
Evolution and Exploitation of Anion Relay Chemistry (ARC)

Amos B. Smith, III

Department of Chemistry and the Monell Chemical Senses Center, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA smithab@sas.upenn.edu

Anion Relay Chemistry (ARC), a robust multi-component synthetic tactic, permits rapid construction of complex natural and "natural-like" molecules for biomedical applications. By exploiting various anion-relocation strategies (i.e., [1,n]-Brook Rearrangements), the controlled, sequential assembly of architecturally diverse structures can be achieved by virtue of the latent nucleophilicity of the designed bifunctional ARC linchpins, thus comprising a reaction sequence not dissimilar to "living polymerization." Importantly, the iterative ARC protocol can be carried out in a "single flask!"

Recent integration of Anion Relay Chemistry (ARC) with the Takeda and Hiyama reactions has revealed a "new ARC dimension," namely the viability of efficient palladium-catalyzed cross-coupling reactions of aryl organolithium agents with aryl and vinyl halides, that permits near quantitative recovery of the siloxane-based transfer agent. This tactic offers a practical protocol to circumvent undesired processes, such as lithium-halogen exchange leading to homocoupling, to say nothing of the heavy metal waste streams observed in cross-coupling reactions.

Attachment of the siloxane-transfer agent to a reusable polymer has also been achieved, permitting high-yield cross-coupling reactions.