories exhibit

a local maximum at around 0.5 percent tax rate. Finally, fundamentalist traders benefit

from the growing Tobin tax. The amount of money and assets they hold are positively

affected by the tax rate. As fundamentalists are the only traders whose trading pushes

the price towards the fundamental value of the asset, the effect of the Tobin tax on

the price discovery process can be interpreted as positive. In conclusion, this evidence

suggests that the Tobin tax affects fundamentalists’ and other traders’ asset stocks in the

opposite way.

The effects of the tax on the price process and the rate of price jumps are directly

connected to the liquidity of the market. Figure 7 reports the daily averages of supply

and demand of the assets by the respective trader groups. Both demand and supply

exhibit similar patterns. While random traders’ quantities decrease almost linearly with

an increase in the tax rate (the same behavior we have experienced with the aggregate

demand and supply in Figure 5), the response of other trader groups is not monotonic.

Fundamentalists and trendists demand more with a higher tax rate up to approximately
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Figure 6: Inventories by traders for N = 400
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0.4 percent and then their activity decreases (although the fundamentalists’ supply and

demand start to go up again near 2 percent). The contrarians’ response to the tax,

although almost monotonically negative, is not linear. The presence of local extremum

around 0.4 percent corresponds to the maximum in the aggregate traded volume in Figure

4. Therefore, the increased amount of traded assets can be in particular assigned to the

increased activity of the fundamentalist and or trendist. On the other hand, the figure

also suggests that the contrarians have a disruptive role in the average traded amount as

they experience an inverse pattern in contrast to the two previously mentioned groups.

Figure 8 shows the results of the interaction between supply and demand. It reports

the average amount of assets sold and purchased by individual traders. The pattern of

response to the imposed Tobin tax is similar to the supply and demand for all groups ex-

cept contrarians, whose trading exhibits a hump-shaped relationship, maximized around

1.2 percent. In addition, there is a slight difference for fundamentalist traders as the

amount of sold and purchased assets seem to be saturated from around the tax rate of

two percent. Since the fundamentalists’ demand for assets is relatively less affected by

the tax (compared to random and trendist traders) and contrarian traders even increase

activity up to a certain level of the tax rate, the results show that the activity of these

two groups (seemingly) explains the decrease in the number of price jumps. This result

seems analogous to previous literature, where fundamentalists served in aa stabilizing

role in the model although this is the first time it has been shown in the context of price

jumps as opposed to Gaussian variance.

This hypothesis is supported by Figure 9 that depicts an amount of assets per trader

held by every type of trading strategy in the model as a function of the tax rate. The

intensity of the line color marks the level of the tax rate, with black being the zero rate

and lighter shades of gray signifying higher tax rates. While traders in our model cannot

choose their strategy, the relative amount of assets held by different trader groups can

still be perceived as the fitness of a given strategy. The figure clearly shows that growing

tax rates would make the fundamentalist strategy more attractive if the traders could

choose it. The other strategies tend to decrease in fitness as the Tobin tax rises, though
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Figure 7: Market order book by traders for N = 400
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Figure 8: Market activity by traders for N = 400
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the trend is not strictly monotonous, as we can see for example at the 0.5 percent tax

level and the trend follower. However, the trend follower strategy is suppressed as the

tax rate rises. In addition, for the zero tax rate, we see that the trend follower is the

strategy with the least amount of held assets. This suggests that the share of traders

with this strategy would be decreasing in a dynamic setting.

Figure 9: Assets by trader types for N = 400.

R

F

C

T 0

500500

10001000

15001500

20002000

25002500

Note: The intensity of color is a decreasing function of the tax rate (black=0%).

3.2 Market with 10,000 traders – The Size Effect

To determine the effect of the market size on the results, we now report the results of

a market simulation containing 10,000 traders. Their composition is the same as in the

previous case. This exercise further extends study on the impact the FTT has on the

financial markets towards differentiating markets of different sizes. In particular, we aim

to explicitly distinguish small and large markets.

It is clear from the following figures that there is a significant increase in the size

of non-linearities. Especially second and fourth moments in Figure 10 exhibit a more

pronounced spike at 0.5 percent than they do in the smaller market. The number of

jumps (Figure 11) exhibits a kink around 0.5 percent, and overall it goes up, rather than

down, with an increasing tax rate. The rest of characteristics show a pattern similar to

the one on the smaller market, only with more pronounced non-linearities (see Appendix
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for the rest of the figures).

Figure 10: The first four moments of the log-return distribution for N = 10, 000
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.

Figure 11: Number of jumps for N = 10, 000
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.

When we turn to Figure 12, the evolution of strategy fitness is similar to that of the

smaller market. The fitness of the fundamental strategy increases with the increasing tax

rate. This is again in line with previous literature on FTTs.

In conclusion, the size effect is present in the scope of our model. In particular, we

may conclude that the response of small and large financial markets to the introduction

of the FTT is qualitatively similar; though, the response differs in details. Large markets
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Figure 12: Assets by trader types for N = 10, 000.
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Note: The color intensity is a decreasing function of the tax rate (black=0%).

persistently show more non-linearities and therefore are more sensitive to institutional

changes.

4 Conclusion

The main goal of this paper was to open the discussion on a here-to-fore ignored relation-

ship between financial transaction taxes and price jumps. We argued that looking at the

effect of FTTs on realized variance as a measure of volatility is insufficient as it does not

convey enough information. Our point was that an increase in the variance itself does

not necessarily mean less stable markets because realized variance can be decomposed

into two parts—Gaussian variance and price jumps. As we have shown, the variance may

go up through an increase in Gaussian variance, while the contribution of price jumps

may go down, decreasing the kurtosis of the return distribution. This result seems to be

driven by different responses of individual trader types to the tax. More precisely, the

relative weight of fundamentalists in our model is an increasing function of the tax rate.

Given that there is a sizeable literature on hedging against Gaussian variance, this

result implies that such a tax may improve the efficiency of these formulae, and through

this, the functioning of the markets. Our paper thus indicates that a policy maker faces
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a trade-off between the variance of the price process and the number of price jumps when

implementing a FTT. We believe that our work opens up interesting avenues for further

research about the relationship between FTTs and price jumps relevant from both an

academic and a policy point of view.
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Appendix

Figure 13: Percentiles for N = 10, 000
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.
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Figure 14: Average trading volume for N = 10, 000
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.

Figure 15: Average supplied and demanded volumes for N = 10, 000
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.
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Figure 16: Inventories by traders for N = 10, 000
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34



Figure 17: Market order book by traders for N = 10, 000
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Note: The bands represent a 95% confidence level from the Monte Carlo simulation.
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Figure 18: Market activity by traders for N = 10, 000
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Brooks, C., Černý, A., & Miffre, J. (2011). Optimal hedging with higher moments.

Journal of Futures Markets.

De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader

risk in financial markets. Journal of Political Economy, 98 (4), 703-738.

Eichengreen, B., Tobin, J., & Wyplosz, C. (1995). Two cases for sand in the wheels of

international finance. The Economic Journal, 105 (428), 162-172.

Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business,

38 (1), 34-105.

Giot, P., Laurent, S., & Petitjean, M. (2010). Trading activity, realized volatility and

jumps. Journal of Empirical Finance, 17 (1), 168-175.

Hamilton, J. (1994). Time series analysis (Vol. 10). Cambridge University Press.
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Lavička, H., Lin, L., & Novotný, J. (2010). Employment, production and consumption

model: Patterns of phase transitions. Physica A: Statistical Mechanics and its

Applications, 389 (8), 1708 - 1720. doi: 10.1016/j.physa.2009.12.046

Lee, S., & Mykland, P. (2008). Jumps in financial markets: A new nonparametric test

and jump dynamics. Review of Financial Studies, 21 (6), 2535–2563.

Liu, S., & Zhu, Z. (2009). Transaction costs and price volatility: New evidence from the

Tokyo Stock Exchange. Journal of Financial Services Research, 36 (1), 65-83.

Mannaro, K., Marchesi, M., & Setzu, A. (2008). Using an artificial financial market for

assessing the impact of Tobin-like transaction taxes. Journal of Economic Behavior

& Organization, 67 (2), 445-462.

Mathevet, L., & Steiner, J. (2012, April). Sand in the wheels: A dynamic global-game

approach (Working Paper No. 459). CERGE-EI.

Merton, R. (1976). Option pricing when underlying stock returns are discontinuous.

Journal of Financial Economics, 3 (1-2), 125-144.

Palley, T. (1999). Speculation and Tobin taxes: Why sand in the wheels can increase

economic efficiency. Journal of Economics, 69 (2), 113-126.

Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated

38



time-series study. Journal of Financial Economics, 63 (1), 3-50.

Raberto, M., Cincotti, S., Focardi, S. M., & Marchesi, M. (2003). Traders’ long-run wealth

in an artificial financial market. Computational Economics, 22 (2), 255–272.

Shiller, R. J. (2005). Irrational exuberance. Princeton University Press.

Tobin, J. (1978). A proposal for international monetary reform. Eastern Economic

Journal, 4 (3-4), 153-159.

Umlauf, S. (1993). Transaction taxes and the behavior of the Swedish stock market.

Journal of Financial Economics, 33 (2), 227-240.

Westerhoff, F. (2003). Heterogeneous traders and the Tobin tax. Journal of Evolutionary

Economics, 13 (1), 53-70.

Westerhoff, F., & Dieci, R. (2006). The effectiveness of Keynes-Tobin transaction taxes

when heterogeneous agents can trade in different markets: A behavioral finance

approach. Journal of Economic Dynamics and Control, 30 (2), 293-322.

39



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Working Paper Series 
ISSN 1211-3298 
Registration No. (Ministry of Culture): E 19443  
 
Individual researchers, as well as the on-line and printed versions of the CERGE-EI Working 
Papers (including their dissemination) were supported from institutional support RVO 67985998 
from Economics Institute of the ASCR, v. v. i. 
 
Specific research support and/or other grants the researchers/publications benefited from are 
acknowledged at the beginning of the Paper. 
 
 
(c) Hynek Lavička, Tomáš Lichard, and Jan Novotný, 2014 
 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or 
transmitted in any form or by any means, electronic, mechanical or photocopying, recording, or 
otherwise without the prior permission of the publisher. 
 
Published by  
Charles University in Prague, Center for Economic Research and Graduate Education (CERGE)  
and  
Economics Institute of the ASCR, v. v. i. (EI) 
CERGE-EI, Politických vězňů 7, 111 21 Prague 1, tel.: +420 224 005 153, Czech Republic. 
Printed by CERGE-EI, Prague 
Subscription: CERGE-EI homepage: http://www.cerge-ei.cz 
 
Phone: + 420 224 005 153 
Email: office@cerge-ei.cz 
Web: http://www.cerge-ei.cz 
 
Editor: Marek Kapička 
 
The paper is available online at http://www.cerge-ei.cz/publications/working_papers/. 
 
ISBN 978-80-7343-315-4  (Univerzita Karlova. Centrum pro ekonomický výzkum  
a doktorské studium) 
ISBN 978-80-7344-308-5  (Akademie věd České republiky. Národohospodářský ústav) 

http://www.cerge-ei.cz/
mailto:office@cerge-ei.cz
http://www.cerge-ei.cz/
http://www.cerge-ei.cz/publications/working_papers/



	Introduction
	Modeling financial markets with transaction tax
	The agent-based model 
	Trader types
	Price clearing mechanism
	Tax collection
	The price-generating process

	Model of price process
	Financial transaction tax
	Estimating the number of price jumps

	Simulation procedure

	Results
	A market with 400 traders
	Price Behavior
	Jump statistics
	Aggregate market data
	Market microstructure

	Market with 10,000 traders – The Size Effect

	Conclusion

