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ABSTRACT. The purpose of the present paper is to study the dynamics of the city size distribution in CEE 
and CIS transition economies, and identify the determinants of the variation of this distribution in time and 
across countries. We build a comprehensive unified database for CEE and CIS countries concerning city 
dynamics. We test the Gibrat`s law employing panel unit root tests that takes into account the presence of 
cross-sectional dependence and Nadaraya-Watson non-parametrical kernel regression. We construct a 
consensus estimate of the Pareto exponent of the city distribution using various econometric methods in 
order to investigate the fulfillment of Zipf`s law. We also test for non-Pareto behavior of the distribution 
when all the cities in a country are considered, using the Weber-Fechner law, the logarithmic hierarchy 
model, and the log-normal distribution. Not only we consider various distributions, but also study the 
“within distribution” dynamics by analyzing the individual cities relative positions and movement speeds in 
the overall distribution using a Markov chains methodology. In order to explain the differences in the city 
distributions and obtain valid statistical inference, we estimate, using cross-section dependence robust 
standard errors, a panel data fixed effects model to control for unobserved country specific determinants. 
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1 Introduction 

The demise of the socialist economic system and its subsequent restructuring has 

led to profound changes in the spatial patterns of urban economies in cities of CEE and 

CIS. The most important and visible trend of urban development during the transition 

period has been the decentralization of economic activities, a process which has played a 

major part in the transformation of the post-socialist city. The privatization of assets and 

the introduction of land rent have been the two determinant factors governing the process 
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of urban spatial readjustments within the reality of a new market-oriented social 

environment (Stanilov, 2007). 

One of the most striking regularities in the location of economic activity is how 

much of it is concentrated in cities. Understanding urbanization and economic growth 

requires understanding the variety of factors that can affect the size of cities and their 

short-term dynamics. The existence of very large cities and the wide dispersion in city 

sizes are all particularly interesting qualitative features of urban structure worldwide. A 

surprising regularity, Zipf’s law (Zipf, 1949) for cities, has itself attracted sustained 

interest by researchers over a long period of time. As early as Auerbach (1913), it was 

suggested that the city size distribution could be closely approximated by a Pareto 

distribution (power law distribution). City sizes are said to satisfy Zipf’s law if, for large 

sizes S , we have ( ) ζS
aSSizeP => , where a  is a positive constant and 1=ζ  (i.e. a 

power law distribution with unitary Pareto exponent). An approximate way of stating 

Zipf’s law is the so-called rank size rule: the second largest city is half the size of the 

largest, the third largest city a third the size of the largest, etc. Zipf’s Law can be related 

to another empirical regularity well known in urban economics. Gibrat’s Law (Gibrat, 

1931) states that the growth rate of an economic entity is independent of its initial size.  

The purpose of this paper is to study the dynamics of the city size distribution in 

CEE and CIS transition economies, and identify the determinants of the variation of this 

distribution in time and across countries. More specifically we test empirically the 

validity of Gibrat’s Law, compute a consensus estimate of the Pareto exponents of the 

city distribution for transition economies, test for non-Pareto behavior of the city size 

distribution, study the “within distribution” dynamics of individual cities in CEE and CIS 

economies using Markov chains, and identify, using cross-country data from CEE and 

CIS countries, the factors that drive the variation of the city distribution in these 

transition economies. 

Taking into consideration the current state of knowledge, we extend the existing 

literature in several directions. First, we employ a battery of parametric and non-

parametric tests for assessing the validity of Gibrat`s laws including panel unit root test 

robust to the presence of cross-sectional dependence. Second, we build a consensus 

estimate of the Pareto exponent of the city distribution in each country. Third, we will 
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test for non-Pareto behavior using a wide range of alternative parametric distributions. 

Fourth, not only we will consider various distributions, but also study the “within 

distribution” dynamics by analyzing the individual cities relative positions and movement 

speeds in the overall distribution. Fifth, we employ a fixed effects model for assessing the 

determinants of city size distribution and ensure valid statistical inference using “robust” 

standard errors for cross-sectional dependence. Finally, we will build a new unified and 

comprehensive database for CEE and CIS countries consisting in city size data, as well as 

macroeconomic and socio-economic data that could explain the variation of the city size 

distribution. 

The rest of the paper consists of five sections. In the first section we review the 

existing literature. In the following two sections we present the data employed in the 

study and we outline the methodology. In the forth section we discuss the results of our 

study and the final section concludes.   

2 Literature Review 

In the field of urban economics, Gibrat’s Law and Zip`s Law has given rise to 

numerous empirical studies. In the 1990s numerous studies began to test the validity of 

Gibrat’s Law, arriving at a consensus that it holds in the long term. Eaton and Eckstein 

(1997) concludes that considering only the 39 most populated French cities there is no 

correlation between city size and growth rate, accepting Gibrat’s Law. This result goes 

against the one obtained by Guérin-Pace (1995) when considering a wide sample of cities 

with over 2,000 inhabitants. This is no surprising contradiction since Eeckhout (2004) 

demonstrates the importance of choosing sample size in the analysis of city size 

distribution: the arbitrary choice of a truncation point can lead to skewed results. 

However, Eaton and Eckstein (1997) and Davis and Weinstein (2002) accept the Gibrat’s 

Law for Japanese cities, although they use different sample sections (40 and 303, 

respectively) and time horizons. Moreover, Davis and Weinstein (2002) argue that the 

effect of large temporary shocks (Allied bombing in the Second World War) on growth 

rates disappears completely in less than 20 years. Brakman et al. (2004), taking into 

consideration 103 German cities, concludes that bombing had a significant, but 

temporary impact on post-war city growth. Bosker et al. (2008) employs a sample of 62 
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cities in West Germany and finds evidence against Gibrat`s law for about 75% of the 

cites in the sample. Clark and Stabler (1991), using data panel methodology and unit root 

tests, accept the hypothesis of proportional urban growth for Canada. Resende (2004) 

accepts Gibrat`s law by applying the same methodology to 497 Brazilian cities. Ioannides 

and Overman (2003) accept the fulfillments of Gibrat’s Law for the case of the US, 

taking into consideration a sample of 135 MSAs (Metropolitan Statistical Area). 

However, the hypothesis is rejected by Black and Henderson (2003) using a different set 

of MSAs.  

These contradictory results may also be explained by the usage of different 

econometric methods. While Ioannides and Overman (2003) employs nonparametric 

techniques, Black and Henderson (2003) focuses mainly on panel data unit root tests. 

Eeckhout (2004) is the first study to use all the sample of cities in US, without size 

restrictions. Using both parametric and nonparametric methods, Eeckhout (2004) accepts 

Gibrat’s Law for the US. For China, Anderson and Ge (2005) obtains a mixed result with 

a sample of 149 large cities. Petrakos et al. (2000) and Soo (2007) reject Gibrat’s Law in 

Greece and Malaysia, respectively.  

Recently, a reassessment of Gibrat’s Law in the context of countries size and in 

the context of regions within a country has been carried out. González-Val and Sanso-

Navarro (2010) finds evidence of Gibrat’s Law if countries growth rates are considered. 

Giesen and Suedekum (2010) provides empiric evidence supporting the theory that 

Gibrat’s law is satisfied not only at the aggregate national level, but also at the region 

level, showing that urban growth among large cities is scale independent basically 

“everywhere” in space in Western Germany. 

A classical paper in the field of testing the validity of Zip`s Law is Rosen and 

Resnik (1980) who studied a cross section of 44 countries. They find that the Pareto 

coefficients differ across countries, ranging from 0.80 to 1.96 (e.g. Romania 1.085, 

Poland 1.127, Czechoslovakia 1.107, Hungary 1.092, USSR 1.278). Almost three-fourths 

of the countries have exponents significantly greater than unity. This indicates that 

populations in most countries are more evenly distributed than would be predicted by the 

rank-size rule. Soo (2005) updates Rosen and Resnik study using a cross-section of 73 

countries and employs more robust econometric methods.  The tests performed reject 
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Zipf’s Law far more often than one would expect based on random chance. Also, the 

claim that Zipf’s Law holds for urban agglomerations (Rosen and Resnick, 1980) is 

strongly rejected in favour of the alternative that agglomerations are more uneven in size 

than would be predicted by Zipf’s Law. Roehner (1995) analyzes several countries, Eaton 

and Eckstein (1997) the cases of France and Japan, Brakman et al. (1999) the 

Netherlands, and Ioannides and Overman (2008) employs nonparametric procedures to 

study in detail the case of the United States.  

These studies usually find the Pareto exponent for the US close to unity, but 

higher for most other countries. Several probabilistic and economic models have been 

proposed to account for this evidence. Among the most prominent probabilistic models 

are the ones by Gabaix (1999a, 1999b), and Cordoba (2008a, 2008b). Gabaix establishes 

that Gibrat’s law can lead to Zipf’s distributions if the number of cities is constant, but if 

new cities emerge only the upper tail is Zipf distributed. Cordoba (2008a) finds that a 

generalized Gibrat’s law process, one that allows the variance, but not the mean of the 

city growth process to depend on city size, can account for Pareto exponents different 

from one even if the number of cities is constant. Cordoba (2008b) focuses on the more 

general case of an arbitrary exponent and derives conditions that standard urban models 

must satisfy in order to generate a balanced growth path and a Pareto distribution for the 

cities sizes.   

There is an apparent contradiction in these studies, as they normally accept the 

fulfillment of Gibrat’s Law but at the same time affirm that the distribution followed by 

city size is a Pareto distribution, very different to the lognormal (as implied by a process 

obeying Gibrat’s Law). Eeckhout (2004) was able to reconcile both results, by 

demonstrating that imposing size restrictions on the cities (i.e. taking only the upper tail) 

skews the analysis. Thus, if all cities are taken, it can be found that the true distribution is 

lognormal, and that the growth of these cities is independent of size. Gonzalez-Val et al. 

(2008) confirm this result using the complete distribution of cities in US, Spain and Italy. 

In contrast to the success of the probabilistic approach, most of the economic models 

have failed to match the evidence. Krugman (1996) points out that none of the existing 

economic models can explain the data. Recently, Rossi-Hansberg and Wright (2007) 

construct a stochastic urban model along the lines of the deterministic model of Black 
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and Henderson (1999). Like Black and Henderson, they are able to produce proportional 

growth, and Zipf distributions only under particular restricting conditions. Numerical 

simulations confirm that large cities in their model are too small compared with the 

predictions of a Zipf distribution, suggesting a Pareto exponent different from unity, or 

the possibility that the distribution is non-Pareto as suggested by Parr and Suzuki (1973) 

and Eeckhout (2004).  

While obtaining the value for the Pareto exponent for different countries is 

interesting in itself, there is also of great importance to investigate the factors that may 

influence the value of the exponent, for such a relationship may point to interesting 

economic and policy-related issues.  The Pareto exponent can be viewed as a measure of 

inequality: the larger the value of the Pareto exponent, the more even is the populations 

of cities in the urban system. There are many potential explanations for this variation. 

One of them relies on economic geography models (i.e. Krugman, 1991), models that can 

be interpreted as models of unevenness in the distribution of economic activity. The key 

parameters of these models are the degree of increasing returns to scale, transport costs, 

size of industrial sectors, and size of external trade. There will be a more uneven 

distribution of city sizes (smaller Pareto exponent), the greater are scale economies, the 

lower the transport costs, the smaller the share of manufacturing in the economy, and the 

lower the share of international trade in the economy. Rosen and Resnick (1980), find 

that the Pareto exponent is positively related to per capita GNP, total population and 

railroad density, but negatively related to land area. Mills and Becker (1986), in their 

study of the urban system in India, find that the Pareto exponent is positively related to 

total population and the percentage of workers in manufacturing. Alperovich (1993) 

cross-country study finds that it is positively related to per capita GNP, population 

density, and land area, and negatively related to the government share of GDP, and the 

share of manufacturing value added in GDP. This study also finds that Pareto exponent 

first decreases and then increases with per capita GNP when the country goes through 

different phases of development. There may also be political factors that could influence 

the size distribution of cities. Ades and Glaeser (1995) argue that political stability and 

the extent of dictatorship are key factors that influence the concentration of population in 

the capital city. They conclude that political instability or a dictatorship should imply a 
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more uneven distribution of city sizes. Soo (2005) finds that political variables have more 

explanatory power of the variation than economic variables. All the four variables in 

Rosen and Resnick (1980) plus the size of non-agricultural sectors, the size of 

international trade, and the degree of scale economy either are insignificant or enter with 

opposite sign to what theoretical models would predict. The investigation also finds that 

the size of government expenditure is positively related to Pareto exponent, which 

contradicts Alperovich (1993). Jiang et al. (2008) empirically explores the relationship 

between city size distribution and economic growth, based on a panel data analysis using 

China provincial data from 1984 to 2005 capturing the idea that government intervention 

on labor migration distorts city size distribution. Also, improvements in information and 

communication technologies (ICT) may lead to changes in urban structure, for example, 

because they reduce the costs of communicating ideas from a distance. In a recent paper, 

Ioannides et al. (2008) examines the effects of ICT on urban structure and find robust 

evidence that increases in the number of telephone lines per capita and the number of 

internet users encourage the spatial dispersion of population in that they lead to a more 

concentrated distribution of city sizes. They develop a model predicting that 

macroeconomic volatility influences the city distribution, but they find no empirical 

support.   

3 Data 

The analysis in this paper in based on a new, unified and comprehensive database 

for CEE and CIS countries consisting in city size data, as well as macroeconomic and 

socio-economic data that could explain the variation of the city size distribution. In this 

section we describe the data collected so far that is in different stages of processing.  

It is obvious that studying the dynamics of the city distribution gives more precise 

results if one employs a larger sample of cities, towns and villages. However, there is a 

trade-off between the size of the sample and the frequency of the data in that sample. 

Therefore, we have built two data sets. The first one consists on data, with annual 

frequency, on cities over 100,000 inhabitants. The second one is focused on detailed city 

size data, but with the time spans and the frequencies different for each of the country.      
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Regarding the cities over 100,000 inhabitants for the time span 1970 - 2007, the 

main source of the data is the annual United Nations Demographic Yearbooks (UNDY). 

The main difficulty consisted in reconstructing the data backwards, before 1989, on cities 

in the Former USSR countries since they are reported under USSR. The situation is 

similar for some of the CEE countries, such as the countries in the Former Yugoslavia, or 

the Czech Republic and Slovakia. To ensure that the database has a reduced number of 

missing observations we have collected data no mater the methodology employed in 

UNDY in different years (i.e. CDJC - census de jure, complete tabulation; ESDF - 

estimates, de facto; ESDJ - estimates, de jure). The number of cities over 100,000 in the 

CEE-CIS region is reported in Table 3.1. 

        Table 3.1. Number of cities over100,000 inhabitants in CEE-CIS countries for 1970 - 2007 

      average min max 
1 Albania CEE 1.00 1 1 
2 Armenia CIS 2.92 2 3 
3 Azerbaijan CIS 3 3 3 
4 Belarus CIS 11.71 9 15 
5 Bosnia and Herzegovina CEE 3.95 1 7 
6 Bulgaria CEE 7.95 4 10 
7 Croatia CEE 3.71 3 4 
8 Czech Republic CEE 6.03 4 8 
9 Estonia CEE 1.79 1 2 
10 Georgia CIS 4.55 4 5 
11 Hungary CEE 8.24 6 9 
12 Kazakhstan CIS 18.14 15 20 
13 Kyrgyz Republic CIS 2 2 2 
14 Latvia CEE 2.16 2 3 
15 Lithuania CEE 4.39 3 5 
16 Macedonia, FYR CEE 1.03 1 2 
17 Moldova CIS 3.13 2 4 
18 Poland CEE 37.08 23 43 
19 Romania CEE 21.03 13 26 
20 Russian Federation CIS 149.68 124 179 
21 Serbia CEE 8.03 2 21 
22 Slovak Republic CEE 2.00 2 2 
23 Slovenia CEE 1.63 1 2 
24 Tajikistan CIS 1.89 1 2 
25 Turkmenistan CIS 2.14 1 3 
26 Ukraine CIS 44.50 39 51 
27 Uzbekistan CIS 13.4 8  17  

The data on cities over 100,000 inhabitants is employed for analyzing the validity 

of Gibrat Law and for estimating the Pareto coefficient of the city size distribution. 
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Regarding the detailed city data, the main source are the national official 

statistical information services of CEE and CIS countries. Table 3.2 presents the detailed 

data we have acquired so far and that is in various stages of processing. 

Table 3.2. Detailed of city data for CEE-CIS countries 

    Period Level of detail 
1 Armenia  1989, 2002, 2008  all cities 
2 Azerbaijan  1979, 1989, 2002, 2010  all cities 
3 Belarus 1989-2009 all cities 
4 Georgia 1989, 2002, 2009  all cities 
5 Hungary   1970, 1980, 1990, 2001 all cities and villages 

  

1870, 1880, 1890, 1900, 1910, 1920, 
1930, 1940, 1950, 1960, 1970, 1980, 
1990, 2000 all cities  

6 Kyrgyz Republic 1989, 1999  all cities 
7 Latvia  1990 - 2009  all cities 
8 Poland  2004 - 2009  all cites 
9 Romania  1991, 2002   all cities and villages 
10 Russian Federation 1996 - 2004 all cities 
11 Serbia  1991, 2002  all cities 
12 Slovenia  1981, 1991, 2002 all cities   
13 Tajikistan  1989, 1999, 2006 all cities 
14 Turkmenistan  1989, 1995, 2006  all cities 
15 Ukraine 1989, 2001 2008   all major cities 
16 Uzbekistan  1991, 2002, 2006  all cities 

 

The detailed city data is employed for analyzing the validity of Gibrat Law, for 

estimating different parametric repartition functions for the city size distribution, and for 

analyzing the “within distribution” city dynamics using Markov chains. 

Macroeconomic and socio-economic cross-country data is employed in order to 

determine the factors that influences of city size distribution. The main sources of data 

for this database are World Bank World Development Indicators, Penn World Table, IMF 

International Financial Statistics, International Road Federation World Road Statistics, 

OECD Telecommunications and Internet Statistics, OECD International Regulation 

Database, and national official statistical information services of CEE and CIS countries. 



 10

4 Methodology 

4.1 Testing the validity of Gibrat’s Law 

The Gibrat`s law hypothesis is tested by employing both parametric and 

nonparametric methods. The simplest parametric test consists in estimating the following 

growth equation:   

 itititit SSS εβα ++=− −− 11 lnlnln  (1) 

where itS denotes the size of city i  at the time t . Gibrat`s law holds if 0=β  (i.e. 

growth is independent of the initial size). To ensure validity of the statistical results one 

must adjust the standard errors of the coefficient estimates for possible dependence in the 

residuals. The results of these regressions are usually heteroskedastic (Gonzalez-Val et 

al., 2008), so it is suggested in the literature to compute the standard errors using White 

Heteroskedasticity-Consistent Covariance Matrix Estimator (White, 1980). However, 

another question to be tackled is the presence of cross-sectional dependence in panel data 

on city sizes. The cross-sectional dependence is tested using the Pesaran (2004) test, 

which does not depend on any particular spatial weight matrix when the cross-sectional 

dimension is large. In this paper, to account for the effect of potential cross-correlated 

residuals, Driscoll and Kraay (1998) standard errors are employed, Driscoll and Kraay 

(1998) modifies the standard Newey and West (1987) covariance matrix estimator such 

that it is robust to very general forms of cross-sectional as well as temporal dependences. 

Moreover, it is suitable for use with both, balanced and unbalanced panels (Hoechle, 

2007). 

Clark and Stabler (1991) pointed out that testing for Gibrat’s Law is equivalent to 

testing for the presence of a unit root. This idea has also been emphasized by Gabaix and 

Ioannides (2004). If the null hypothesis that the city population time series has a unit root 

is rejected, the null hypothesis that its size evolves according to Gibrat’s Law is also 

rejected. Panel data unit root tests have been proposed as alternative, more powerful tests 

than those based on individual time series unit roots tests. The panel unit root approach to 

investigate the validity of Gibrat`s Law has been pioneered by Clark and Stabler (1991) 

and has already been applied by Davis and Weinstein (2002), Resende (2004), Henderson 

and Wang (2007), Soo (2007) and Bosker et al. (2008).  
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Also, when exploring the existence of unit roots in panel data, it is important to 

take into account the presence of cross-sectional dependence. Most of these studies 

employed conventional (i.e. first generation) unit root tests that assume cross-sectional 

independence. The first generation test proposed by Levin, Lin and Chu (2002) is 

applicable for homogeneous panels where the coefficients for unit roots are assumed to 

be the same across cross-sections. Im, Pesaran and Shin (2003) allows for heterogeneous 

panels and proposes panel unit root tests which are based on the average of the individual 

ADF unit root tests computed from each time series. The null hypothesis is that each 

individual time series contains a unit root, while the alternative allows for some but not 

all of the individual series to have unit roots. However, the correct application of these 

techniques depends crucially on the assumption that individual time series are cross-

sectional independent. This might be a restrictive assumption when using city size panel 

data. Conventional panel unit root tests, such as Levin, Lin and Chu (2002) and Im, 

Pesaran and Shin (2003), could lead to significant size distortions in the presence of 

neglected cross-section dependence and, generally, to over-rejection of the null 

hypothesis. 

Much of the recent research on non-stationary panel data has focused on the 

problem of cross-sectional dependence. Second generation panel unit root tests that take 

into account the potential cross-section dependence in the data have been developed; see 

the recent survey by Breitung and Pesaran (2008). A number of panel unit root tests that 

allow for cross section dependence have been proposed in the literature that use 

orthogonalization type procedures to asymptotically eliminate the cross dependence of 

the series before standard panel unit root tests are applied to the transformed series (Bai 

and Ng, 2004; Moon and Perron, 2004). On the other hand, Pesaran (2007) suggests a 

simple way of accounting for cross-sectional dependence. This method is based on 

augmenting the usual ADF regression with the lagged cross-sectional mean and its first 

difference to capture the cross-sectional dependence that arises through a single-factor 

model. The proposed test has the advantage of being simple and intuitive. It is also valid 

for panels where the cross-sample dimension (N) and the time dimension (T) are of the 

same orders of magnitudes. The Monte Carlo simulations employed by Pesaran (2007) 
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suggests that the panel unit root tests have satisfactory size and power even for relatively 

small values of N and T (i.e. 10<N<200 and 10<T<200).  

The present study makes use of a battery of first and second generation panel unit 

root tests. More specifically we employ the first generation Levin, Lin and Chu (2002) 

and Im, Pesaran and Shin (2003) tests, and the second generation Pesaran (2007) test. 

In order to increase the robustness of the results, nonparametric tests are also 

implemented. As suggested by Ioannides and Overman (2003) and Eeckhout (2004) for 

the non-parametrical analysis of Gibrat’s law it is better to use normalized city growth 

rates (i.e. from growth rate of city i in year t the mean is subtracted and the result divided 

by the standard deviation of the growth rates). The widely employed Nadaraya-Watson 

kernel regression technique (Nadaraya, 1964, 1965; Watson 1964; Hardle, 1992) 

establishes a functional form-free relationship between population growth and country 

size for the entire distribution. It consists of taking the following specification: 

 ( ) iii smg ε+=  (2) 

where ig  stands for the normalized growth of city i, and is  is the logarithm of its 

size. Therefore, instead of assuming a linear relationship between these two variables, as 

in equation (1), ( )⋅m  is estimated as a local average, using a kernel function ( )⋅K : 
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where n  is the sample size, and h  the kernel bandwidth. 

Starting from the estimated mean, ( )⋅NWm , the variance of the growth rate can also 

be computed using the corresponding Nadaraya-Watson estimator: 
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Under the null of urban growth independent of initial size one would expect that 

all cities, regardless of their size, have mean normalized growth rate equal to zero and 

variance equal to one. These hypotheses are tested by constructing bootstrapped 95-
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percent confidence bands, calculated from 500 random samples with replacement, as 

suggested by González-Val and Sanso-Navarro (2010).  

The nonparametric techniques employed in this paper allows computing a variety 

of nonparametric and semi-parametric kernel-based estimators appropriate for a mix of 

continuous, discrete, and categorical data (Hayfield and Racine, 2008). This kind of non-

parametric technique is convenient because it allows identifying the influence of discrete 

variables accounting for possible structural breaks. The basic idea underlying the 

treatment of kernel methods in the presence of a mix of categorical and continuous data 

lies in the use of generalized product kernels. Li and Racine (2003) proposed the use of 

these generalized product kernels for unconditional density estimation and developed the 

underlying theory for a data-driven method of bandwidth selection for this class of 

estimators. The use of such kernels offers a seamless framework for kernel methods with 

mixed data. Further details on a range of kernel methods that employ this approach can 

be found in Li and Racine (2007). When all the variables are continuous, these methods 

collapse to the familiar Nadaraya-Watson nonparametric regression estimators. 

The default Gaussian kernel is employed since the specific form of the local 

averaging function does not have a major impact on the results.  On the other hand, 

bandwidth selection is a key aspect of sound nonparametric kernel regression estimators. 

The basic approach in the related urban literature (Eckhout, 2004) is to compute the 

bandwidth according to the “rule of thumb” proposed by Silverman (1986) based on 

inter-quartile range. In the present study, the bandwidth is selected using a data-driven 

method, more specifically, the Kullback - Leibler cross-validated bandwidth selection, 

using the method of Hurvich et al. (1998). 

4.2 Estimating the Pareto exponent of the city size distribution 

The most communally used parametric estimation procedure of the Pareto 

exponent is the so called Zipf regression, i.e. regressing the logarithm of the rank of a city 

on the logarithm of its size. One potentially serious problem with the Zipf regression is 

that it is biased in small samples. Gabaix and Ioannides (2004) show, using Monte Carlo 

simulations, that the coefficient of the Zipf regression is biased downward for sample 

sizes in the range that is usually considered for city size distributions and that OLS 
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standard errors are grossly underestimated. Therefore, in this paper we employ a 

consensus estimate (Graybill and Deal, 1959) of the Pareto exponent using two 

alternative econometric methods. The consensus estimate will be weighted with the 

inverse of the standard errors of the estimates from the two methods. The first method 

(Gabaix and Ibragimov, 2009) consists in a modified Zipf regression: 

 ( ) titit SaR εζ +−=⎟
⎠
⎞

⎜
⎝
⎛ − ln

2
1ln  (5) 

where iR  is the rank of city i in year t. Gabaix and Ibragimov (2009) argue that 

the shift of 0.5 is optimal, and reduces the bias to a leading order. They show that the 

standard error on the Pareto exponent ζ  is not the OLS standard error, but is 

asymptotically ( ) ζ2
1

2
n . 

The second method, developed in Gabaix and Ioannides (2004) and also 

employed by Soo (2005) consists in calculating the value of the Pareto exponent using 

the Hill estimator: 
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Under the null hypothesis of the power law, the Hill estimator is the maximum 

likelihood estimator, and it is therefore asymptotically efficient. 

4.3 Testing for non-Pareto behavior of the city size distribution 

First, as suggested by Rosen and Resnick (1980) we will test for non-Pareto 

behavior by include higher order terms of the logarithm of city size in the Zipf 

regression:  

 ( ) ( ) ( ) ( ) titititit ScSbSaR εζ +++−= 32 lnlnlnln  (7) 

and test the statistical significance of their coefficients. However, we must be 

cautious of the results, since Gabaix and Ioannides (2004) show that, even if the actual 

data exhibit no nonlinear behavior, OLS regression of (7) will yield a statistically 

significant coefficient for the quadratic term 78% of the time in a sample of 50 

observations.  
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Estimation of parameters in the OLS regression (5) of the logarithm of shifted 

rank of the cities on the logarithm of their size will be conducted for 20, 10 and 5 

percentage tails of the sample of all cities of the country. This will further allow us to 

determine the smallest critical quantity of population for cities in different countries 

considered, where Zipf’s Law begins to hold. 

We will also consider the non-Pareto behavior of the city size distribution using 

alternative parametric models such as the Weber-Fechner Law, whose parameters can be 

estimated by using the regression: 

 ( ) titit RS εγβ +−=ln  (8) 

where the coefficient γ  is the so called Weber’s constant, which shows how the 

size changes with the change in the rank. In case of the Weber-Fechner law, the rank of 

the city changes in arithmetic progression with the change of the size of the city in 

geometric progression, while in case of the Zipf’s law both rank and the size of the city 

change in arithmetic progression.  

In general, Zipf’s law does not hold for small cities (with the size below a cut-

off). Therefore, we expect that the Weber-Fechner law would better describe the whole 

sample of all cities and other populated areas in a certain country. It should also be noted 

that in terms of statistical characteristics one natural extension of the Weber-Fechner law 

is a logarithmic hierarchy model: 

 iiii NNNNci 4433221 lnlnlnlnln αααα ++++=  (9) 

where ykln  denotes the kth iteration of logarithm (i.e. yy
k

k 43421
ln...lnlnln = , k≥1). 

The authors will further focus on other distributional alternatives, including the 

log-normal distribution that was used in several studies to describe the distribution of all 

cities in a country (Eeckhout, 2004; Gonzalez-Val et al., 2008). Using several distribution 

goodness-of-fit tests (e.g. Kolmogorov-Smirnov, Anderson-Darling) we will determine 

the optimal distributional models for the analyzed city size data.  

4.4 Studying the “within distribution” city dynamics 

Zipf’s and other distribution laws allow the characterization of the evolution of 

the global distribution, but they do not provide any information about the movements of 
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the towns within this distribution. A possible way to answer these questions is to track the 

evolution of each city’s relative size over time by estimating transition probability 

matrices associated with discrete Markov chains. This line of analysis has first been 

pursued by Eaton and Eckstein (1997) and then by Black and Henderson (2003).  

We assume that the frequency of the distribution follows a first-order stationary 

Markov process. In this case, the evolution of the city size distribution is represented by a 

transition probability matrix, M, in which each element (i, j) indicates the probability that 

a city that was in class i at time t ends up in class j in the following period. The way of 

cities’ division on classes will be chosen by considering the performance of the test for 

Markovity of order one. Then each element ijp  of the transition matrix is estimated as a 

conditional probability ( ( 1) | ( ))ij j ip P A t A t= + , where ( )iA t  is the event that “city is in a 

state i at time t ”. In other words we find shares of cities remained in each size class at the 

end of the period and moved up or down by the end of the period. Denoting by 

( )1 2( ) ( ) ( )t kF p t p t p t= K  the vector of probabilities that a city is in class i at time t 

, the dynamics of this vector is given by: 

 1
1 0

n
n nF F M F M +
+ = =  (10) 

Next, we determine the ergodic distribution that can be interpreted as the long-run 

equilibrium city-size distribution. Explicitly, given that the transition matrix M is regular, 

then nM  tends to a limiting matrix *M  when n  tends to infinity (Kemeny and Snell, 

1960). Therefore, with the passage of time, the distribution of cities will not change any 

more and will converge to the ergodic or limit distribution. Concentration of the 

frequencies in a certain class would imply convergence (if it is the middle class, it would 

be convergence to the mean), while concentration of the frequencies in some of the 

classes, that is, a multimodal limit distribution, may be interpreted as a tendency towards 

stratification into different convergence clubs. Finally, a dispersion of this distribution 

amongst all classes is interpreted as divergence. 

We also determine the speed of the movement of a city within the distribution, 

using the mean first passage time matrix PM , that can be easily constructed for the 

transition matrix M  (Kemeny and Snell, 1976). The (i,j) element of the matrix PM  

indicates the expected time for a city to move from class i to class j for the first time. 
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Thus, using Markov chains we can perform a more complete analysis of movement speed 

and form of convergence within the city size distribution. 

4.5 Identifying the factors that drive the variation of the city distribution 

We follow Rosen and Resnick (1980) and Soo (2005), but we also exploit the 

panel structure of the data to control for unobserved country specific determinants of 

differences in the city size distribution. Thus, we estimate a fixed effects model (Baltagi, 

2005; Hsiao, 2003): 

 itittiit X εβαμζ +++=  (11) 

where itζ  is the consensus estimate of the Pareto exponent for the country i at 

time t, iμ  is a country specific constant, tα  is a time specific constant, and itX  a 

collection of explanatory variables that are supposed to determine the city size 

distribution: economic geography variables, political variables, ICT variables, socio-

economic variables. 

As described in the literature review section, the results concerning the direction 

and the amplitude of the factors that influences the distribution are quite contradictory. 

These mixed results may be due to inappropriate estimation methods. Soo (2005) 

suggests that using an estimated coefficient as a dependent variable in a regression, might 

lead to inefficient estimates of the regression coefficients due to induced 

heteroskedasticity. As it is well known (e.g. Wooldridge, 2001), if the residuals are not 

spherical the significance tests computed using OLS standard errors are not valid and, 

therefore, the inference based on this tests can be misleading. To ensure validity of the 

statistical results one must adjust the standard errors of the coefficient estimates for 

possible dependence in the residuals. However, according to Petersen (2007) a substantial 

fraction of published articles in leading journals fail to adjust the standard errors when 

using panel data models. Although most studies provide standard error estimates that are 

consistent when heteroscedasticity and autocorrelation is present, cross-sectional 

dependence is still largely ignored. Parks (1967) and Kmenta (1986) proposed a feasible 

generalized least squares (FGLS) based algorithm to account both for heteroscedasticity 

as well as for temporal and spatial dependence in the residuals of panel data models, 

However, Beck and Katz (1995) pointed out that the Parks-Kmenta method tends to 
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produce unacceptably small standard error estimates, and they introduced the method of 

panel corrected standard errors (PCSE). Soo (2005) in his cross-country study on city size 

distributions advocates the use OLS coefficient estimates with panel corrected standard 

errors. Nevertheless, Driscoll and Kraay (1998) and Hoechle (2007) points out that the 

finite sample properties of the PCSE estimator are rather poor when the panel’s cross-

sectional dimension N is large compared to the time dimension T. Driscoll and Kraay 

(1998) demonstrate that this problem can be solved by modifying the standard Newey 

and West (1987) covariance matrix estimator such that it is robust to very general forms 

of cross-sectional as well as temporal dependences. Moreover, it is suitable for use with 

both, balanced and unbalanced panels. In this paper we employ Driscoll-Kraay standard 

errors in order to ensure valid statistical inference  

Following Ioannides et al. (2008), in order to ensure the robustness of the results, 

we intent to employ other measures of urban concentration as dependent variable in 

equation (11): the coefficient of variation, the Gini index, and the normalized Herfindahl 

concentration index. These measures, that are computed using the consensus estimate of 

the Pareto exponent, reflect different aspects of dispersion. 

5 Results 

5.1 Results concerning Gibrat Law 

In this section Gibrat`s law is investigated using two datasets of cites from 

transition economies. The first dataset consists in detailed city size data from Poland, 

Belarus and Latvia for the period 2000-2009. More specifically, in the case of Poland the 

largest 200 cities are considered, in Belarus the largest 50 cities, and in Latvia the largest 

30 cities. The main source of the detailed data is the national official statistical 

information services of the respective countries. The second dataset is focused on data for 

the period 1970 – 2007 on cities over 100,000 inhabitants from twelve transition 

economies, namely Russia, Ukraine, Poland, Romania, Belarus, Bulgaria, Hungary, 

Czech Republic, Slovak Republic, Estonia, Latvia and Lithuania. 
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Five of the countries are pooled into two groups, since there is a relatively low cross-

section dimension when analyzed separately. The first group consists of the Baltic States 

(Estonia, Latvia, Lithuania), the second one of the countries from the Former 

Czechoslovakia (Czech Republic, Slovak Republic). The average number of cities over 

100,000 inhabitants for the remaining units is as follows: Russian Federation 152, 

Ukraine 45, Poland 37, Romania 21, Belarus 12, Bulgaria 8, Hungary 8, Former 

Czechoslovakia 8, and Baltic States 8. 

Table A.5.1.1 in the Appendix describes the dataset, presenting the number of 

observations, the time and cross-section dimensions of the panel, the average, standard 

deviation, minimum and maximum city size. 

5.1.1 Gibrat`s law for detailed city data 
 
In this subsection the analysis is conducted on the dataset containing detailed city 

size data in Poland, Belarus and Latvia for the period 2000 – 2009. Pooling observations 

and using panel data methods is a necessary strategy to increase the reliability of the 

estimates when the observed period is relatively short (Banerjee, 1999). First, the growth 

equation (1) was estimated using both pooled data and a fixed effects panel model. The 

results of these estimations are presented in the first two lines of Table 5.1.1. In the urban 

literature, to test the significance of the parameters, White (1982) standard errors are 

generally employed since they are robust to heteroskedastic innovations. However, in this 

case, the estimated regression residuals of the fixed effects model are cross-sectionally 

dependent, as is clearly noticeable in the third line from Table 5.1.1. The pair-wise cross-

section correlations coefficients of the residuals are not zero, since the average absolute 

correlation between the residuals of two cities is 0.318 in Poland, 0.39 in Belarus, and 

0.341 in Latvia. Also, Pesaran (2004) cross-sectional dependence test rejects the null 

hypothesis of spatial independence on any standard level of significance. Therefore, this 

finding indicates that it is advisable to test for significance using Driscoll and Kraay 

(1998) standard errors, since they are robust to very general forms of cross sectional and 

temporal dependence. 
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Table  5.1.1. Results for detailed city data in Poland, Belarus and Latvia 
Poland Belarus Latvia

ln(Size) -0.0011 0.0029 0.0006
pooled [0.0001] [0.0004] [0.0003]

(0.0000) (0.0000) (0.0550)
ln(Size) -0.0063 -0.0827 -0.1423
fixed effects [0.0076] [0.0475] [0.0770]

(0.4030) (0.0880) (0.0750)
ACSC 0.3180 0.3900 0.3410
PCS 34.6650 24.2510 7.6140

(0.0000) (0.0000) (0.0000)
HWH 25.0400 27.7400 9.1400

(0.0000) (0.0000) (0.0053)
URLLC -0.0026 -0.6400 -3.2343

(0.4989) (0.2610) (0.0006)
URIPS 10.8370 4.5420 1.4160

(1.0000) (1.0000) (0.9220)
URPCS -0.0060 -0.6400 -0.3220

(0.4980) (0.2610) (0.3740)

Driscoll - Kraay  robust standard errors are reported in squared parentheses; p-values are 
reported in round parentheses; ACSC  is the average absolute value of the off-diagonal 
elements of the correlation matrix of the regression residuals;  PCS is the Pesaran (2004) 
cross-section independence test; HWH is the modified Hausman (1978) test; URLLC, 
URIPS, URPCS are Levin et al  (2002),  Im et al (2003) and Pesaran (2007) panel unit 
root tests; the transformed t statistics are reported for the unit root tests

 
 

The estimates of the pooled model provide strong evidence for the rejection of 

Gibrat`s law in Poland and Belarus. The evidence in the case of Latvia is less clear since 

the null hypothesis that the parameter connecting the growth rate and the size of a city is 

zero can be rejected at a level of significance of 5%, but not at a level of significance of 

1%. These findings are consistent with the results of the non-parametric estimations, 

presented in Figure A.5.1.1 in the Appendix. This is no coincidence, since the non-

parametric technique is an alternative estimation method of the pooled model.   

However, one has to be careful when pooling the data since this can invalidate the 

analysis. For example, if the true model is fixed effects, the pooled OLS yields biased and 

inconsistent estimates of the regression parameters (Baltagi, 2005). In order to test for the 

presence of cross-section specific fixed effects, it is common to perform a Hausman 

(1978) test. In this paper, the null hypothesis of no fixed effects is tested using a version 

of the Hausman (1978) test proposed by Wooldridge (2001) and Hoechle (2007). Since 

this version of the test is robust to very general forms of spatial and temporal dependence 
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it should be suitable for the case of city size panel data. The results of the tests are 

presented in the fourth line of Table 5.1.1.  They provide strong evidence in the favor of 

the fixed effects model because the null of no fixed effects is rejected at any usual level 

of significance. The estimates from the fixed effects model provide contrary evidence to 

that indicated by the pooled data model. As it turns out, when accounting for city specific 

effects, the null hypothesis of cities growing independent of their size can not be rejected 

at the level of 5% for any of the three countries.   

Next, the panel structure of the city population data is further exploited in order to 

test for a unit root. Although only 10 observations over time are available, the use of a 

panel unit root test with a relatively large cross-section dimension is likely to alleviate the 

small-sample bias of a usual ADF unit root test. Black and Henderson (2003) also 

employs 10 time observation (decade by decade) in their study on urban evolution in the 

USA. Following Clark and Stabler (1991) only a constant has been included as the 

deterministic term. The results for the first generation Levin, Lin and Chu (2002) and Im, 

Pesaran and Shin (2003) tests, and the second generation Pesaran (2007) test are reported 

in the last three lines of Table 5.1.1.  

Although, the first generation tests are used for completeness, more weight is 

given to the test of Pesaran (2007) since it allows investigating the presence of a unit root 

taking into account cross-sectional dependence, which is the case of the analyzed sample. 

Moreover, the test is robust to size distortions caused by the potential presence of serially 

correlated errors. As one can easily notice, the test can not reject the null of a unit root at 

any usual level of significance, therefore, providing support for the acceptance of 

Gibrat`s law in all the three countries. 

However, it has to be stressed that, since specific city effects are taken into 

account, the deterministic component (the expected growth rate) is different across cities. 

Therefore, although the coefficient that quantifies the influence of the size on growth is 

zero, a consistent difference in the expected growth rate between “small” cities and 

“large” cities might indicate that Gibrat`s law does not hold. This could be the case of 

Belarus, because the non-parametric analysis indicates that there are differences between 

the behavior of small cities, medium cities and large cities.  
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To investigate further, the cities in Belarus are grouped in three categories, 

respectively the “large” cities group consisting of the largest 8 cities, the “medium” group 

comprising the next largest 27 cities, and the “small” group with the last 15 cities. The 

grouping was done such that the modified Hausman (1978) test indicates that for each of 

the group a pooled model is adequate. There is a significant difference between the 

average growth rates of the cities in these groups, with an average annual growth of 

0.49% for the first group, -0.15% for the second group, and -0.46% for the small cities 

group. Therefore, a growth regression was estimated for each of the group, and another 

one for the entire sample but controlling for group specific characteristics. The results are 

reported in Table A.5.1.2 in the Appendix. It seems that for the large cities group there is 

a significant dependence of growth on size. Moreover, after the dummy variables 

controlling for different groups are accounted for, the coefficient quantifying the 

dependence of the size of the city on its growth rate is statistically significant at 5%. This 

finding proves the validity of intuitive doubts as to proportionality of growth in Belarus 

where the intentionally designed redistribution measures are evident. 

Overall, in the period 2000-2009 there is very strong evidence that Gibrat`s law 

holds for Latvia and strong evidence that in is valid in Poland. However, it seems that, at 

least in the short run, there is a divergence pattern in the case of Belarus. A longer time 

span is necessity for a deeper investigation of the long run dynamics of city growth.   

 

5.1.2  Gibrat`s law for cities over 100,000 inhabitants  

 

In this subsection the analysis turns to cities over 100,000 inhabitants in the 

period 1970 – 2007. There are twelve countries in the sample, but, after pooling some of 

them as described above, nine units remain, respectively Russia, Ukraine, Poland, 

Romania, Belarus, Bulgaria, Hungary, Former Czechoslovakia, and Baltic States.  

A major problem with this dataset is the existence of missing observations. 

Although, data were collected irrespective of the methodology employed in the UNDY in 

different years, Hungary is the only country in the sample that has all the 38 observations 

over time. In the Baltic States there are 32 time observations, in Bulgaria 28, in Belarus 
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and Poland 27, in Romania 26, in Former Czechoslovakia 25, in Russia 24, and in 

Ukraine only 17. Moreover, since growth rates are needed in our analysis, the problem of 

missing data is further amplified since the growth rate can not be computed if consecutive 

year data is not available. When estimating the growth regression using pooled data or 

the fixed effects model, an assumption had to be made in order to alleviate this problem 

of missing growth rates. More specifically, if city sizes data is missing in year t, but not 

in year t-1, the growth rate of a city for the period t/t-1 is, however, computed by 

assuming to be equal to the annual average growth rate between year t and the year with 

the next available city sizes data. This is a reasonable assumption since it does not 

introduce new city data by interpolation. It uses only the original city size data, but it 

computes the growth rates with different formulas depending on the situation.  

First, the growth equation (1) was estimated using both pooled data and a fixed 

effects panel model. To capture the influence of the breakdown of the communist regime 

the sample is also divided in two subsamples, respectively 1970-1989 and 1990-2007. 

The results are reported in Table 5.1.2. The null of no fixed effects can not be rejected at 

the level of significance of 1% for any of the countries. Although, the results of the fixed 

effects model are reported for completeness, more weight should be, therefore, given to 

the pooled model in this case.  To ensure that the panels are balanced some of the cities 

with sparse observations were drooped. Therefore, the number of analyzed cities is 108 

for Russia, 31 for Ukraine, 23 for Poland, 13 for Romania, 9 for Belarus, and 6 for 

Bulgaria, Hungary, Former Czechoslovakia and the Baltic States.  The average absolute 

value of the off-diagonal elements of the correlation matrix of the regression residuals 

varies from 31.7% for Poland to 72.6% for Romania. Also, the null hypothesis of cross-

sectional independence is rejected for all the countries, implying the necessity of using 

Driscoll and Kraay (1998) standard errors to correct for cross sectional dependence. 

The results of the pooled regression indicates that, in the post-communist period, 

Gibrat`s law is valid in all of the countries, with some doubts in the case of Hungary. 

When all the sample is considered the evidence for accepting Gibrat`s law is less clear in 

Russia, Ukraine, Poland, and Romania. These findings are largely confirmed by the 

results of the non-parametrical regressions that are provided in Table A.5.1.2 in the 

Appendix. However, these results indicate that there is strong support for the law of 
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proportional effect in the case of Russia and Ukraine, when the entire sample is 

considered.  

   

Table  5.1.2.. Growth regressions results for cities over 100,000 inhabitants for the period 1970-2007 
Pooled regression HWH Fixed effects regression ACSC PCS

estim. std. err. p-value estim. std. err. p-value statistic p-value
Russia all sample -0.0060 0.0027 0.0265 5.7100 -0.2052 0.0655 0.0022 0.3800 100.58 0.0000

before 1989 -0.0036 0.0010 0.0003 (0.0186) -0.1499 0.0633 0.0196 0.6350 135.03 0.0000
after 1989 -0.0065 0.0044 0.1418  -0.4061 0.0591 0.0000 0.4910 38.66 0.0000

Ukraine all sample -0.0094 0.0039 0.0231 6.3300 -0.1645 0.0563 0.0065 0.5050 41.63 0.0000
before 1989 -0.0046 0.0020 0.0269 (0.0175) -0.0715 0.0080 0.0000 0.3680 9.91 0.0000
after 1989 -0.0114 0.0078 0.1560  -0.3873 0.0524 0.0000 0.6920 41.56 0.0000

Poland all sample -0.0031 0.0015 0.0443 4.4200 -0.0859 0.0239 0.0016 0.3170 23.14 0.0000
before 1989 -0.0042 0.0014 0.0085 (0.0472) -0.0676 0.0288 0.0282 0.2620 11.35 0.0000
after 1989 0.0008 0.0019 0.6617  -0.1881 0.1236 0.1423 0.5280 15.65 0.0000

Romania all sample -0.0065 0.0023 0.0146 8.0600 -0.0741 0.0249 0.0117 0.7260 21.27 0.0000
before 1989 -0.0048 0.0017 0.0176 (0.0149) -0.0241 0.0234 0.3242 0.7990 26.39 0.0000
after 1989 0.0013 0.0008 0.1614  -0.0924 0.0426 0.0510 0.7490 33.06 0.0000

Belarus all sample -0.0053 0.0034 0.1524 2.8500 -0.1516 0.0867 0.1186 0.5500 16.42 0.0000
before 1989 -0.0101 0.0067 0.1695 (0.1299) -0.2295 0.1360 0.1300 0.7660 12.84 0.0000
after 1989 -0.0001 0.0018 0.9644  -0.4539 0.1107 0.0034 0.4370 8.55 0.0000

Bulgaria all sample -0.0016 0.0026 0.5666 0.6500 -0.0635 0.0174 0.0148 0.3450 5.77 0.0000
before 1989 -0.0015 0.0032 0.6482 (0.4576) -0.0470 0.0099 0.0051 0.3830 4.59 0.0000
after 1989 0.0013 0.0037 0.7402  -0.2676 0.0599 0.0066 0.4050 2.04 0.0416

Hungary all sample -0.0046 0.0018 0.0515 5.7800 -0.1440 0.0433 0.0209 0.5300 12.10 0.0000
before 1989 -0.0052 0.0029 0.1403 (0.0613) -0.1994 0.0339 0.0020 0.2730 3.23 0.0012
after 1989 -0.0040 0.0014 0.0353  -0.0859 0.0764 0.3121 0.7070 11.62 0.0000

Fr.  Czechosl. all sample -0.0040 0.0021 0.1214 3.0200 -0.0874 0.0289 0.0293 0.6580 12.49 0.0000
before 1989 -0.0068 0.0021 0.0234 (0.1430) -0.0540 0.0347 0.1803 0.6430 8.63 0.0000
after 1989 0.0010 0.0009 0.3523  -0.0909 0.0537 0.1514 0.5350 7.18 0.0000

Baltic States all sample -0.0030 0.0014 0.0888 5.2600 -0.0953 0.0188 0.0039 0.6240 13.46 0.0000
before 1989 -0.0014 0.0011 0.2796 (0.0703) -0.0508 0.0047 0.0001 0.2050 2.51 0.0122
after 1989 -0.0021 0.0016 0.2510 -0.0359 0.0253 0.2162 0.3500 4.41 0.0000

std. err. are Driscoll - Kraay  robust standard errors; ACSC  is the average absolute value of the off-diagonal elements of the 
correlation matrix of the regression residuals of the fixed effects model;  PCS is the Pesaran (2004) cross-section independence test;  
HWH is the modified Hausman (1978) test for the case when all the sample is considered;  p-values are reported in round parentheses.

 

Next, the analysis turns to investigating the presence of a unit root taking into 

consideration the panel structure of the data. When using classical panel data techniques, 

the growth rates and the city sizes can be looked at as two different inputs and the 

procedure for filling some of the missing growth rates described above is employed. 

However, an even major problem arises when the unit root tests are considered. In this 

case, the input consists only in the city size data. Testing for a unit root in a time series 

with missing observations has received little attention in the econometric literature. Shin 

and Sarkar (1996) tested for a unit root in a AR(1) time-series using irregularly observed 

data and obtain the limiting distributions associated with the case where the gaps are 
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ignored (i.e. the series are closed), and with the case where the gaps are replaced with the 

last available observation. They show that replacing the gaps with the last observation, or 

simply ignoring the gaps, does not alter the usual asymptotic results associated with DF 

statistics. Shin and Sarkar (1996) also investigated the finite sample properties of the two 

alternatives of dealing with missing observations in the case of an “A-B sampling 

scheme”, where A is the number of available observations and B is the number of 

missing observations. Their simulation results show that the unit root test performs 

relatively well in small samples. Shin and Sarkar (1994) investigated a unit root test for 

an ARIMA(0,1,q) model with irregularly observed sample and prove to have the same 

asymptotic distribution as the DF statistics for the complete data situation. Some 

simulation results for the ARIMA(0,1,1) model show that the sizes of the tests for A-B = 

6-1, 5-2 and 4-3 were similar to those for the case where there are no missing 

observations (i.e. A-B=7-0).  

When dealing with time series data with missing observations, the other most 

common technique besides ignoring the gaps, and replacing the gaps with the last 

available observation, consists in filling the gaps with a linear interpolation method. It 

could be argued that instead of using the last available observation to fill these gaps, a 

linear interpolation between the known observations could provide a “smoother” 

alternative of dealing with gaps. However, the distributional implications of such a 

procedure require careful consideration, even in large samples. Giles (1999) extended the 

results of Shin and Sarkar (1996) and investigated the behavior of unit root tests when a 

linear interpolation method for dealing with the gaps in the data is employed. They prove 

that the limiting distribution includes an adjustment factor which results in critical values 

that are less negative than for the usual DF statistic. Giles (1999) also investigated the 

finite sample properties of the three alternatives for dealing with missing data. The 

findings obtained by Giles (1999) within a simulation experiment framework indicate 

that the unit root tests are more powerful when gaps are ignored, as compared with the 

other two alternatives of filling missing data. Following Giles (1999), when testing for a 

unit root in the case of cities over 100,000 inhabitants, the gaps are ignored. The results 

are reported in Table 5.1.3. 
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Table 5.1.3. Unit root tests results for cities over 100,000 inhabitants for the period 1970-2007 
URLLC URIPS URPCS

statistic pvalue statistic pvalue statistic p-value statistic bkp.
Russia all sample -10.5586 0.0000 -6.5340 0.0000 2.3070 0.9890 Russia 

before 1989 -27.8783 0.0000 -10.7660 0.0000 -0.9860 0.1620 average -3.8670 1999
after 1989 -12.1703 0.0000 -4.9730 0.0000 -6.6840 0.0000 max -4.5920 2002

Ukraine all sample -2.5530 0.0053 0.9990 0.8410 1.0150 0.8450 Ukraine 
before 1989 - - - - - - average -4.1640 1993
after 1989 - - - - - - max -6.0970*** 1985

Poland all sample -4.0467 0.0000 -1.6410 0.0500 -1.3670 0.0860 Poland 
before 1989 -4.6524 0.0000 -0.6220 0.2670 -0.7110 0.2390 average -4.2310 1987
after 1989 -5.9089 0.0000 0.1470 0.5580 0.0350 0.5140 max -3.5700 1990

Romania all sample -3.9243 0.0000 -2.2200 0.0130 -2.7190 0.0030 Romania 
before 1989 -1.1504 0.1250 1.5330 0.9370 -2.0380 0.0210 average -3.2650 1981
after 1989 0.1505 0.5598 -0.8680 0.1930 1.3510 0.9120 max -1.9660 1995

Belarus all sample -4.5845 0.0000 -3.5480 0.0000 -0.8670 0.1930 Belarus 
before 1989 -4.0950 0.0000 -0.3580 0.3600 -2.0620 0.0200 average -5.5840*** 1989
after 1989 -2.2261 0.0130 -0.0920 0.4630 1.0640 0.8560 max -34.1120*** 1999

Bulgaria all sample -0.8885 0.1871 -0.4400 0.3300 -1.0940 0.1370 Bulgaria 
before 1989 -0.6097 0.2710 0.5820 0.7200 -1.0400 0.1490 average -3.8340 1984
after 1989 2.8549 0.9978 3.1260 0.9990 -0.6410 0.2610 max -4.5170 1978

Hungary all sample -2.6283 0.0043 -5.2390 0.0000 -2.9440 0.0020 Hungary 
before 1989 -6.7794 0.0000 -6.0500 0.0000 -3.5510 0.0000 average -4.7470 1978
after 1989 -2.2863 0.0111 -1.4060 0.0800 -0.7280 0.2330 max -4.2150 1994

Fr.  Czechosl. all sample -6.1552 0.0000 -4.6060 0.0000 -0.9050 0.1830 Fr.  Czechosl
before 1989 -1.7602 0.0392 0.8580 0.8040 -0.2510 0.4010 average -3.1240 1985
after 1989 -2.8482 0.0022 -0.4750 0.3180 -1.0010 0.1580 max -2.0380 1997

Baltic States all sample -1.2091 0.1133 1.0560 0.8540 1.1210 0.8690 Baltic States
before 1989 -0.4943 0.3105 0.9690 0.8340 -1.2810 0.1000 average -4.2770 1982
after 1989 -4.5589 0.0000 -2.0140 0.0220 0.6400 0.7390 max -2.8640 1993

ZA

URLLC is the Levin et al  (2002) panel unit root test; URIPS is the Im et al (2003) panel unit root test; URPCS is the Pesaran (2007) 
panel unit root test; the transformed t statistics are reported for the panel unit root tests; ZA is the Zivot and Andrews (1992) unit toot 
test wit structural breaks, bkp. indicates the year a breakpoint was detected ; *,** and *** denotes statistical significance at 10%, 5% 
and 1% level .

 

Again, in order to ensure a balanced panel, the analysis focuses on 108 cities in 

Russia, 31 in Ukraine, 23 in Poland, 13 in Romania, 9 in Belarus, and 6 for Bulgaria, 

Hungary, Former Czechoslovakia and the Baltic States. The unit root tests are not 

conducted unless at least 10 time observations are available, which is the case of Ukraine 

when the sample is split in the two sub-periods. When the tests indicate contradictory 

results, the priority is given to Pesaran (2007) test since it is robust to cross-sectional 

dependence. The results confirm, in general, the findings of the growth regressions. More 

specifically, the unit root tests indicate that, after 1989, the Gibrat`s law is valid in all the 

countries except Russia.  

There is one major caveat of the regressions and of the unit root tests analyzed so 

far. That is the existence, after 1989, of a potential change in the deterministic component 
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of the growth rates of the cities in the former communist block, at which the analysis is 

focused on in the next subsection.  

 

5.1.3 Accounting for a potential structural break in 1989  

 

First, the effect of a potential break on the previous results on the unit roots test is 

investigated. Regarding unit root tests, Perron (1989) pointed out that failure to account 

for an existing break leads to a bias resulting in an under-rejection of the unit root null 

hypothesis. To overcome this problem, Perron (1989) proposed allowing for an 

exogenous structural break in the standard ADF tests. Following this breakthrough, 

several authors including, Zivot and Andrews (1992) and Perron (1997) proposed 

determining the break point endogenously from the data. To account for a possible break 

in the series, a Zivot and Andrews (1992) unit root test was conducted. For each country, 

the largest city and a hypothetical city with the size equal to the average city size in the 

respective country were investigated. The last column in Table 5.1.3 reports the results. 

Zivot and Andrews (1992) structural break test is a sequential test which employs the full 

sample and a different dummy variable for each possible break date. The break date is 

selected at the time where the t-statistic of the ADF test is at a minimum, therefore, where 

the evidence is least favorable for the unit root hypothesis. Even accounting for a 

potential break, the hypothesis of a unit root, in the case of the “average” city, could not 

be rejected for any of the countries, except Belarus.  This finding provides strong 

evidence in favor of Gibrat`s law. 

When estimating the growth regressions in the previous subsection, the sample 

was split in two sub-periods to account for a possible change in the fulfillment of Gibrat`s 

law. However, it could be argued that splitting the data into subsets may lead to a loss in 

efficiency due to the reduction in the sample size. Therefore, another alternative to 

control for a potential change in the deterministic component of the growth rates of the 

cities is also employed. More specifically, a dummy variable, taking the value zero before 

1989 and the value one afterwards, is introduced in the growth regressions. The results 

are reported in Table 5.1.4. 
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Table 5.1.4. Structural breaks in the growth regressions for cities over 100,000 inhabitants for the period 1970-

2007 

Russia Ukraine Poland Romania Belarus Bulgaria Hungary Fr.  Czechosl. Baltic States
ln(Size) -0.0054 -0.0078 -0.0023 -0.0016 -0.0034 0.0002 -0.0045 -0.0031 -0.0017

[0.0027] [0.0038] [0.0014] [0.0012] [0.0029] [0.0023] [0.0018] [0.0018] [0.0009]
(0.0491) (0.0473) (0.1109) (0.2316) (0.2764) (0.9261) (0.0548) (0.1460) (0.1294)

postcom -0.0156 -0.0256 -0.0156 -0.0302 -0.0167 -0.0210 -0.0218 -0.0152 -0.0269
[0.0035] [0.0084] [0.0030] [0.0078] [0.0096] [0.0042] [0.0051] [0.0037] [0.0028]
(0.0000) (0.0047) (0.0000) (0.0022) (0.1190) (0.0040) (0.0079) (0.0096) (0.0002)

Russia Ukraine Poland Romania Belarus Bulgaria Hungary Fr.  Czechosl. Baltic States
ln(Size) -0.2144 -0.1549 -0.0683 -0.0296 -0.2122 -0.0332 -0.1378 -0.0631 -0.0424

[0.0708] [0.0605] [0.0236] [0.0206] [0.1217] [0.0199] [0.0336] [0.0276] [0.0074]
(0.0031) (0.0157) (0.0084) (0.1760) (0.1193) (0.1552) (0.0093) (0.0707) (0.0023)

postcom 0.0063 -0.0057 -0.0100 -0.0232 0.0347 -0.0152 -0.0206 -0.0096 -0.0234
[0.0092] [0.0090] [0.0018] [0.0072] [0.0235] [0.0051] [0.0037] [0.0024] [0.0021]
(0.4962) (0.5324) (0.0000) (0.0073) (0.1785) (0.0307) (0.0024) (0.0097) (0.0001)

ACSC 0.3850 0.5010 0.2230 0.7930 0.5470 0.3280 0.3590 0.6080 0.3240
PCS 102.1650 40.8250 13.1820 34.9980 15.8190 5.2890 8.1830 11.5450 6.1380

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Pooled regression

Fixed effects regression

postcom is a dummy variable taking the value zero before 1989 and the value one aftewards; Driscoll - Kraay  robust standard errors are reported in 
squared parentheses; p-values are reported in round parentheses; ACSC  is the average absolute value of the off-diagonal elements of the correlation 
matrix of the regression residuals of the fixed effects model;  PCS is the Pesaran (2004) cross-section independence test

 

The estimates of the pooled data model, which, as argued in the previous 

subsection, is given priority over the fixed effects model, indicate that the coefficients of 

the variable accounting for a change in the deterministic component are significantly 

different from zero in all the countries, except Belarus. As already mentioned, the non-

parametric techniques employed in this paper (Li and Racine 2003; Hayfield and Racine, 

2008) are appropriate for a mix of continuous and discrete data. This is convenient 

because it allows investigating, by means of non-parametric regression, whether the 

influence of discrete variables accounting for potential structural breaks is significant.  

The graphs in Figure 5.1.1 depict the impact on city growth rates of the dummy 

variable accounting for a structural break in 1989. As it is standard in non-parametric 

analysis, to capture the sole influence of one variable (in this case the dummy), the other 

variable (in this case the relative city size) is held at the median value. The 95% 

distribution free (bootstrapped) error bounds, computed using 500 random samples with 

replacement, are also depicted. The results confirm the findings of the parametric analysis 

with a shift in the deterministic component detected in all the countries except Belarus. 
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Figure 5.1.1. The non-parametrical estimates of the potential shift in the deterministic component of 

growth rates  
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After the influence of the change in the deterministic component is accounted for, 

the null hypothesis of the validity of Gibrat`s law can not be rejected at any standard level 

of significance for six of the analyzed countries or groups of countries, respectively 

Poland, Romania, Belarus, Bulgaria, Former Czechoslovakia, and the Baltic States. For 

Hungary can not be rejected at 5%, and for Russia and Ukraine cannot be rejected at 1%.  

 

5.1.4  Gibrat`s law using five years averages  

 

Another caveat of the analysis using yearly data on cities over 100,000 inhabitants 

is given by the existence of missing data in some of the years in the time span. As argued 

in the previous subsections, the treatment of missing data in this study is reasonable and 

the consistency of econometric methods assured. However, in order to check the 

robustness of the results, in this subsection the analysis is also conducted using five years 
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averages. For the last period, 2005-2007, only three years are available and, therefore, 

three years averages are employed. 

 

Table 5.1.5. Growth regressions results for cities over 100,000 inhabitants using five years averages  
for the period 1970-2007 

Pooled regression Pooled regression with dummy
all sample before 1989 after 1989 all sample

Russia ln(Size) -0.0023 -0.0020 -0.0006 ln(Size) -0.0012 postcom -0.0175
[0.0008] [0.0003] [0.0004] [0.0005] [0.0034]
(0.0034) (0.0000) (0.1618) (0.0097) (0.0000)

Ukraine ln(Size) -0.0072 -0.0057 -0.0050 ln(Size) -0.0053 postcom -0.0212
[0.0019] [0.0010] [0.0023] [0.0013] [0.0047]
(0.0004) (0.0000) (0.0387) (0.0002) (0.0001)

Poland ln(Size) -0.0032 -0.0058 0.0013 ln(Size) -0.0019 postcom -0.0166
[0.0025] [0.0011] [0.0013] [0.0022] [0.0041]
(0.2127) (0.0000) (0.3107) (0.3946) (0.0005)

Romania ln(Size) -0.0087 -0.0090 0.0010 ln(Size) -0.0036 postcom -0.0314
[0.0041] [0.0008] [0.0008] [0.0026] [0.0087]
(0.0536) (0.0000) (0.2599) (0.1817) (0.0029)

Belarus ln(Size) -0.0032 0.0000 0.0026 ln(Size) 0.0015 postcom -0.0287
[0.0018] [0.0031] [0.0015] [0.0010] [0.0031]
(0.1159) (0.9969) (0.1282) (0.1467) (0.0000)

Bulgaria ln(Size) -0.0001 0.0001 0.0019 ln(Size) 0.0021 postcom -0.0159
[0.0013] [0.0011] [0.0034] [0.0018] [0.0037]
(0.9265) (0.9256) (0.5956) (0.2939) (0.0049)

Hungary ln(Size) -0.0002 -0.0035 0.0006 ln(Size) -0.0008 postcom -0.0133
[0.0008] [0.0008] [0.0002] [0.0010] [0.0036]
(0.8148) (0.0088) (0.0242) (0.4320) (0.0099)

Fr.  Czechosl. ln(Size) -0.0039 -0.0068 0.0005 ln(Size) -0.0028 postcom -0.0148
[0.0023] [0.0011] [0.0005] [0.0020] [0.0039]
(0.1525) (0.0017) (0.3546) (0.2157) (0.0125)

Baltic States ln(Size) -0.0028 -0.0011 -0.0014 ln(Size) -0.0013 postcom -0.0218
[0.0008] [0.0004] [0.0014] [0.0008] [0.0040]
(0.0121) (0.0389) (0.3406) (0.1426) (0.0015)

postcom is a dummy variable taking the value zero before 1989 and the value one afterwards; Driscoll - 
Kraay  robust standard errors are reported in squared parentheses; p-values are reported in round parentheses.

 

To ensure that the panels are balanced some of the cities with missing 

observations were drooped. Therefore, the number of analyzed cities is 130 for Russia, 37 

for Ukraine, 25 for Poland, 15 for Romania, 9 for Belarus, 7 for Bulgaria, Hungary and 

the Baltic States, and 6 for Former Czechoslovakia. Because the time dimension is too 

low (8 periods) to use panel unit root tests, only growth regression are estimated using 
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pooled data. The results quantifying the influence of the five year average size on the 

annualized growth rate are reported in Table 5.1.5.  

The results of the pooled regression indicates that, in the post-communist period, 

Gibrat`s law is valid in all of the countries, with less evidence in the case of Ukraine and 

Hungary. When all the sample is considered Gibrat`s law is rejected in Russia and 

Ukraine. However, this is contrary to the findings of the non-parametrical regressions, 

reported in Figure A.5.1.3 in the Appendix, that indicate the acceptance of the 

proportional effect law in Russia and Ukraine in all of the three subsamples.  

Also in the case of using five years averages, the estimates from the parametric 

method, as well as the results of the non-parametric method (Figure A.5.1.4 in the 

Appendix), indicate that the dummy variable accounting for a change in the deterministic 

component has a significant influence in all the countries. After accounting for the shift 

in the deterministic component, the null hypothesis of the validity of Gibrat`s law can not 

be rejected at any standard level of significance for seven of the analyzed countries or 

groups of countries, respectively Poland, Romania, Belarus, Hungary, Bulgaria, Former 

Czechoslovakia, and the Baltic States. On the other hand, there is strong evidence against 

Gibrat`s law in the case of Russia and Ukraine. 

 

5.2 Results concerning the Pareto exponent of the city size distribution 

 

In this section, we estimate the Pareto exponent of the city size distribution for the 

case of CEE and CIS transition economies using data for cities over 100,000 inhabitants. 

In this version of the paper we employed city data on 15 countries, respectively Belarus, 

Bulgaria, Poland, Romania, Russian Federation, Ukraine, Estonia, Latvia, Lithuania, 

Bosnia and Herzegovina, Croatia, Macedonia, Serbia, Slovenia, Czech Republic, and 

Slovak Republic. As one can easily observe from Table 3.1 in some countries the sample 

size for cities over 100,000 is insufficient for estimating the Pareto coefficient. Therefore, 

in order to be able to perform the estimation, these counties were pooled into three 

groups. The first group consists of the Baltic States (Estonia, Latvia, Lithuania), the 

second one of the countries from the Former Yugoslavia (Bosnia and Herzegovina, 
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Croatia, Macedonia, Serbia, Slovenia), and the last one of the countries from the Former 

Czechoslovakia (Czech Republic, Slovak Republic). Using the grouping procedure we 

estimated for each year between 1970 and 2007 the Pareto coefficient as described in 

section 4.2 for the remaining 10 units. The average sample sizes cities over 100,000 

inhabitants for these units are as follows: Russian Federation 150, Ukraine 45, Poland 37, 

Romania 21, Former Yugoslavia 18, Belarus 12, Baltic States 8, Hungary 8, Former 

Czechoslovakia 8, and Bulgaria 8. The full results of the two estimating techniques are 

presented in Table A.5.2.1 in the Appendix. Table 5.2.1 summarizes the results, by 

presenting the average value over 1970-2007 of the two series of estimates, the standard 

deviation, the minimum and the maximum value over the period. 

 
Table 5.2.1. Regression and MLE estimates for the Pareto coefficient 

 Regression estimates MLE estimates 
  Average Std. dev Min Max Average Std. dev Min Max 
Russian Federation 1.2600 0.0480 1.1360 1.3250 1.0080 0.1700 0.3790 1.1110 
Ukraine  1.1980 0.0290 1.1650 1.2440 0.9810 0.0420 0.8680 1.0320 
Poland  1.4320 0.0230 1.3410 1.4560 1.3240 0.0730 1.1700 1.4040 
Romania  1.4050 0.0560 1.2750 1.4760 1.4710 0.1780 1.2080 2.0660 
Former Yugoslavia 1.3310 0.0790 1.2540 1.5880 1.5230 0.1310 1.2430 1.7740 
Belarus  1.2450 0.0910 1.1510 1.3990 1.2790 0.1320 1.1040 1.4790 
Baltic States  1.0990 0.0270 1.0620 1.1440 1.1640 0.1010 0.9880 1.4010 
Hungary  0.8940 0.0730 0.7430 0.9740 1.5360 0.1510 1.2330 1.7800 
Former Czechoslovakia 1.1080 0.0550 1.0510 1.2350 1.1710 0.1770 0.9090 1.4330 
Bulgaria  1.1640 0.1020 0.7600 1.2510 1.4270 0.1040 1.2290 1.5500 

 

 

For all the countries in the dataset the regression technique give more stable 

estimates, since the standard deviation of the regression estimates series is lower than the 

one of the MLE estimates. Figure 5.2.1 depicts the estimated Pareto exponents, using 

MLE, and their corresponding 95% confidence bands. The similar results for the 

regression estimates are depicted in Figure A.5.2.1 in the Appendix. The dynamics of the 

difference between the two estimates series is presented in Figure A.5.2.2 in the 

Appendix.  
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Table 5.2.1.  The dynamics of the MLE estimate of the Pareto exponent  
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For the large majority of countries and time periods the estimated coefficient is 

higher than one. However, as it is easily observable from Figure 5.2.1, one can not reject 

that the Pareto exponent is significantly different from one, and therefore it seems that the 

Zipf Law holds. This is in line with other studies in the literature that obtained favorable 

evidence of Zipf’s Law in the upper-tail distribution of cities. On the other hand, we have 

to be skeptical of the results since we employed asymptotic standard errors and the 

sample sizes for some of the countries are rather reduced. The analysis can be improved 

by computing standard errors using bootstrapping techniques, which are expected to 

provide more robust results. Also, it is essential to obtain better standard errors since they 

are employed in quantifying the consensus estimate of the Pareto exponent.  

In the next section we employ detailed data to determine the distribution of city 

size using different concurrent parametric models.  Levy (2009) points out that, while the 

lognormal distribution fits the empirical data extremely well for 99.4 percent of the size 

range, as argued by Eeckhout (2004), in the top 0.6 percent range of the largest cities, the 

size distribution diverges dramatically and systematically from the lognormal 

distribution, and instead is much better described by a power law. Also, as pointed out by 

Eeckhout (2009), a log-normal distribution of the tails does not mean that a Pareto fit 

does not exist. 

5.3 Results concerning the non-Pareto behavior of the city size distribution 

In this section of the paper we present wide-scale comparisons of the estimates of 

city size distribution obtained using power laws, the Weber-Fechner Law, and the 

logarithmic hierarchy model as described in section 4.3.  
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We consider the development of cities in Kazakhstan, Uzbekistan, Kyrgyzstan, 

Tajikistan and Turkmenistan that represent the so-called Central Asia region of the CIS 1.  

Armenia, Azerbaijan and Georgia representing the so-called CIS Caucasus. 

Since Zipf's Law with α≈1 holds only for the tails of distributions of cities that 

include only large cities plus one or more mega-cities which contrast sharply in size to 

the other cities, we will examine the occurrence of the Weber-Fechner Law in relation to 

the size of cities and their rank. While Zipf's Law corresponds to a log-log relationship 

between the ranks of large cities and their sizes  

SizecRank loglog α−=  

with the regression coefficient α equal to 1,  the Weber-Fechner Law  has the form  

RankSize ⋅−= γβlog . 

That is, in the case of the Weber-Fechner law, the rank of the city changes in 

arithmetic progression with the change of the size of the city in geometric progression. In 

this context one of our research objectives is to compare Weber’s constants γ for the 

distribution of cities in different countries. Such comparisons will be further used to 

describe the differences of urbanization processes in different countries and the impact of 

administrative measures aimed at restricting the size of the capitals and large cities in 

post-Soviet countries like Russia, Belarus, Central Asian countries and Caucasus 

countries. This analysis is essential for any attempts to forecast the development of 

urbanization in different countries. 

While  Zipf's Law is inherent to the communities, the Weber-Fechner Law is 

typical for living organisms. The Weber-Fechner Law says: «The perception will grow in 

arithmetic progression, when stimuli grow in geometric progression». This Law was 

published in G. Fehner’s book “Elements of Psychophysics” in 1859. The Law was 

discovered in the early 19th century by E. Weber a German physiologist and psychologist. 

He studied in detail the link between perception and stimuli when he determined how to 

                                                 
1 At the summit of Central Asian states held in 1992, the President of Kazakhstan  Nursultan Nazarbayev 
proposed  to give up the term "Central Asia and Kazakhstan" in favor of the concept of "Central Asia" that 
covers all post-Soviet states in the region. 
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change a stimulus for this change to be noticed by a person. It turned out that a ratio of 

stimulus change (intense) to its initial value is constant: 

k
I
I
=

Δ , 

where I is the stimulus measure, ∆I  is the stimulus change/intense, and k is Weber’s 

constant. 

Let i=1, …, n, be the rank of cities and towns in consideration. Let us interpret the 

rank of cities/towns as a measure of perception that changes on an arithmetic progression 

with a step (a difference) equal to 1. Let us also interpret the size of a city/town Ni (the 

number of inhabitants) as the measure of a stimulus, since ranking has been made 

according to this parameter. Denote by ∆Ni = Ni − Ni-1 , i=2,…, n, the change in the 

stimulus. Let us suppose that  

k
N
N

i

i =
Δ

=const. 

Changing ∆Ni by differential dNi, we have 

kNd
N

dN
i

i

i == ln =const. 

Solving the above differential equation, we obtain 

ln Ni =c+k·i, 

where c and k are some constants. Hence, 

Ni =Aqi, 

where A=ec, q=ek. In the sequel we will interpret q as the denominator of 

geometric progression, that corresponds to the change in the “stimulus” Ni  . 

 

5.3.1. Zipf's Law 

The following are the estimation results for the log-log rank-size regression with 

the optimal shift 1/2 for Russia, Belarus, Central Asian and Caucasus cities. That is, the 

estimated regression is  

ln(i-1/2)= a - ζ⋅ln Ni, 
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where  are the ordered city sizes in the samples considered 

and i denotes the rank of i-th city.  

Russia 

Based on the number of urban dwellers in Rusia in 1897-2009, we estimated 

regression coefficients ln(i-1/2)= a - ζ⋅lnNi, where Ni - size city (population size), i - rank 

of the cities. The results are presented in Table A.5.3.1 in the Appendix. 

 

Figure 5.3.1. Russian cities in 1897-2009 (the log-log scale) 

 

 

Table 5.3.1. 95% confidence interval for coefficient ζ·of largest cities in Russia (with the 
population above  100 thousand people) 

Years Sample 
size n 

Estimated 
coefficient 

ζ· 

Standard error 
of the 

estimation.2 

95% confidence interval 
for the coefficient ζ· 

1897 8 0.82414 0.41207 (0.016, 1.632) 
1926 20 1.11359 0.352148 (0.423, 1.804) 
1939 51 1.27545 0.252577 (0.780, 1.771) 
1959 66 1.3038 0.226962 (0.859, 1.749) 
1970 75 1.29735 0.211856 (0.882, 1.713) 
1979 138 1.26617 0.152429 (0.967, 1.565) 
1989 151 1.23767 0.14244 (0.958, 1.517) 

                                                 
2 Standard error of coefficient ζ is calculated according to the formula ζ

n
2

. 
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2002 159 1.22786 0.13771 (0.958, 1.498) 
2003 159 1.22668 0.137578 (0.957, 1.496) 
2004 159 1.22984 0.137932 (0.959, 1.500) 
2005 163 1.23317 0.136598 (0.965, 1.501) 
2006 163 1.23459 0.136755 (0.967, 1.503) 
2007 163 1.23494 0.136794 (0.967, 1.503) 
2008 163 1.23463 0.13676 (0.967, 1.503) 
2009 164 1.23284 0.136144 (0.966, 1.500) 

 

According to the estimation results in Table 5.3.1, the confidence intervals for all 

the samples considered contain the threshold value ζ=1 that corresponds to the Zipf's law. 

Conclusion: Zipf's Law holds for the cities of the Russia. 

 

Belarus 

Based on the number of urban dwellers in Belarus in 1970-2009, we estimated 

regression coefficients. The results are presented in Table 5.3.2. 

 

Table 5.3.2. 95% confidence interval for coefficient ζ·of cities in Belarus 

Years Sample 
size 

Truncation, 
% n 

Estimated 
coefficient 

ζ· 

Standard error 
of the estimation 

S.e.= ζ
)

n
2  

95% 
confidence 
interval for 

ζ· 

1970 198 20 41 1.038122 0.229 (0.589, 1.488)
10 21 0.879841 0.272 (0.348, 1.412)

1979 200 20 41 1.056392 0.233 (0.599, 1.514)
10 21 0.882730 0.272 (0.349, 1.417)

1989 202 20 41 1.050578 0.232 (0.596, 1.505)
10 21 0.872941 0.269 (0.345, 1.401)

1990 202 20 41 1.044586 0.231 (0.592, 1.497)
10 21 0.870052 0.269 (0.344, 1.396)

1991 202 20 41 1.036595 0.229 (0.588, 1.485)
10 21 0.858082 0.265 (0.339, 1.377)

1992 202 20 41 1.040826 0.230 (0.590, 1.491)
10 21 0.865029 0.267 (0.342, 1.388)

1993 202 20 41 1.037825 0.229 (0.589, 1.487)
10 21 0.861267 0.266 (0.340, 1.382)

1994 202 20 41 1.033694 0.228 (0.586, 1.481)
10 21 0.856657 0.264 (0.338, 1.375)
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1995 202 20 41 1.031961 0.228 (0.585, 1.479)
10 21 0.852876 0.263 (0.337, 1.369)

1997 203 20 41 1.022432 0.226 (0.580, 1.465)
10 21 0.852783 0.263 (0.337, 1.369)

1998 205 20 41 1.036009 0.229 (0.588, 1.484)
10 21 0.855515 0.264 (0.338, 1.373)

1999 205 20 41 1.034578 0.229 (0.587, 1.482)
10 21 0.844820 0.261 (0.334, 1.356)

2000 205 20 41 1.034670 0.229 (0.587, 1.483)
10 21 0.845432 0.261 (0.334, 1.357)

2001 207 20 41 1.035923 0.229 (0.587, 1.484)
10 21 0.848378 0.262 (0.335, 1.362)

2002 207 20 41 1.038229 0.229 (0.589, 1.488)
10 21 0.851213 0.263 (0.336, 1.366)

2003 206 20 41 1.041158 0.230 (0.590, 1.492)
10 21 0.854345 0.264 (0.338, 1.371)

2004 206 20 41 1.044055 0.231 (0.592, 1.496)
10 21 0.857012 0.264 (0.339, 1.375)

2005 206 20 41 1.047367 0.231 (0.594, 1.501)
10 21 0.861484 0.266 (0.340, 1.383)

2006 206 20 41 1.049916 0.232 (0.595, 1.504)
10 21 0.864966 0.267 (0.342, 1.388)

2007 207 20 41 1.052351 0.232 (0.597, 1.508)
10 21 0.867555 0.268 (0.343, 1.392)

2008 206 20 41 1.056118 0.233 (0.599, 1.513)
10 21 0.871507 0.269 (0.344, 1.399)

2009 206 20 41 1.059402 0.234 (0.601, 1.518)
10 21 0.874751 0.270 (0.346, 1.404)

 

According to the estimation results in Table 5.3.2, the confidence intervals for all 

the samples considered contain the threshold value ζ=1 that corresponds to the Zipf's law. 

Conclusion: Zipf's Law holds for the cities of the Belarus. 

 

Central Asia 

Based on the number of urban dwellers in Central Asian countries in 1999, we 

estimated regression coefficients3. The results are presented in Table 5.3.3. 

Figure 5.3.2. Central Asian cities in 1999 (the log-log scale). 

                                                 
3 In 1999, the intersection data of all the countries of Central Asia. 
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Table 5.3.3. Estimates of the tail index ζ ( City sizes greater than 100 thousand people, 
data for 1999) 

Country 
Number of 

cities, 
m 

Estimated tail 
index,   

Standard 
errors, 

95% confidence 
intervals for the tail 

index ζ· 
Kazakhstan 19 1.646905 0.534327 (0.600, 2.694) 
Uzbekistan 17 1.266066 0.434257 (0.415, 2.117) 
Kyrgyzstan 2 0.857973 0.857973 (-0.824, 2.540) 
Tajikistan 2 0.827545 0.827545 (-0.794, 2.450) 
Turkmenistan 5 1.258920 0.796211 (-0.302, 2.819) 
Central Asia 45 1.491596 0.314456 (0.875, 2.108) 
 

According to the estimation results in Table 5.3.3, the confidence intervals for all 

the samples considered contain the threshold value ζ=1 that corresponds to the Zipf's law. 

Conclusion: Zipf's Law holds for the cities of the Central Asia. 

 

Caucasus 

Based on the number of urban dwellers in countries of the Caucasus in 2007, we 

estimated regression coefficients4. The results are presented in Table 5.3.4. 

 

                                                 
4 In 2007, the intersection data of all the countries of Caucasus. 
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Figure 5.3.3. Cities of the Caucasus in 2007 (the log - log scale) 

    
 

Table 5.3.4. Estimates of the tail index ζ 
( City sizes greater than 100 thousand people, data for 2007) 

Country Number of 
cities, m 

Estimated 
tail index,  

Standard errors, 
 

95% confidence 
intervals for the tail 

index ζ· 
Armenia 3 0.635413 0.518813 (-0.381, 1.652) 
Azerbaijan 3 0.740743 0.604814 (-0.445, 1.926) 
Georgia 4 0.780854 0.552147 (-0.301, 1.863) 
Caucasus 10 0.813744 0.363917 (0.100, 1.527) 

 

According to the estimation results in Table 5.3.4, the confidence intervals for all 

the samples considered contain the threshold value ζ=1 that corresponds to the Zipf's law. 

Conclusion: Zipf's Law holds for the cities of the countries of the Caucasus. 
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5.3.2. Weber-Fechner Law 

Russia 

Estimates of the coefficients of regression  ln Ni =c+k·i  based on the data on the 

population of the Russian cities for the years 1897-2009 as well as the coefficients of the 

equation Ni =Aqi are given in table A5.3.2 in the Appendix and Table 5.3.5. 

Table 5.3.5. Parameters of regression of logarithms of the population Ni  for cities of 
Russia  agaist its ranks: ln Ni =c+k·i, Ni =Aqi, where A=ec, q=ek (except for Moscow and 

Saint-Petersburg) 
Years t c k A q r=1/q 
1897 7 5.078591 -0.04017 160.5477 0.960631 1.040983 
1926 36 5.819091 -0.04973 336.6659 0.951491 1.050982 
1939 49 6.46233 -0.04125 640.5518 0.959585 1.042117 
1959 69 6.801082 -0.03611 898.8193 0.964534 1.03677 
1970 80 6.959886 -0.0303 1053.513 0.970157 1.030761 
1979 89 6.71537 -0.01641 824.989 0.983729 1.01654 
1989 99 6.823465 -0.01585 919.1644 0.984278 1.015973 
2002 112 6.761217 -0.01502 863.6927 0.98509 1.015135 
2003 113 6.757072 -0.01496 860.1201 0.985147 1.015077 
2004 114 6.755904 -0.01497 859.116 0.985139 1.015086 
2005 115 6.736914 -0.01457 842.9554 0.985534 1.014679 
2006 116 6.736782 -0.01455 842.8441 0.985552 1.014659 
2007 117 6.733465 -0.01455 840.053 0.98556 1.014651 
2008 118 6.733453 -0.01455 840.0429 0.985558 1.014653 
2009 119 6.734632 -0.01455 841.0339 0.98556 1.014651 

 

In summary, the following conclusions can be made: 

1. Development of cities of Russia can be well explained by the Weber-Fechner Law 

(see table A5.3.2 in the Appendix). 

2. Weber constant from the year 2006 has been equal to 0.01455. 

3. For the change in the population to be noticeable (for infrastructure, 

administrative decisions) this change should be greater than 1.5% of the 

population of the city (r=1/q=1.015). Therefore, the decisions (administrative, 

economic, ecological etc.) should be changed if the population of the cities 

increases by more than 1.5%.  
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4. Moscow and Saint-Petersburg have the special status and do not comply with the 

Weber-Fechner Law. Therefore, while forecasting the results of urbanization 

Moscow and Saint-Petersburg should be given in the separate column, that is 

independent on the decisions, adopted for other cities.  

 

Change in the Weber coefficients 

Curves regresionnyh dependencies ln Ni = c+k·i, the corresponding parameters 

from Table 5.3.5, are shown in Figure 5.3.4. 

Figure 5.3.4. Regressions ln Ni = c+k·i for Russian cities in 1897-2009 

    

In Table A5.3.3 in the Appendix provides the estimation results for the regression 

of the (estimated) parameters c and k on the time trend (the ranks t of years 1897, 1898, 

..., 2009 and the dummy political variables P1, P2, P3 (P1 takes the value 0 before the 

Great October Revolution and the value 1 after the revolution, P2 takes the value 0 before 

the Second World War and a value of 1 after the Second World War, P3 takes the value 0 

to the collapse of the USSR and the value 1 after the collapse of the USSR). 

 Acceptable from the standpoint of the Statistical significance of regression 

coefficients and the model as a whole, the model interaction are 2, 3 and 4 for the 

parameter c (all coefficients are significant with a probability of error less than 0.09). For 

the parameter k as all coefficients are significant with a probability of error of no more 

than 0.09. 

 Thus, there is  

1. 263006.0106212.1078591.5 PPc ⋅+⋅+= , 
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2. 3687989.0019399.047273.31 Ptc ⋅−⋅+−= , 

3. 3164946.0257245.01966226.0002678.0 PPPtc ⋅−⋅+⋅+⋅= , 

3011622.02008002.01029829.000069.0349853.1 PPPtk ⋅−⋅−⋅−⋅+−= , 

1. 
))3011622.02008002.01029829.000069.0349853.1exp((

)263006.0106212.1078591.5exp(
iPPPt

PPNi

⋅⋅−⋅−⋅−⋅+−⋅
⋅⋅+⋅+=

 

2. 
))3011622.02008002.01029829.000069.0349853.1exp((

)3687989.0019399.047273.31exp(
iPPPt

PtNi

⋅⋅−⋅−⋅−⋅+−⋅
⋅⋅−⋅+−=

 

3. 
))3011622.02008002.01029829.000069.0349853.1exp((

)3164946.0257245.01966226.0002678.0exp(
iPPPt

PPPtNi

⋅⋅−⋅−⋅−⋅+−⋅
⋅⋅−⋅+⋅+⋅=

 

that is i
i PtqPtAN ),(),( ⋅= , where  

1. )263006.0106212.1078591.5exp(),( PPPtA ⋅+⋅+= , 

2. )3687989.0019399.047273.31exp(),( PtPtA ⋅−⋅+−=  

3. )3164946.0257245.01966226.0002678.0exp(),( PPPtPtA ⋅−⋅+⋅+⋅=  

)3011622.02008002.01029829.000069.0349853.1exp(),( PPPtPtq ⋅−⋅−⋅−⋅+−= . 

 

Thus, the Great October Revolution and the Second World War gave the effect of 

increasing the size of the largest cities of Russia and the Soviet collapse gave the effect of 

reducing the size (ceteris paribus) 

 

Belarus 

 Estimates of the coefficients of regression  ln Ni =c+k·i  based on the data on the 

population of the Belarusian cities for the years 1970-2009 as well as the coefficients of 

the equation Ni =Aqi are given in tables A5.3.4, A.5.3.5 in the Appendix and Table 5.3.6. 
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Table 5.3.6. Parameters of regression of logarithms of the population Ni  for cities of 
Belarus agaist its ranks: ln Ni =c+k·i, Ni =Aqi, where A=ec, q=ek. 

Year c k A q r=1/q 

1970 3.656932 -0.018014 38.742 0.9821 1.0182 
1979 4.017004 -0.019605 55.534 0.9806 1.0198 
1989 4.333892 -0.02099 76.240 0.9792 1.0212 
1990 4.366013 -0.021041 78.729 0.9792 1.0213 
1991 4.382248 -0.021133 80.018 0.9791 1.0214 
1992 4.398832 -0.021238 81.356 0.9790 1.0215 
1993 4.416907 -0.021356 82.840 0.9789 1.0216 
1994 4.432715 -0.021437 84.160 0.9788 1.0217 
1995 4.437681 -0.021431 84.579 0.9788 1.0217 
1997 4.457189 -0.021565 86.245 0.9787 1.0218 
1998 4.43477 -0.021255 84.333 0.9790 1.0215 
1999 4.423677 -0.021485 83.402 0.9787 1.0217 
2000 4.428232 -0.021539 83.783 0.9787 1.0218 
2001 4.414205 -0.021282 82.616 0.9789 1.0215 
2002 4.416414 -0.021354 82.799 0.9789 1.0216 
2003 4.41247 -0.021361 82.473 0.9789 1.0216 
2004 4.409145 -0.021384 82.199 0.9788 1.0216 
2005 4.410506 -0.021489 82.311 0.9787 1.0217 
2006 4.41131 -0.021573 82.377 0.9787 1.0218 
2007 4.414477 -0.02166 82.639 0.9786 1.0219 
2008 4.416968 -0.021725 82.845 0.9785 1.0220 
2009 4.421704 -0.021776 83.238 0.9785 1.0220 

 

 In summary, the following conclusions can be made: 

1. Development of cities of Belarus can be well explained by the Weber-Fechner 

Law (see table A5.3.4 in the Appendix). 

2. Weber constant from the year 2006 has been equal to 0.022. 

3. For the change in the population to be noticeable (for infrastructure, 

administrative decisions) this change should be greater than 2.2% of the 

population of the city (r=1/q=1.022). Therefore, the decisions (administrative, 

economic, ecological etc.) should be changed if the population of the cities 

increases by more than 2.2%.  
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Change in the Weber coefficients 

Curves regresionnyh dependencies ln Ni = c+k·i,, the corresponding parameters 

from Table 5.3.6, are shown in Figures 5.3.5, 5.3.6. 

 

Figure 5.3.5. Change of parameters a of the Weber-Fechner Model Rank=c+klnSize with 
1970 for 2009 for settlements of Belarus 

 

Figure 5.3.6. Change of parameters k of the Weber-Fechner Model Rank=c+klnSize with 
1970 for 2009 for settlements of Belarus 

 

 

Calculations show that the collapse of the Soviet Union at the rate of urban 

growth in the Belarus statistically significant effects are not influence. 
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Central Asia 

 Estimates of the coefficients of regression  ln Ni =c+k·i  based on the data on the 

population of the Central Asia cities for the year 1999 as well as the coefficients of the 

equation Ni =Aqi are given in tables A5.3.6 in the Appendix and Table 5.3.7. 

Table 5.3.7. Parameters of regression of logarithms of the population Ni  for cities of 
Central Asia in 1999 agaist its ranks: ln Ni =c+k·i, Ni =Aqi, where A=ec, q=ek. 

Number of cities c k A q r=1/q 
45 13.36066 -0.045002 634542.788 0.955996 1.04602995

 

 In summary, the following conclusions can be made: 

1. Development of cities of Central Asia can be well explained by the Weber-

Fechner Law (see table A5.3.6 in the Appendix). 

2. Weber constant is equal to  0.045. 

3. For the change in the population to be noticeable (for infrastructure, 

administrative decisions) this change should be greater than 4.6% of the 

population of the city (r=1/q=1.046). Therefore, the decisions (administrative, 

economic, ecological etc.) should be changed if the population of the cities 

increases by more than 4.6%.  

Change in the Weber coefficients 

 Estimates of the coefficients of regression ln Ni =c+k·i  based on the data on the 

population of the Central Asian cities for the years 1970-2006 as well as the coefficients 

c and k are given in tables A5.3.7 in the Appendix and Table 5.3.8. 

Table 5.3.8. Parameters of regression of logarithms of the population Ni  for cities of 
Central Asia agaist its ranks: ln Ni =c+k·i. 

Years c k 
1970 13.21387 -0.06884 
1971 13.24355 -0.06884 
1975 13.30165 -0.06317 
1980 13.32473 -0.05399 
1985 13.39433 -0.052 
1987 13.40747 -0.04943 
1990 13.41749 -0.05069 
1999 13.36066 -0.045 
2006 13.48998 -0.05169 
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The following Figure 5.3.7 illustrates the regressions ln Ni = c+k·i estimated in Table 

5.3.8. 

 

Figure 5.3.7. Regressions  ln Ni = c+k·i for Central Asian cities in 1970-2006 

    

Figure 5.3.8. Weber relations Ni =Aqi for Central Asian cities in 1970-2006 

 

Table A5.3.8 in the Appendix provides the estimation results for the regression of the 

(estimated) parameters c and k on the time trend (the ranks t of years 1970, 1971, ..., 

2006) and the dummy political variable P that takes value 0 prior to the collapse of the 

USSR in 1991 and value 1 afterwards. 
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 Thus, the estimated regressions are 

Ptc ⋅−⋅+−= 144598.0010573.0601766.7 ,        

Ptk ⋅−⋅+−= 011148.0000919.0877394.1 , 

iPtPtNi ⋅⋅−⋅+−+⋅−⋅+−= )011148.0000919.0877394.1(144598.0010573.0601766.7ln
, 

))011148.0000919.0877394.1exp(()144598.0010573.0601766.7exp( iPtPtNi ⋅⋅−⋅+−⋅⋅−⋅+−=

that is i
i PtqPtAN ),(),( ⋅= , where )144598.0010573.0601766.7exp(),( PtPtA ⋅−⋅+−= , 

)011148.0000919.0877394.1exp(),( PtPtq ⋅−⋅+−= . 

Consequently, the disintegration of the USSR led to a decrease in the growth of 

cities in Central Asia. Apparently this is due to the emigration of non-indigenous people 

in other countries. 

Caucaus 

 Estimates of the coefficients of regression  ln Ni =c+k·i  based on the data on the 

population of the Caucasus cities for the year 2007 as well as the coefficients of the 

equation Ni =Aqi are given in tables A5.3.9 in the Appendix and Table 5.3.9. 

 
Table 5.3.9. Estimates for the regression ln Ni =c+k·i and the implied relation Ni =Aqi 

for cities of Caucasus Asia in 2007 
Number of cities c k A q r=1/q 

10 14.50335 -0.336194 1989412.65 0.714484 1.39961052
 

 In summary, the following conclusions can be made: 

1. Development of cities of Caucasus can be explained by the Weber-Fechner Law 

(see Table A5.3.9 in the Appendix). 

2. The Weber constant is equal to 0.336. 

3. For the change in the population to be noticeable (for infrastructure, 

administrative decisions) this change should be greater than  39.96≈40% of the 

population of the city (r=1/q=1.39961). Therefore, the decisions (administrative, 
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economic, ecological etc.) should be changed if the population of the cities 

increases by more than 40%.  

 

Changes in the Weber coefficients 

 Estimates of the coefficients of regression  ln Ni =c+k·i  based on the data on the 

population of the Caucasus cities for the years 1970-2007 as well as the coefficients of 

the equation Ni =Aqi are given in tables A5.3.10 in the Appendix and Table 5.3.10. 

 
Table 5.3.10. Estimates of the parameters c and k in the  regression ln Ni = c+k·i for the 

cities in the Caucasus in 1970-2007 
Years c k 
1970 13.86252 -0.276535 
1971 13.88072 -0.274877 
1975 13.98215 -0.257304 
1980 14.12501 -0.2618 
1985 14.21326 -0.26222 
1987 14.24711 -0.262647 
1990 14.29858 -0.299119 
2007 14.50335 -0.336194 

 
Figure 5.3.9. Parameters c and k of regression ln Ni = c+k·i for cities of Caucasus in 

1970-2007 

    

 

Table A5.3.11 in the Appendix provides the estimation results for the regression 

of the (estimated) parameters c and k on the time trend (the ranks t of years 1970, 1971, 
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..., 2006) and the dummy political variable P that takes value 0 prior to the collapse of the 

USSR in 1991 and value 1 afterwards. 

The following Figure 5.3.10 illustrates the regressions ln Ni = c+k·i estimated in 

Table A5.3.11 in the Appendix. 

 

Figure 5.3.10. Weber relations Ni =Aqi for the cities in the Caucasus in 1970-2007 

 

 

 Thus, the estimated regressions are  

Ptc ⋅−⋅+−= 194493.0022385.022902.30 ,        Pk ⋅−−= 065551.0270643.0 , 

))065551.0270643.0exp(()194493.0022385.022902.30exp( iPPtNi ⋅⋅−−⋅⋅−⋅+−= , 

that is i
i PtqPtAN ),(),( ⋅= , where )194493.0022385.022902.30exp(),( PtPtA ⋅−⋅+−= , 

)065551.0270643.0exp(),( PPtq ⋅−−= . 

Consequently, the disintegration of the USSR led to a decrease in the growth of 

cities in the Caucasus. Apparently this is due to the emigration of non-indigenous people 

in other countries. 
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5.3.3. Hierarchy of logarithms 

Though communication of type of Weber-Fechner between quantity of inhabitants 

of cities and their ranks is comprehensible from the point of view of the statistical 

importance, specification of a kind of dependence is desirable. It has appeared possible to 

be made by means of hierarchy of logarithms in the regress equation.  

 

Ruissia 

We will designate: ln4 (⋅)=ln(ln(ln(ln(⋅)))). In Figure 5.3.11 sites of cities of Russia 

on a scale are resulted “Rank - ln4(Population)“. 

Figure 5.3.11. Russian cities in 1897-2009 (Except for Moscow and Saint-Petersburg) 

 

 

Table 5.3.11. Estimates of the parameters c and k in the  regression ln4 Ni = c4+ k4·i for 
the cities in Russia in 1897-2007 

Yeares c4 k4 

1897 -0.163 -0.04339 
1926 -0.43223 -0.01968 
1939 -0.31021 -0.01384 
1959 -0.28938 -0.01074 
1970 -0.35158 -0.00642 
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1979 -0.39621 -0.00351 
1989 -0.3655 -0.00358 
2002 -0.40034 -0.003 
2003 -0.40061 -0.003 
2004 -0.4012 -0.00299 
2005 -0.40728 -0.00287 
2006 -0.40728 -0.00287 
2007 -0.40773 -0.00287 
2008 -0.40767 -0.00287 
2009 -0.40766 -0.00287 

 
 

Figure 5.3.12. Change of coefficients c and k in the years 1897-2009 in the regression 
equation ln4Ni=c+k⋅i . 

    
 

 Estimates of the coefficients of regression  ln4 Ni = c+k·i based on the data on the 

population of the Russian cities for the years 1897-2009 and are given in tables A5.3.12, 

A5.3.13 in the Appendix. 

 According to the information given in tables A5.3.12, A5.3.13, the population of 

cities Ni and their ranks i are regressed in the equation 

ittitktcNi ⋅⋅+−+⋅−−=⋅+= )ln014469.0071110.0(001264.0258998.0)()(ln4  

)))))ln014469.0071110.0(001264.0258998.0p(exp(exp(exp(ex ittNi ⋅⋅+−+⋅−−=  

where t=0,1,2,... since 1890. 

Central Asia 

Figure 5.3.13. Rank-Population diagrams for  different logarithm powers in the 
hierarchy of logarithms for cities of Central Asia in 1999 
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Note. (II) – ln2(Ni), (III) - ln3(Ni), (IV) - ln4(Ni), where )(ln ⋅r  means  the r-th  iterations of 
logarithms. 
 
 Estimates of the coefficients of regression  lnr Ni = c+k·i based on the data on the 

population of the Central Asian cities in 1999 and are given in table A5.3.14 in the 

Appendix. 

According to Table А5.3.14 the best in all respects is the model 

iN i ⋅−−= 001534.0048076.0)(ln 4 , 

))))001534.0048076.0p(exp(exp(exp(ex iNi ⋅−−= .                          (5.3.1) 

This model describes well the distribution of all cities in Central Asia except the three 

outliers  of Tashkent, Almaty and Bishkek (see Figure 5.3.14). 

 

Figure 5.3.14. The distribution of cities in Central Asia in 1999 and fitted model (5.3.1) 
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Caucasus 

Figure 5.3.15. Rank-Population diagrams for  different logarithm powers in the 
hierarchy of logarithms for the cities of the Caucasus in 2007 

 

Note. (II) – ln2(Ni), (III) - ln3(Ni), (IV) - ln4(Ni), где )(ln ⋅r  means  r iterations of logarithms. 
 
 Estimates of the coefficients of regression  lnr Ni = c+k·i based on the data on the 

population of the Caucasus cities in 2007 and are given in table A5.3.15 in the Appendix. 

According to Table А5.3.15 the best in all respects is the model 

iN i ⋅−−= 010991.0013023.0)(ln 4 , 

))))010991.0013023.0p(exp(exp(exp(ex iNi ⋅−−= .                          (5.3.2) 

 This model describes well the distribution of all cities in Central Asia except the 

outlier  of Baku (see Figure 5.3.16). 

 
Figure 5.3.16. The distribution of cities in the Caucasus by rank in 2007 and fitted model 

(5.3.2) 
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Therefore we can conclude that: 

1. The distribution of the size of the largest cities of Russia, Belarus, Central 

Asia and Caucasus is consistent with Zipf's law.  

2. The distribution of the size of the size (all) cities of Russia, Belarus, Central 

Asia and Caucasus satisfies the law of Weber-Fechner except the largest 

Megapolyus.  

3. The Great October Revolution and World War II led to an increase in Russian 

cities due to influx of rural population in the city. When Stalin began forced 

urbanization, people from villages in the 30 th, 40 th, 50 th years, went into 

the city. 

4. The collapse of the USSR led to a relative reduction cities of Central Asia and 

Caucasus as a result of relocation of non-indigenous population in rural areas 

of Russia. The collapse of the USSR at the rate of urban growth in the Belarus 

statistically significant effects are not influence. 

5. Distribution of cities in Russia, Belarus, Central Asia and Caucasus is best 

described by models based on the hierarchy of the logarithms of their sizes. 

5.4 Results concerning the “within distribution” city dynamics 

5.4.1 Markov chains analysis 
 

In this section, we apply Markov chains analysis to study a movement speed and 

form of convergence within the city size distribution. We employ data on population of 

all cities for Belarus, Hungary, Poland, and for 479 of Russia (out of 1037 cities 

according to 2002 census). The dataset is described in Table A5.4.1 in the Appendix.  

The main sources of the detailed city data are the national official statistical 

information services of CEE and CIS countries. Data in national statistics are presented 

for census years as well as estimates on the beginning of the corresponding year. The 

number of cities and other characteristics of urban systems of Belarus, Hungary, Poland, 

and Russia are described in the Table 5.4.1. 
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Table 5.4.1. The main description of the data by countries. 

Indicator Belarus Poland 
1970 1989 2009 1970 1989 2009 

Number of 
cities 198 202 206 802 828 890 

Urban pop. 
(ths) 3886.9 6768.5 7148.5 18492.7 23455.3 23279.4 

Size of a 
min city 1.2 0.7 0.6 1 1.2 0.9 

Average 
city size 19.6 33.5 34.7 23 28.3 26.2 

Size of a 
max city 907.1 1612.8 1829.1 1387.8 1651.2 1709.8 

Table 5.4.2. (continuation)  

Indicator Hungary Russia 
1970 1989 2001 1970 1989 2007 

Number 
of cities 237 237 237 479 479 479 

Urban 
pop. (ths) 6124.3 6741.1 6415.7 52971.1 69437.2 77927.7 

Size of a 
min city 0.68 1.1 1.4 1.9 1.3 1.15 

Average 
city size 25.8 28.4 27 110.6 145 197 

Size of a 
max city 1945.1 1934.8 1712.7 7063 8769.1 10126.4 

 

In order to carry out the methodology described in section 4.4, we should choose 

a discretization of the cities’ sizes. As pointed out by Magrini (1999), an improper 

discretization may have the effect of removing the Markov property and therefore may 

lead to misleading results, especially as is in our case when computations of ergodic 

distributions are based on the estimates of the discrete transition probabilities. Quah 

(1993) and Le Gallo (2004) choose to discretize the distribution in such a way that the 

initial classes include a similar number of elements. Cheshire and Magrini (2000) base 

their choice between possible classes in terms of the ability of the discrete distribution to 

approximate the observed continuous distribution. 
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In our study following the paper of Le Gallo and Chasco (2009), we have tried 

different ways of discretizing the distribution, divided it on 5, 6 and 7 classes. We chose 

Poland to check possible distributions providing we have the biggest dataset for this 

country (890 cities) and this country is one of the most successful among transition 

economies. Final discretization should be chosen by considering the best performance of 

the test for order one for all countries’ city distributions.  

The assumption of a first-order stationary Markov process requires the transition 

probabilities, ijp , to be of order 1, that is, to be independent of classes at the beginning of 

previous periods (at time t − 2, t − 3, …). If the chain is of a higher order, the first-order 

transition matrix will be misspecified. Indeed, it will contain only part of the information 

necessary to describe the true evolution of population distribution. Moreover, the Markov 

property implicitly assumes that the transition probabilities, ijp , depend on i (i.e., that the 

process is not of order 0). 

In order to test this property, Bickenbach and Bode (2003) emphasize the role of 

the test of time independence. In determining the order of a Markov chain, Tan and 

Yilmaz (2002) suggest, firstly, to test order 0 versus order 1; secondly, to test order 1 

versus order 2; and so on. If the test of order 0 against order 1 is rejected, and the test of 

order 1 against order 2 is not rejected, the process may be assumed to be of order 1. 

After trying different variants we decided to divide all cities on seven classes: 1) 

population less than 10% of the countries’ average, 2) population between 10 and 20% of 

the average 3) population between 20 and 30% of the average, 4) population between 30 

and 50% of the average, 5) population between 50 and 100% of the average, 6) 

population between 100 and 200% of the average, and 7) population more than 200% of 

the average. This division appears to give relatively balanced distribution for all four 

countries. 

However the way of cities’ division on classes could be changed after considering 

the performance of the test for Markovity of order one for all countries with detailed data. 

We can get different results of that test for different countries and this will give us 

information about a possibility to build more balanced classes at some cost to this test for 

certain countries. 
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To test for order 0, the null hypothesis 0 : 1, , ij iH i K p p∀ = =K  is tested 
against the following alternative : {1,..., }a ij jH i K p p∃ ∈ ≠ . The appropriate likelihood 
ratio (LR) test statistic reads as follows: 
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� ( )( (0)) 2 2
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Similar to the notation above, �{ : 0},i ijC j p= >  #i ic C= , �{ : 0},ki kijC j p= >  and 
#{ : 0}i kid k n= > . In our case 7K = .  

If both Markovity of order 0 and of order 1 are rejected, the tests can be extended 

to higher orders by introducing additional dimensions for population size at time t − 3, t − 

4, and so on. However, since the number of parameters to be estimated increases 

exponentially with the number of time lags, while the number of available observations 

decreases linearly for a given data set, the reliability of estimates and the power of the 

test decrease rapidly. Therefore, Tan and Yilmaz (2002) suggest setting an a priori limit 

up to which the order of the Markov chain can be tested.  
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All results of testing Markovity for every country one can observe in Appendix 

Table A.5.4.2 – Table A.5.4.10. In our case most data passed the tests for Markovity of 

order greater or equal to one.  

For instance, see Table A.5.4.2. (Poland), Markovity of order 0 is tested using test 

statistic (5.4.1) at every moment t= 1961, 1974, 1985, 1994, 2004 (in our investigations 

parameter t runs by decades, or approximately by decades depending on lack of data on 

some country). The result ( (0)) (1961) 1943.578OLR = , prob=0, df=36 leaves no doubt that 

the process strongly depends on the initial condition at time t-1. That is the chain is at 

least of order 1. Applying the test statistic (5.4.2.2) to the same moments of time we get 

the result: ( (1)) (1964) 396.545OLR = − , prob=0, df=28 indicating about Markovity of order 

1 and higher. As we mentioned above we cannot continue test of Marcovity order 1 

versus 2 etc., because of exponential growth of parameters to be estimated with having 

bounded data. 

Received Markovity test results for all countries with detailed data mean that we 

do not need to perform a revision of the discretization of cities on classes for Markov 

chains estimation procedure. 

Tables A.5.4.11. – A.5.4.14. contain the first-order transition probability matrices 

with the ML estimates ijp  of the transition probabilities for population in Poland, 

Belarus, Hungary, and Russia.  

Note that all transition probability matrices for studying countries are regular. 

Matrices let us draw conclusions on intensity of interclass movements. Using those 

matrices according to methodology described, we can extract information related to 

cities’ mobility speed and convergence pattern.  

For example, in Poland during the half of a century, there were 459 instances of a 

city having a population size lower than 10 percent of the average. The majority of these 

cities (78.6%) remained in that size class at the end of the decade, while 15.5% moved up 

one class by the end of the decade.  

The high probabilities on the diagonal in all countries show a low interclass 

mobility, i.e., a high-persistence of cities to stay in their own class from one observation 

to another over the whole period. Eaton and Eckstein (1997) interpret diagonal elements 
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of the transition approaching 1 as parallel growth. Since these elements are not exactly 1, 

we can analyze the propensity of cities in each cell to move into other cells. In particular, 

it appears that the largest and smallest cities (classes 1 and 7, respectively) have higher 

persistence while medium-sized cities (categories 3, 4 and 5) have more probability of 

moving to smaller categories. In classes 2 and 3 a small number of cities if any move up 

to higher categories more than two steps. Only in case of Poland in classes 2 and 3 the 

probability of moving up a class exceeds that of moving down. In Belarus the probability 

of moving down a class exceeds that one in other countries. 

This low inter-class mobility of cities is in line with the results found for other 

cases such as US MSA’s (Black and Henderson 2003) and all Spanish municipalities (Le 

Gallo and Chasco 2009). 

Then, in order to determine the speed with which the cities move within the 

distribution, we consider the matrix of mean first passage time PM , where every element 

indicates the expected time for a city to move from class i to class j for the first time 

(Tables A.5.4.15 – A.5.4.2.18). PM  is defined as (Kemeny and Snell 1976, Chap. 4): 

 ( )P dgM I Z Z D= − +1  

where I  is the identity matrix, * 1( )Z I M M −= − + , M  is the probability transition 
matrix, * lim n

n
M M

→∞
= , 1  is a matrix of ones, dgZ  results from Z  setting off-diagonal 

entries to 0, and * *
1

1 1,...,
K

D Diag
m m

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
, * *

1 ,.., Km m  are elements of *M . 

 
For example, the expected time for Belarusian city to move from class 1 to class 2 

is equal to 220 years, while the moving from 2 to 1 will happened in 99 years. In whole 

the mean number of years to reach any class is relatively high: for example, the shortest 

time passage for Poland is 115 years (move from class 1 to class 3) and the longest is 

6060 years (move from class 7 to class 1). We should remember that these calculations 

account for the fact that starting from class 4, a city might visit classes 6, 5, 3, 2 or 1 

before going to class 7.  

Belarusian matrix shows the passage from higher class to lower one is more 

probable than from lower to higher. That is not the truth for Polish and Hungarian cities 

where the moving to higher class is faster. For example, for Belarusian cities to first visit 
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class 7 from class 1 it takes 40077 years, while for Polish and Hungarian it takes 827 and 

8168.8 years respectively. On the contrary, to first visit class 1 from class 7 it takes 1190 

years for cities in Belarus, while for Poland and Hungary it takes 6060 and 2195 years 

respectively. In Belarusian and Russian matrices all upper diagonal elements greater than 

lower diagonal ones. That means Belarusian and Russian cities tends from higher class to 

lower one. All upper diagonal elements of Polish matrix less that lower diagonal ones. 

That is all Polish cities tend to move   from lower classes to higher ones. The situation 

with Hungarian matrix is a bit different. We can see that more probable moves from 

lower classes to higher ones take place up to third class (upper diagonal elements less 

than lower ones). From fourth to seven classes we can see backward moves (upper 

diagonal elements greater than lower ones). Comparing with results of Le Gallo and 

Chasco (2009), obtained  for Spanish urban system we may say that maximal entry of the 

mean first passage matrix is 3110,7 years. It corresponds to a mean first time passage of a 

city from first class to last (sixth) class. Moves happen more probably between neighbor 

classes. Minimal time to move between classes is 91.9 years. It is a transition from class 

5 to class 4. 

The difference in the models of urban system development and the forms of 

cities’ convergence for Belarus, Russia on the one part and Poland and Hungary on the 

other part becomes obvious after comparison of initial versus ergodic distribution pattern 

matching (Tables A.5.4.19. – A.5.4.22) or see Figure 5.4.1.  

 
Figure 5.4. 1  Initial and ergodic distribution of cities’ sizes in Poland, Belarus, Hungary, and Russia 
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Initial Distribution (Belarus)
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The ergodic distribution can be interpreted as the long-run equilibrium city-size 

distribution in the urban system. Given a regular transition matrix, with the passage of 

many periods, there will be a time where the distribution of urban system will not change 

any more: that is the ergodic or limit distribution. It is used to assess the form of 

convergence in a distribution. Concentration of the frequencies in a certain class would 

imply convergence (if it is the middle class, it would be convergence to the mean), while 
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concentration of the frequencies in some of the classes, that is, a multimodal limit 

distribution, may be interpreted as a tendency towards stratification into different 

convergence clubs. Finally, a dispersion of this distribution amongst all classes is 

interpreted as divergence. 

The results for Poland, Belarus, Hungary and Russia are reported on the 

histograms of Figures 5.4.1., 5.4.2., A.5.4.1. and demonstrate significant differences 

among countries. For Belarus and Russia it appears that the ergodic distribution is more 

concentrated in the small and lower middle-size cities (1st to 4th classes), a result that 

reveals the existence of convergence towards smaller size populations. For Poland it 

appears that the ergodic distribution is more concentrated in the middle and big-size cities 

(5th to 7th classes). At the same time, one can see that a level of stability of ergodic 

distribution compared to the initial one for Belarus, Poland, and Russia is low, while it is 

relatively more stable for Hungarian distribution. The Figure 5.4.2. shows quantitative 

difference between ergodic and initial distributions.  
Figure 5.4.2. Difference between  Initial and Ergodic distributions of cities’ sizes in Poland, Belarus, 

Hungary, and Russia 
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As one can see Belarus and Russia evolves to the country of small cities, while 

Poland and Hungary to the country of big and medium sized cities respectively. Studying 

probability transition matrices and mean first passage time matrices of investigated 

countries we may say something about movements of cities within the distribution. In 

case of Hungary probability (see Table A.5.4.13.) to pass from 1 class to 2 four times 

bigger than from 2 to1, probability to pass from 3 class to 2 is greater than that from 2 to 

3. That is cities from 1 and 3 class will move to second one. Furthermore, cities from 7 

class will probable to move to 6, cities from 6 class more probable to move in 5 and so 

on. 

Our results for initial and ergodic distributions are comparable with those for 

Spanish municipalities obtained by Le Gallo and Chasco (2009). Their study shows  

slightly downward convergence to the second and third classes and is similar to 

Hungarian pattern.  

It may be interesting to represent the differences in the forms of distributions in 

numerical quantities. We may compare ergodic, initial distributions, and their difference 

with help of kurtosis statistics: 
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that is close to zero if X close to symmetric Gaussian distribution, and far from zero 

otherwise. The bigger kurtosis the more sharp the peak of X distribution. In terms of 

shape, such distribution has a more acute peak around the mean (that is, a lower 

probability than a normally distributed variable of values near the mean) and  fatter tails 

(that is, a higher probability than a normally distributed variable of extreme values). A 

distribution with negative excess kurtosis is more "broad". In terms of shape, a such type 

of distribution has a lower, wider peak around the mean (that is a curve of such 

distribution is mostly convex upward) and thinner tails (that is a curve of such 

distribution has a narrow domain where it is convex downward). Table A.5.4.24 depicts 

values of the kurtosis across all countries and shows that Hungarian ergodic and initial 

distributions are most balanced among all countries. Therefore, we propose to consider 

Hungarian urban system distribution as a benchmark for assessment of deviations of 
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Belarusian, Russian and Polish ones. It is clear from the table that all countries initially 

had low kurtosises. However, magnitudes of kurtosis for ergodic distributions changes 

and we may arrange countries in order by growing urban pattern starting from country 

with worse urban ergodic distribution: Belarus =6.8 (with mean value at first class), 

Russia=5.8 (with mean value at first class), Poland =5 (with mean value at seventh class), 

and Hungary (with mean value around fourth class). Here the mean value of distributions 

is significant too. 

The influence of space on urban population dynamism by comparing the 

probability of a city moving down or up in the hierarchy depending whether city is 

surrounded by towns that contain, on average, less or more population is considered in 

next subsection. 

5.4.2 Studying Spatial Autocorrelation in Belarusian Urban System 
 

To test whether the probability of an upward or downward move of cities is 

different depending on the urban area context in Belarus we use the following 

methodology. Let ijd  be a distance between city i and city j. For 207 Belarusian cities 

they form (207, 207) dimension matrix of distances. We form a spatial weight matrix 

, if ,

0, if or
ij ij

ij
ij

d d c
w

i j d c

α−⎧ ≤⎪= ⎨
= >⎪⎩

, where c is approximately 150 km (a first quartile of the 

whole range of distances). The positive parameter α  we chose in order to obtain more 

statistically significant results for spatial autocorrelation. In Le Gallo (2004) and in Cliff 

and Ord (1981) 2α =  because of analogy with Newton’s gravitational law. In first 

considerations we accepted 2α = . Then we consider vector-column of dimension (207, 

1) with elements 
1, if is a growing city,
0, otherwisei

i
x ⎧
= ⎨
⎩

. Moreover, we considered vector of 

elements i iz x X= − , where X  is a sample mean value of X . In Belarus we have 26 

such cities in period between 1970 and 2009. To evaluate spatial autocorrelation of 

upward downward transitions  we used Moran’s I statistic ( Moran, 1950): 
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= ∑∑ , 207n = . The empirical value of this statistic is equal 0.0789I = − , 

but theoretical expectation value of I under hypothesis of no spatial autocorrelation is 

equal to 1( ) 0.00485
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. A standard deviation of Moran’s I is equal to 0.254. 

Consequently, Z-score ( )
( )

I E I
sd I
−  lays between -1.96 and 1.96 and we cannot reject the 

null hypothesis of no spatial autocorrelation. Recall that Z-score has Gaussian 

distribution under the null hypothesis. The consideration of Moran’s I statistic for 68 

Belarusian diminishing cities gives us an estimation 0.2623I = −  that is clearly shows 

negative autocorrelation, but due to big standard deviation of Moran’s I we again cannot 

admit this result at significance level of 5%. However, when we choose 1a =  in 

definition of weighted matrix we get ten times lower standard deviation of the Moran’s I 

statistic sd(I)=0.0206. But the Moran’s I is equal to -0.009 for growing cities and -0.015 

for vanishing cities. These two estimates of the Moran’s I are close to zero and we may 

say that there is no global spatial autocorrelation for all Belarusian cities. Then we apply 

Geary’s C statistic that is more sensitive to local spatial autocorrelation (Geary, 1954): 
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The Geary’s C varies between 0 and 2. If 0<C<1 than it indicates positive 

autocorrelation, if 1<C<2 than it means negative autocorrelation, if C=1, than it means no 

spatial autocorrelation. For growing Belarusian cities C=1.115, sd(C)=0.0309, Z-

score=3.73, that means negative local autocorrelation with 0.2% significance level. It 

indicates that neighboring to growing cities are more dissimilar (diminishing or stable) 

than expected by chance. That is all growing Belarusian cities geographically tend to be 

surrounded by neighbors with very dissimilar values. For diminishing cities Geary’s 

C=0.998 and it indicates no spatial autocorrelation. 
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Spatial analysis of Belarusian cities underlines existence of divergence of the 

urban system in space, not only in time. Negative autocorrelation points to spatial 

proximity of contrasting values (Anselin and Bera, 1998). That means that there is a 

tendency for growing Belarusian cities to be surrounded by diminishing cities. It becomes 

clear if we paint Belarusian map in two colors: red for growing cities and blue for 

decreasing, see Figure A.5.4.2. On the map we shall see on south a 7th class city Homel 

surrounded by getting smaller Rechitsa, Kastsukauka, Buda-Kashaliova, Vietka, 

Uvaravichy, Tserakhauka. On west growing Lida and Byarozauka are surrounded by 

vanishing Schuchyn, Zhaludok, Radun’, Yuratsishki, Dziatlava. The same situation near 

Brest, Magiliou, Vitsebsk, Polatsk. Only exception is the capital Minsk surrounded by 

growing Zaslauje, Fanipal’, Machulishchy, Lagojsk. Negative autocorrelation indicates 

that such distribution of Belarusian cities is not by chance. A direction of movement in 

the population distribution of cities is not independent from the geographic environment. 

It could be a consequence of a semi-planned economy, where significant state resources 

are concentrated in the capital (the biggest city) with the rest passed to region centers 

(another 5 biggest cities) with only small portion allocated to the district level. As a result 

we have a designed hierarchy of cities or at least the hierarchy which is shaped for the 

most part not by market forces but rather by visible hand of the state. 

This conclusion is supported by the results of Gibrat`s law accepting which 

demonstrate no strong support of this model of urban system development in the case of 

Belarus. The presence of doubts in cities proportionate growth in Belarus coincides with 

our above mentioned results and indicates that the nature of urban systems dynamics in 

this country is quite specific. Thus to understand this specifics better it is reasonable to 

make some additional comparisons of the pre and post 1989 development of the 

examined countries with detailed data. This is a good moment to do this before we will 

go further trying to investigate the factors that drive the variation of the city size 

distribution over time. 

Studying cities’ population, their growth rate dramatic reduction after 1989 

becomes obvious. However, this was not the case Belarus in 1989-2007 or in Poland in 

1989-1999 where urban population has increased during the mentioned periods (see 
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Figure A.5.4.3). Changes in population dynamics should obviously have influenced the 

city size distribution. 

 
Figure 5.4.3. Urban population growth in four transition countries (1970=100) 
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In most transition countries the economic and political reforms at least in the first 

six years have been accompanied by a rapid impoverishment of large sections of society 

and increasing uncertainty about the future. According to UNICEF (1994) between 1989 

and 1994, marriage rates in transition countries fell by between one-quarter and one-half; 

birth rates shrank by up to 40 percent and death rates among male adults due to 

cardiovascular and violent causes often more than doubled. By 1994 the natural increase 

of the population had become negative in Bulgaria, the Czech Republic, Hungary, 

Romania, the three Baltic countries, Russia, Ukraine and Belarus.  

Below there is an illustration of life births per 1000 population drop in Belarus, 

Hungary, Poland and Russia (Figure 5.4.4).  

One can notice that demographic changes started in the mid 1980s or even 70s in 

the case of Hungary. It should be noted that, in spite of a similar pattern of life births 
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decline in the first decade after 1989 for the countries in the sample (excluding non-

European CIS countries), only Poland demonstrates positive rate of natural population 

increase (excluding changes due to migration) and negative net external migration at the 

same time.  
Figure 5.4.4. Life births decline per 1000 population in four transition countries 
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This may indicate that as opposed to other countries, Polish formal and informal 

institutions were able to soften economic and social difficulties not restricting out-

migration to more prosper countries. One of the evidences of such institutional efficiency 

in Poland can be a dynamics of abortion percentage (abortion as percentage of 

pregnancies excluding fetal deaths/miscarriages). While in most of the examined 

transition countries abortion percentage grew after 1989, as one can see from Figure 

5.4.5, in Poland, where this indicator was lowest in the region, a tendency was opposite.5 

                                                 
5 Of course one can treat this as an example of institutional resistance. According to Wikipedia until 1932, 
abortion was banned in Poland without exceptions. In that year a new Penal Code legalized abortion strictly 
when there were medical reasons and, for the first time in Europe, when the pregnancy resulted from a 
criminal act. This law was in effect from 1932 to 1956. In 1956 the Sejm legalized abortion in cases where 
the woman was experiencing "difficult living conditions". After the fall of Communism, abortion debate 
erupted in Poland. Roman Catholic and Lutheran Churches, and right-wing politicians pressured the 
government to ban abortion except in cases where abortion was the only way to save the life of the 
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Figure 5.4.5. Abortion as percentage of pregnancies (excluding fetal deaths/miscarriages). 
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Surprisingly, deep econometric studies of population crisis conditioning factors in 

transition economies are not numerous. From these factors a fertility decline is 

investigated more often (see a survey provided by UNECE, 2000). The exception is 

Cornia and Paniccià (1998) who challenge the viewpoint that attributes the population 

crisis in transition economies to factors broadly unrelated to the economic and social 

difficulties experienced during the transition. They show that while important 

demographic changes occurred in the 1970s and 80s, in three-quarters of the cases 

examined the after 1989 shifts in nuptiality, fertility and mortality show large, growing 

and statistically significant variations from past trends. Authors find little or no evidence 

that these drastic variations are the result of shifts toward Western models of marriage or 

reproductive behavior. They instead explain these variations by negative shifts in the 
                                                                                                                                                 
pregnant woman. Left-wing politicians and most liberals were opposed to this, and pressured the 
government to maintain the above mentioned 1956 legislation. The abortion law in Poland today was 
enacted in January 1993 as a compromise between both camps. 
In 1997, parliament enacted a modification to the abortion bill which permitted the termination of 
pregnancy in cases of emotional or social distress, but this law was deemed unconstitutional by the Polish 
Constitutional Court. In December of that year the legal status of abortion in Poland was restored to that in 
1993. Currently, Polish society is one of the most pro-life in Europe. In the poll European values in May 
2005, 48% of Poles disagreed that a woman should be able to have an abortion if she doesn't want children. 
47% were in favour of abortion. Out of the 10 polled countries, Poland was the only country where 
opposition to abortion was greater than support for abortion 
(http://en.wikipedia.org/wiki/Abortion_in_Poland). 
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economic circumstances of the marriageable population and of the families already 

formed, and in particular by the fall in real wages and rising cost of housing and other 

goods needed to establish and maintain a family. They are also due to the deterioration in 

and the modest impact of family policies on reproductive behaviour. In contrast, 

expectations about the economic outcomes of the current crisis appear to exert a sizeable 

influence on the decision to marry and, particularly, to have a child. UNECE (2000) 

results provide ample support for the hypothesis that the declines in household incomes 

have put downward pressure on fertility. 

Looking for the explanation of cities population decline in the beginning of 

transition it is useful to bear in mind the urban sociologists’ view that in the course of 

their evolution cities exploit not only a local site but a nodal geographical situation and 

develop as long as the networks they control are expanding (Pumain, 2010). Political and 

economic transition leads to multiple breaks in social and economic relationships. It is 

not unexpected then that even with large population increases in some cities due to 

nearby conflicts, the average metropolitan city in the former Soviet Union lost population 

between 1989 and 1997. For example, Moscow declined by 350,000 and St. Petersburg 

by more than 200,000 (Rowland 1998). At the same time over the period from the last 

Soviet census in January 1989 to the beginning of 1997, the net immigration to Russia 

offset the negative natural increase so that Russia's population increased over the period 

from 147,022 ths to 148,029 ths. 

The explanation, at least partial, of this inverse population dynamics in the whole 

countries and theirs big cities could be behind the failure of industrialization policy. In 

contrast to nonsocialist economies, where urbanization is driven largely by market forces, 

socialist planners accelerated the process by moving people to cities more rapidly so that 

forced industrialization could generate faster economic development. From Chenery and 

Syrquin’s (1986) results can be deduced that for a given level of per capita income, the 

share of the population in cities in the transition region was, on average, of the order of 

12 percentage points higher than it was in comparator countries. Buckley and Mini 

(2000) stress that more important is that largely because the industrialization strategy 

failed, per capita income in 1990 was at least 40 percent lower than it was in countries 

that urbanized more spontaneously. After command system collapse peoples and firms 
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start to take private decisions in an atmosphere of spatial competition. Unbalanced and 

undiversified industrial structure of socialist cities required deep structural changes and 

inter-industry reallocation of resources. Significant territorial adaptation and relocation of 

production factors among cities become a pressing task. With more freedom workers in 

over-industrialized cities, in words of Buckley and Mini (2000), can “vote with their feet” 

and move away from cities. 
Figure 5.4.6. Urban population  ratio in four transition countries (1970 - 2007) 
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In a historical perspective the patterns of urbanization for different countries are 

quite similar. However, evidently, the dynamics of urbanization is fastest in Belarus. It 

becomes even more obvious when we study 1990 – 2007 period (Figure 5.4.7). Recall, 

that it has appeared that the ergodic distribution for the country is more concentrated in 

the small and lower middle-size cities. The level of stability of ergodic distribution 

compared to the initial one for Belarus, Poland, and Russia is low, while it is relatively 

more stable for Hungary. For Belarus and Russia it appears that the ergodic distribution is 

more concentrated in the small and lower middle-size cities (1st to 4th classes), a result 

that reveals the existence of convergence towards smaller size populations. For Poland it 
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appears that the ergodic distribution is more concentrated in the middle and big-size cities 

(5th to 7th classes).  
 

Figure 5.4.7. Urban population ratio in four transition countries (1990 - 2007) 
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These differences in the long run patterns correlate more or less with the level of 

urbanization: it is relatively high for Belarus and Russia and in the long ran Makrov 

chains analysis predicts prevalence of small cities. Relatively low urbanization in Poland 

allows for use of potential of agglomeration economies and the dynamics of the “within” 

distribution confirms this by showing the picture of higher probability to move in the 

middle and big-size cities. The Hungarian distribution is between these extremes with 

more balanced distribution of cities between classes even in spite of some authors’ 

observation that “formulation of a proper regional policy in Hungary remained incomplete” 

(Horváth, 1999). This is not the case of Poland with strong regional programs and of 

Russia and Belarus with relatively high and high centralization respectfully.  
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5.5 Results concerning the factors driving the variation of the city size distribution 

 

To identify main drivers of city size distribution differences among examined 

countries and sequential policy implications we use panel data modeling to identify the 

determinants of the Pareto exponent variability. It is expected this should help us to 

understand better our results of studying cities distribution Pareto and non-Pareto 

behavior and their “within” movements. 

In order to explain the differences in the city distributions, we will estimate a 

panel data fixed effects model. To ensure valid statistical inference we will employ cross-

section dependence robust standard errors as explained in section 4.5.  

Variables of the panel for Belarus, Hungary, Poland and Russia 1970-2007 annual 

data are presented in the Table 5.5.1. 

 
Table 5.5.1. Description of the variables 

       
pareto_cons itζ  consensus estimate of the Pareto exponent for the country i at time t 
gdpa Real 2005 GDP ($ths) per country area (sq km)
raila Rail lines (total route-km) per country area (sq km)
mobpc Mobile cellular subscriptions per 100 people
telpc Telephone lines per 100 people

fri 

Freedom index. It is an average of Political Rights and Civil Liberties 
indices measured on a one-to-seven scale, with one representing the 
highest degree of Freedom and seven the lowest. 

prim1 Ratio of the lagest city population to the country population 
prim5 Ratio of the 5 lagest city population to the country population 
birthpc Live births per 1000 people
abortion ratio Abortions per 1000 live births

pop_log Log of country population

gdppc_log Log of country real 2005 GDP per capita ($)
 

Descriptive statistics for these variables are given in the Table 5.5.2. 
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Table 5.5.2. Summary statistics of the variables 

Variable    Mean Std. Dev. Min Max 

gdpa overall 387,1828 347,815 29,50352 1168,422 
  between   367,2832 39,88817 790,977 
  within   138,3204 61,55127 897,8645 
raila overall 4,822252 3,386811 0,462357 8,694053 
  between   3,860494 0,494237 8,234675 
  within   0,467875 3,114926 5,598575 
telpc overall 14,75578 10,61307 2,812716 37,75789 
  between   1,458964 13,18703 16,05529 
  within   10,53709 1,67023 36,57452 
mobpc overall 11,58132 27,41879 0 115,5061 
  between   4,849984 5,671009 17,3746 
  within   27,09302 -5,79328 116,4641 
fri overall 4,842105 2,112264 1 7 
  between   1,467838 3,552632 6,368421 
  within   1,68376 1,973684 7,289474 
prim1 overall 0,109544 0,062161 0,040217 0,203554 
  between   0,069467 0,043094 0,188427 
  within   0,014861 0,05976 0,147687 
prim5 overall 0,194024 0,080886 0,105446 0,340832 
  between   0,088904 0,116721 0,282678 
  within   0,023985 0,103625 0,252178 
ab_ratio overall 1033,031 721,8916 0,34 2541,2 
  between   759,8259 149,9337 1922,903 
  within   291,9902 28,72814 1651,328 
birthpc overall 13,34557 3,389471 8,134464 19,70818 
  between   0,988537 12,34449 14,69424 
  within   3,278834 7,74579 19,42145 
pop_log overall 17,11243 1,099001 16,01575 18,81603 
  between   1,263957 16,09978 18,7726 
  within   0,040979 16,98827 17,16126 
gdppc_~g overall 8,38544 0,459095 7,428048 9,298145 
  between   0,45203 7,761562 8,843453 
  within   0,237708 7,881959 9,01591 

 

The fixed effects model allows the intercept to vary across countries, while 

keeping the slope coefficients the same for all 4 countries.  The model can be made 

explicit for our application by inserting a 0-1 covariate for each of the countries except 

the one for which comparisons are to be made.  The estimated equation is: 



 77

 

itζ =β1+ β2EcGeoit+β3ICTit+β4SocPolitit+ β5YEARt+β6CONTRit + εit  (1) 

    

where itζ is the Pareto exponent, EcGeo is the vector of economic geography variables 

(real 2005 GDP ($ths) per country area (sq km), rail lines (total route-km) per country 

area (sq km)), ICT is the vector of information and communication technologies (mobile 

cellular subscriptions per 100 people, telephone lines per 100 people), SocPolit is a group 

of political and social variables (Freedom index defined as an average of Political Rights 

and Civil Liberties indices measured on a one-to-seven scale, with one representing the 

highest degree of Freedom and seven the lowest, Primacy index1 defined as a Ratio of 

the lagest city population to the country population, Primacy index1 defined as a Ratio of 

the 5 lagest city population to the country population, Abortions per 1000 live births). 

CONTROL is a set of variables controlling for the size of the country; here the control 

variables used are the log of the real 2005 GDP per capita in constant US dollars and the 

log of population.  

Table 5.5.3 presents the results using the OLS estimate of the Pareto exponent as 

the dependent variable. Column (1) is the model without country controls. Both economic 

geography variables, real GDP per sq km of the country area and rail lines density, 

appear to facilitate the more even distribution of the cities. We cannot say the same about 

the influence of the information and communication technologies: proxy variable 

illustrating a popularity of mobile cellular services provided to be a factor explaining the 

bigger agglomerations development. Again primacy measured as a dominance of the 5 

biggest cities has a negative effect on Pareto exponent thus contributing to less even 

development of urban systems. 

Index of political freedom enters with the theoretically predicted sign but is not 

significant at 5% level. It is interesting to note that the sign of the coefficient which held 

such a sensitive variable as abortion ratio (illustrating abortions per 1000 live births) 

confirms its connection with uneven urbanization. 
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Table 5.5.3. Panel estimation of the model (dependent variable - pareto_cons) 

Independent variable (1) (2) 
   
gdpa .00036626 .00011472 
 (5.19) *** (1.48) 
raila .06593139 .00897641 
 (4.17) *** (0.61) 
telpc .00108669 -.00468902 
 (1.03) (4.25) *** 
mobpc -.00079857 -.00153218 
 (3.56) *** (7.49) *** 
fri -.00590168 .0021019 
 (1.08) (0.46) 
prim1 .86097608 1.3577834 
 (0.45) (0.86) 
prim5 -3.012506 -3.7829106 
 (2.61) * (3.89) *** 
abortion ratio -.00004309 -2.226e-06 
 (2.30)* (0.13) 
pop_log  -1.1784986 
  (7.90) *** 
gdppc_log  .13604305 
  (3.97) *** 
year .0004134 .0100561 
 (0.26) (5.84) *** 
Constant .5110595 .84262033 
 (0.17) (0.32) 
R-squared 0.7406 0.8289 

 t statistics in parentheses. * Significant at 5%; ** significant at 1%; *** significant at 
0,1% level. 
 

Including controls for country size (column (2)) shows that the results of the 

economic geography variables are not robust. The same is stressed by Soo (2005) in his 

analysis of 44 countries panel. This contrasts with the strong robustness of the 

information and communication technologies variables. The only robustly significant 

variable from the social and political group is the level of primacy of the 5 biggest cities, 

and this enters with the sign we would expect from theoretical reasoning. Thus, these 

results suggest that political factors play a more important role than economic geography 

variables in driving variation in the Pareto exponent across countries. 
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The signs of all significant variables remain unchanged in both equations. 

Intraclass correlation (rho) suggests that almost all the variation in Pareto exponent is 

related to inter countries differences (see Tables A.5.5.1-2 in the Appendix). The F tests 

indicate that there are significant individual (country level) effects implying that pooled 

OLS would be inappropriate. Nevertheless we have run OLS and can see that the fixed 

effects estimates of the panel are considerably lower than the OLS estimates, suggesting 

that the OLS estimates were inflated by unobserved heterogeneity. The Hausman test 

rejects the null hypothesis that the coefficients estimated by the efficient random effects 

estimator are the same as the ones estimated by the consistent fixed effects estimator.  

Comparing our results to previous findings, one can see that our results are quite 

in line with findings of Soo (2005). At the same time, we have to some extent different 

results from those of Soo (2005) and Rosen and Resnick (1980), as they find that the 

Pareto exponent is positively related to total population. Our specification demonstrates 

larger R-squared compared to those of both Soo (2005) and Rosen and Resnick (1980) 

papers. 

6 Concluding Remarks 

This paper analyzed the dynamics of the city size distribution in CEE and CIS 

transition economies. Using a comprehensive unified database for CEE and CIS countries 

concerning city dynamics we tested the validity of Gibrat`s law employing panel unit root 

tests that takes into account the presence of cross-sectional dependence and Nadaraya-

Watson non-parametrical kernel regression. We also constructed a consensus estimate of 

the Pareto exponent of the city distribution using various econometric methods. In order 

to test for non-Pareto behavior of the distribution when all the cities in a country are 

considered, we employed the Weber-Fechner law, the logarithmic hierarchy model, and 

the log-normal distribution. Not only we consider various distributions, but also study the 

“within distribution” dynamics by analyzing the individual cities relative positions and 

movement speeds in the overall distribution using a Markov chains methodology. In 

order to explain the differences in the city distributions and obtain valid statistical 

inference, we estimated, using cross-section dependence robust standard errors, a panel 

data fixed effects model to control for unobserved country specific determinants. 
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To test the fulfillment of the Gibrat`s law we explored the dynamics of city 

growth rates in twelve transition economies from the former communist block, namely 

Russia, Ukraine, Poland, Romania, Belarus, Bulgaria, Hungary, Czech Republic, Slovak 

Republic, Estonia, Latvia and Lithuania. We employed both detailed city data in the 

period 2000-2009 for Poland, Belarus and Latvia, as well as data on cities over 100,000 

inhabitants in the period 1970-2007 for all the twelve countries. Regarding the detailed 

city data, the estimates of the pooled model, using both parametric and non-parametric 

methods, provide evidence for the rejection of Gibrat`s law in the three analyzed 

countries. On the other hand, when accounting for city specific effects, there is support 

for the acceptance of the law of proportional effect, with cities seemingly growing 

independent of their size. The latter evidence is also confirmed by the panel unit root 

tests. However, in the case of Belarus, as indicated by the non-parametric methods and 

confirmed by a deeper parametric analysis, there is a significant difference between the 

behavior of small and large cities, with the growth of large ones having a significant 

dependence on size. Overall, in the period 2000-2009 there is strong evidence that 

Gibrat`s law holds for Latvia and Poland. However, at least in the short run, a divergence 

pattern was detected in the case of Belarus.  The other major contribution resides in the 

analysis conducted for cities over 100,000 inhabitants using yearly data for the period 

1970-2007. Two main problems had to be addressed, respectively the existence of a 

potential break in the deterministic component of the growth rates of the cities in the 

former communist block, and missing observations given limited availability of data. 

After the influence of the change in the deterministic component is accounted for, there is 

strong support for the validity of Gibrat`s law in Poland, Romania, Belarus, Bulgaria, 

Former Czechoslovakia (Czech Republic, Slovak Republic), and the Baltic States 

(Estonia, Latvia and Lithuania), with weaker support for Hungary, Russia and Ukraine. In 

order to ensure robustness, the analysis has also been conducted using five years 

averages, with the results largely confirming the findings using yearly data. Overall, the 

findings indicate that there is strong support for accepting Gibrat`s law in Poland, 

Romania, Belarus, Bulgaria, Hungary, Former Czechoslovakia (Czech Republic, Slovak 

Republic), and the Baltic States (Estonia, Latvia and Lithuania). 
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Regarding the city size distribution, for the large majority of countries and time 

periods the estimated Pareto coefficient is higher than one. However, one can not reject 

that the Pareto exponent is significantly different from one, and therefore it seems that the 

Zipf Law holds. This is in line with other studies in the literature that obtained favorable 

evidence of Zipf’s Law in the upper-tail distribution of cities.  The distribution of the size 

of the largest cities of Russia, Belarus, Central Asia, Caucasus, Poland and Hungary is 

consistent with Zipf's law. This is natural, as if, there are mega-cities whose size is very 

large compared with the size of other cities, Zipf's law is performed automatically. It all 

depends on the choice of the truncation of the tail distribution; to measure the tail indices 

of the distributions are approximately equal to one. These mega-cities of Russia is 

Moscow and St. Petersburg, in Belarus - Minsk, in Central Asia - Tashkent, in the 

Caucasus - Baku. 

The distribution of the size of the size (all) cities of Russia, Belarus, Central Asia, 

Caucasus, Poland and Hungary satisfies the law of Weber-Fechner except the largest 

mega-cities. This fact is interesting because in contrast to Zipf's law Weber-Fechner law 

holds for all localities, not only for the largest cities. On the contrary, most large cities do 

not obey the Weber-Fechner. Changing the model of Weber-Fechner allows us to study 

the influence of time, as well as various political factors (shock) on the rate of urban 

development. 

The Great October Revolution and World War II led to an increase in Russian 

cities due to influx of rural population in the city. When Stalin began forced urbanization, 

people from villages in the 30 th, 40 th, 50 th years, went into the city. The collapse of 

the USSR led to relative reduction cities of Central Asia and Caucasus as a result of 

relocation of non-indigenous population in rural areas of Russia. The collapse of the 

USSR at the rate of urban growth in the Belarus statistically significant effects are not 

influence. Apparently, Belarus has not experienced the shocking collapse of the lifestyle 

as a result of the collapse of the Soviet Union, as other CIS countries. 

The First World War did not have a statistically significant impact on the 

development of towns in Hungary, the Second World War gave the effect of reducing the 

overall scale of cities and growth of middle-sized and small cities. Post-Communist 

regime for the overall scale of the cities were not affected, but gave the effect of reducing 
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the rate of urban growth. The Distribution of cities in Russia, Belarus, Central Asia, 

Caucasus, Poland and Hungary is best described by models based on the hierarchy of the 

logarithms of their sizes. This phenomenon needs to be sociological (and economic) 

explanation for the analogy explanation made Gabaix for Zipf's law in (Gabaix, X. 

(1999), “Zipf’s Law for cities: an Explanation”, Quarterly Journal of Economics.). 

To analyze the “within distribution” movement of individual cities, we consider 

time dynamics of urban systems of four countries: Poland (890 cities for period 1961 - 

2004), Belarus (207 cities for period 1970 - 2009), Hungary (237 cities for period 1880 - 

2001), Russia (479 cities for period 1897 - 2002) and presence of spatial autocorrelation 

of Belarusian cities. 

The Markov chains analysis shows a low interclass mobility, i.e., a high 

persistence of cities to stay in their own class over the whole period. In general, the 

largest and smallest cities display higher persistence than the medium-sized cities, which 

have more probability of moving to smaller categories. In general terms, movements up 

are slower than movements down, especially for high-size classes.  

Comparing ergodic distributions and mean first passage time matrices for Belarus 

and Poland we may conclude that in the future 56% of Belarusian cities will be smaller 

than 10% of the Belarusian average and passage of cities from higher classes to lower is 

more probable. Future distribution of Polish cities is an opposite to Belarusian pattern and 

tends to big cities (up to 64% of all Polish cities will be greater than the Polish average 

city size). Russian cities will evolve mostly similar as Belarusian pattern, but there is a 

difference concerning 7 class. Russian 7 class will be greater than Belarusian one.  

The difference in the models of urban system development and the forms of 

cities’ convergence for Belarus on the one part and Poland on the other becomes obvious 

after comparison of initial versus ergodic distribution patterns matching. Concentration of 

the frequencies in the class of small cities is registered for Belarus and Russia, while one 

can see the opposite for Poland. The behavior of Hungarian initial and ergodic 

distributions are more stable and form-preserving among all others and look like 

Gaussian distributions with maximums at medium classes: 5th class for initial distribution 

and 4th class for ergodic one. It shows a shift towards one class smaller cities and increase 

of the distribution variance.  
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Spatial analysis of Belarusian cities underlines existence of divergence of the 

urban system in space, not only in time. It may be a consequence of a significant role of 

the state in the economy and concentration of resources in big cities. As a result we have 

a designed hierarchy of cities or at least the hierarchy which is shaped for the most part 

not by market forces but rather by visible hand of the state. This conclusion is supported 

by our results which indicate no strong support for Gibrat`s model of urban system 

development in the case of Belarus. Revealed doubts in cities proportionate growth in 

Belarus coincides with presence of spatial autocorrelation in urban systems. Some 

additional comparisons of the pre and post 1989 development of the examined countries 

with detailed data show that in a historical perspective the patterns of urbanization for 

them are quite similar. However, after 1989 the picture is quite different: the dynamics of 

urbanization is significant only in Belarus. Mentioned above differences in the long run 

patterns of urban system distributions correlate with the level of urbanization: it is 

relatively high for Belarus and Russia and Makrov’s chains analysis predicts prevalence 

of small cities in the future. Rather low urbanization level in Poland allows for use of 

agglomeration economies and the dynamics of the “within” distribution confirms this by 

showing the picture of higher probability to move in the middle and big-size cities. The 

Hungarian distribution is between these extremes with more balanced distribution of 

cities between classes even in spite of an expert's opinion that proper regional policy in 

Hungary remained incomplete. This is not the case of Poland with strong regional 

programs and of Russia and Belarus with relatively high and high centralization 

respectfully. This gives us the opportunity to propose that market forces via mechanism 

of spatial competition lead to more even distribution of population then development and 

implementation of intentional regional policies.  

The main value added of our research is looking at the cities distribution from 

different perspectives (different theoretical and empirical laws of distributions, within 

dynamics). To answer the question about the sources of cities distribution differences 

among countries we use panel data techniques. It is expected this should help us to 

understand our results of Pareto and non-Pareto behavior of cities distributions and their 

within movements. Urban and regional policy implications could be based on derived 

conclusions. 
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Fixed effects model estimations controlling for country size show that economic 

geography variables are not robust what is in agreement with Soo (2005). This contrasts 

with the strong robustness of the information and communication technologies variables. 

The only robustly significant variable from the social and political group is the level of 

primacy of the 5 biggest cities which enters with the negative sign. This result confirms 

that political factors play a more important role than economic geography variables in 

driving variation in the Pareto exponent across countries (assuming this variable is a good 

proxy for the level of centralization and state intervention). The sign of the primacy 

variable coefficient indicates that the lower political intervention means the more even 

population distribution. Our general conclusion thus is that political intervention with 

significant probability takes the form of the expansion of the largest cities and the size 

distribution becomes more unequal. 
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Appendix 
 
 

Table A.5.1.1  Summary statistics of the data employed in testing the validity of Gibrat`s Law 

Russia Ukraine Poland Romania Belarus Bulgaria Hungary Fr.  Czechosl. Baltic States Poland Belarus Latvia
no. obs. 3644 741 995 554 351 226 313 197 260 no. obs. 2000 500 300
period 1970 - 2007 1970 - 2007 1970 - 2007 1970 - 2007 1970 - 2007 1970 - 2007 1970 - 2007 1970 - 2007 1970 - 2007 period 2000-2009 2000-2009 2000-2009
T dim. 24 17 27 26 27 28 38 25 32 T dim. 10 10 10
CS dim. 164 51 43 26 15 11 9 10 9 CS dim. 200 50 30
Average 416,797 401,355 285,662 281,715 321,515 297,009 370,851 360,179 331,561 Average 90,701 120,767 48,314
Std. dev. 816,582 437,791 282,120 368,143 378,803 300,340 594,286 330,581 235,663 Std. dev. 159,557 255,850 130,224
Min 90,000 100,000 96,648 99,494 91,300 96,099 100,100 94,436 100,431 Min 21,710 15,100 7,943
Max 10,456,490 2,676,789 1,704,717 2,127,194 1,797,500 1,155,403 2,116,548 1,216,568 917,000 Max 1,709,781 1,829,100 766,381

Data on cities over 100,000 inhabitants Detailed city data

 
 

Table A.2  Growth regression results using detailed city data in Belarus for the period 
2000-2009 

all sample large cities medium cities small cities
ln(Size) 0.0015 0.0030 0.0006 0.0085

[0.0008] [0.0007] [0.0008] [0.0064]
(0.0461) (0.0043) (0.4438) (0.2062)

d_medium -0.0035
[0.0016]
(0.0287)

d_small -0.0050
[0.0014]
(0.0011)

HWH 7.8100 0.7600 1.7900
(0.0267) (0.3900) (0.2028)

d_medium is a dummy variable controlling for medium cities and d_small a dummy 
variable contolling for small ones; Driscoll - Kraay  robust standard errors are 
reported in squared parentheses; p-values are reported in round parentheses; HWH is 
the modified Hausman (1978) test.
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Figure A.5.1.1.  Non-parametric estimation using detailed city data in Poland, Belarus and Latvia  

for the period 2000-2009 
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Figure A.5.1.2. Non-parametric estimation for cities over 100,000 inhabitants for the period 1970-2007 
Mean growth
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Figure A.5.1.3. Non-parametric estimation for cities over 100,000 inhabitants using five years averages  
for the period 1970-2007
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Figure A.5.1.4. The non-parametrical estimates of the potential shift in the deterministic component of growth rates using five years averages
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Table A.5.2.1 The estimates for the Pareto coefficient of city size distribution in CEE and CIS countries 
Year Poland Romania Hungary Bulgaria Belarus Former 

Yugoslavia 
Former 

Czechoslovakia 
Baltic States Ukraine Russia 

 Reg. MLE Reg. MLE Reg. MLE Reg. MLE Reg. MLE Reg. MLE Reg. MLE Reg. MLE Reg. MLE Reg. MLE 
1970 1.421 1.199 1.275 2.066 0.743 1.336 1.168 1.466 1.399 1.479 1.271 1.243 1.157 1.413 1.107 0.996 1.168 1.021 1.325 1.066 
 [0.419] [0.25] [0.499] [0.573] [0.428] [0.545] [0.674] [0.598] [0.659] [0.492] [0.635] [0.439] [0.668] [0.576] [0.639] [0.406] [0.264] [0.163] [0.168] [0.095] 
1971 1.451 1.215 1.300 1.664 0.752 1.333 1.169 1.466 1.399 1.479 1.360 1.650 1.172 1.433 1.104 0.988 1.168 1.021 1.325 1.066 
 [0.418] [0.248] [0.491] [0.444] [0.434] [0.544] [0.675] [0.598] [0.659] [0.492] [0.641] [0.549] [0.676] [0.584] [0.637] [0.403] [0.264] [0.163] [0.168] [0.095] 
1972 1.451 1.215 1.305 1.668 0.757 1.344 1.190 1.488 1.399 1.479 1.360 1.650 1.190 1.426 1.114 0.988 1.168 1.021 1.325 1.066 
 [0.418] [0.248] [0.493] [0.445] [0.436] [0.548] [0.635] [0.562] [0.659] [0.492] [0.641] [0.549] [0.687] [0.582] [0.643] [0.403] [0.264] [0.163] [0.168] [0.095] 
1973 1.421 1.170 1.330 1.650 0.764 1.298 1.193 1.518 1.399 1.479 1.360 1.650 1.190 1.426 1.076 1.107 1.168 1.021 1.325 1.066 
 [0.401] [0.233] [0.485] [0.426] [0.44] [0.529] [0.637] [0.573] [0.659] [0.492] [0.641] [0.549] [0.687] [0.582] [0.575] [0.418] [0.264] [0.163] [0.168] [0.095] 
1974 1.421 1.193 1.334 1.678 0.768 1.313 1.196 1.535 1.399 1.479 1.358 1.658 1.213 1.416 1.086 1.128 1.168 1.021 1.325 1.066 
 [0.401] [0.238] [0.486] [0.433] [0.443] [0.535] [0.639] [0.58] [0.659] [0.492] [0.64] [0.552] [0.7] [0.578] [0.58] [0.426] [0.264] [0.163] [0.168] [0.095] 
1975 1.421 1.193 1.334 1.678 0.773 1.326 1.185 1.483 1.399 1.479 1.358 1.658 1.213 1.416 1.144 1.188 1.168 1.021 1.325 1.066 
 [0.401] [0.238] [0.486] [0.433] [0.446] [0.541] [0.633] [0.56] [0.659] [0.492] [0.64] [0.552] [0.7] [0.578] [0.611] [0.448] [0.264] [0.163] [0.168] [0.095] 
1976 1.413 1.173 1.334 1.678 0.777 1.339 1.174 1.435 1.399 1.479 1.358 1.658 1.235 1.375 1.082 1.128 1.168 1.021 1.325 1.066 
 [0.377] [0.221] [0.486] [0.433] [0.448] [0.546] [0.627] [0.542] [0.659] [0.492] [0.64] [0.552] [0.712] [0.561] [0.578] [0.426] [0.264] [0.163] [0.168] [0.095] 
1977 1.394 1.300 1.352 1.460 0.820 1.233 1.185 1.483 1.399 1.479 1.358 1.658 1.202 1.360 1.086 1.125 1.168 1.021 1.325 1.066 
 [0.343] [0.226] [0.45] [0.344] [0.438] [0.465] [0.633] [0.56] [0.659] [0.492] [0.64] [0.552] [0.693] [0.555] [0.58] [0.425] [0.264] [0.163] [0.168] [0.095] 
1978 1.396 1.301 1.378 1.431 0.866 1.428 1.183 1.438 1.399 1.479 1.358 1.658 1.202 1.360 1.070 1.134 1.168 1.021 1.325 1.066 
 [0.343] [0.226] [0.447] [0.328] [0.433] [0.504] [0.632] [0.543] [0.659] [0.492] [0.64] [0.552] [0.693] [0.555] [0.534] [0.4] [0.264] [0.163] [0.168] [0.095] 
1979 1.396 1.301 1.378 1.431 0.866 1.430 1.183 1.438 1.256 1.360 1.358 1.658 1.097 0.949 1.062 1.133 1.165 1.032 1.260 1.030 
 [0.343] [0.226] [0.447] [0.328] [0.432] [0.505] [0.632] [0.543] [0.561] [0.43] [0.64] [0.552] [0.586] [0.358] [0.531] [0.4] [0.254] [0.159] [0.15] [0.086] 
1980 1.407 1.335 1.378 1.431 0.870 1.455 1.187 1.505 1.256 1.360 1.358 1.658 1.106 0.951 1.063 1.135 1.165 1.032 1.260 1.030 
 [0.327] [0.219] [0.447] [0.328] [0.434] [0.514] [0.634] [0.568] [0.561] [0.43] [0.64] [0.552] [0.591] [0.359] [0.531] [0.401] [0.254] [0.159] [0.15] [0.086] 
1981 1.420 1.344 1.418 1.528 0.873 1.469 1.187 1.505 1.236 1.318 1.256 1.405 1.106 0.951 1.067 1.126 1.232 1.010 1.295 1.046 
 [0.33] [0.22] [0.46] [0.35] [0.436] [0.519] [0.634] [0.568] [0.552] [0.416] [0.474] [0.375] [0.591] [0.359] [0.533] [0.398] [0.259] [0.15] [0.15] [0.085] 
1982 1.427 1.315 1.431 1.229 0.873 1.469 1.183 1.229 1.236 1.318 1.284 1.443 1.110 0.940 1.064 1.120 1.232 1.010 1.295 1.046 
 [0.327] [0.213] [0.452] [0.274] [0.436] [0.519] [0.591] [0.434] [0.552] [0.416] [0.485] [0.385] [0.593] [0.355] [0.531] [0.395] [0.259] [0.15] [0.15] [0.085] 
1983 1.431 1.324 1.431 1.229 0.879 1.478 1.183 1.229 1.209 1.179 1.284 1.443 1.110 0.938 1.066 1.113 1.183 0.964 1.267 1.064 
 [0.328] [0.214] [0.452] [0.274] [0.439] [0.522] [0.591] [0.434] [0.515] [0.355] [0.485] [0.385] [0.593] [0.354] [0.532] [0.393] [0.246] [0.142] [0.15] [0.089] 
1984 1.428 1.316 1.416 1.316 0.916 1.500 1.228 1.514 1.209 1.179 1.256 1.405 1.113 0.943 1.066 1.113 1.183 0.964 1.267 1.064 
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 [0.323] [0.21] [0.437] [0.287] [0.431] [0.499] [0.548] [0.478] [0.515] [0.355] [0.474] [0.375] [0.594] [0.356] [0.532] [0.393] [0.246] [0.142] [0.15] [0.089] 
1985 1.434 1.308 1.424 1.316 0.918 1.498 1.221 1.485 1.266 1.104 1.256 1.405 1.073 1.028 1.064 1.103 1.175 0.953 1.263 1.050 
 [0.324] [0.209] [0.439] [0.287] [0.432] [0.499] [0.546] [0.469] [0.539] [0.332] [0.474] [0.375] [0.536] [0.363] [0.532] [0.39] [0.247] [0.141] [0.149] [0.087] 
1986 1.436 1.330 1.416 1.316 0.919 1.500 1.226 1.499 1.207 1.218 1.256 1.405 1.073 1.028 1.062 1.090 1.175 0.953 1.263 1.053 
 [0.321] [0.21] [0.437] [0.287] [0.433] [0.499] [0.548] [0.473] [0.514] [0.367] [0.474] [0.375] [0.536] [0.363] [0.531] [0.385] [0.247] [0.141] [0.149] [0.088] 
1987 1.441 1.330 1.424 1.316 0.920 1.506 1.221 1.485 1.209 1.221 1.256 1.405 1.082 1.250 1.065 1.089 1.174 0.918 1.261 1.011 
 [0.322] [0.21] [0.439] [0.287] [0.433] [0.502] [0.546] [0.469] [0.515] [0.368] [0.474] [0.375] [0.483] [0.395] [0.532] [0.384] [0.242] [0.133] [0.147] [0.083] 
1988 1.437 1.331 1.424 1.316 0.920 1.523 1.226 1.499 1.209 1.221 1.256 1.405 1.081 1.246 1.065 1.089 1.174 0.918 1.261 1.011 
 [0.317] [0.207] [0.439] [0.287] [0.433] [0.507] [0.548] [0.473] [0.515] [0.368] [0.474] [0.375] [0.483] [0.394] [0.532] [0.384] [0.242] [0.133] [0.147] [0.083] 
1989 1.437 1.331 1.387 1.330 0.920 1.523 1.248 1.546 1.209 1.221 1.256 1.405 1.081 1.246 1.065 1.089 1.174 0.918 1.136 0.379 
 [0.317] [0.207] [0.418] [0.283] [0.433] [0.507] [0.558] [0.488] [0.515] [0.368] [0.474] [0.375] [0.483] [0.394] [0.532] [0.384] [0.242] [0.133] [0.124] [0.029] 
1990 1.341 1.280 1.351 1.208 0.923 1.561 1.251 1.550 1.183 1.106 1.256 1.405 1.079 1.245 1.102 1.330 1.205 0.868 1.291 1.111 
 [0.289] [0.195] [0.417] [0.263] [0.435] [0.52] [0.559] [0.49] [0.482] [0.319] [0.474] [0.375] [0.482] [0.393] [0.492] [0.42] [0.266] [0.135] [0.136] [0.083] 
1991 1.439 1.404 1.351 1.208 0.923 1.561 1.251 1.550 1.183 1.106 1.291 1.473 1.080 1.247 1.110 1.320 1.205 0.868 1.291 1.111 
 [0.31] [0.214] [0.417] [0.263] [0.435] [0.52] [0.559] [0.49] [0.482] [0.319] [0.418] [0.337] [0.482] [0.394] [0.496] [0.417] [0.266] [0.135] [0.136] [0.083] 
1992 1.439 1.404 1.443 1.400 0.927 1.591 1.204 1.416 1.183 1.115 1.354 1.580 1.077 1.254 1.131 1.401 1.210 1.018 1.190 0.472 
 [0.31] [0.214] [0.4] [0.274] [0.436] [0.53] [0.567] [0.472] [0.483] [0.321] [0.417] [0.344] [0.481] [0.396] [0.482] [0.422] [0.241] [0.143] [0.134] [0.037] 
1993 1.442 1.385 1.402 1.339 0.929 1.600 1.214 1.403 1.175 1.135 1.361 1.523 1.077 1.254 1.134 1.366 1.204 0.979 1.190 0.472 
 [0.314] [0.213] [0.396] [0.267] [0.438] [0.533] [0.543] [0.443] [0.46] [0.314] [0.42] [0.332] [0.481] [0.396] [0.483] [0.411] [0.238] [0.137] [0.134] [0.037] 
1994 1.439 1.404 1.451 1.333 0.931 1.634 1.213 1.425 1.175 1.135 1.341 1.509 1.055 1.133 1.135 1.353 1.204 0.979 1.229 1.063 
 [0.31] [0.214] [0.41] [0.266] [0.439] [0.544] [0.542] [0.45] [0.46] [0.314] [0.413] [0.329] [0.497] [0.377] [0.484] [0.407] [0.238] [0.137] [0.134] [0.082] 
1995 1.442 1.385 1.455 1.321 0.933 1.679 1.214 1.403 1.175 1.135 1.335 1.503 1.059 1.206 1.130 1.310 1.204 0.979 1.226 1.046 
 [0.314] [0.213] [0.411] [0.264] [0.44] [0.559] [0.543] [0.443] [0.46] [0.314] [0.411] [0.327] [0.473] [0.381] [0.481] [0.394] [0.238] [0.137] [0.135] [0.081] 
1996 1.442 1.385 1.455 1.318 0.936 1.700 1.211 1.440 1.175 1.135 1.319 1.530 1.053 1.129 1.134 1.215 1.210 0.993 1.226 1.046 
 [0.314] [0.213] [0.411] [0.263] [0.441] [0.566] [0.541] [0.455] [0.46] [0.314] [0.406] [0.333] [0.496] [0.376] [0.507] [0.384] [0.242] [0.14] [0.135] [0.081] 
1997 1.449 1.390 1.469 1.590 0.937 1.730 1.122 1.515 1.168 1.219 1.325 1.545 1.051 1.131 1.106 1.106 1.210 0.993 1.226 1.046 
 [0.316] [0.214] [0.424] [0.324] [0.441] [0.576] [0.56] [0.535] [0.441] [0.325] [0.321] [0.264] [0.495] [0.376] [0.521] [0.368] [0.242] [0.14] [0.135] [0.081] 
1998 1.449 1.390 1.475 1.598 0.940 1.755 1.122 1.515 1.168 1.219 1.328 1.554 1.051 1.130 1.106 1.120 1.210 0.993 1.226 1.046 
 [0.316] [0.214] [0.425] [0.326] [0.443] [0.584] [0.56] [0.535] [0.441] [0.325] [0.322] [0.266] [0.495] [0.376] [0.521] [0.373] [0.242] [0.14] [0.135] [0.081] 
1999 1.452 1.391 1.475 1.598 0.943 1.768 1.122 1.515 1.193 1.330 1.323 1.564 1.051 1.130 1.109 1.113 1.219 0.989 1.230 1.045 
 [0.316] [0.214] [0.425] [0.326] [0.444] [0.589] [0.56] [0.535] [0.435] [0.343] [0.325] [0.272] [0.495] [0.376] [0.522] [0.37] [0.248] [0.142] [0.136] [0.082] 
2000 1.453 1.388 1.475 1.598 0.946 1.780 0.760 1.275 1.196 1.303 1.588 1.774 1.105 0.909 1.125 1.124 1.217 0.978 1.230 1.045 
 [0.317] [0.214] [0.425] [0.326] [0.445] [0.593] [0.537] [0.637] [0.436] [0.336] [0.39] [0.308] [0.59] [0.343] [0.53] [0.374] [0.248] [0.141] [0.136] [0.082] 
2001 1.453 1.388 1.476 1.586 0.969 1.693 0.770 1.235 1.196 1.303 1.586 1.773 1.111 0.923 1.123 1.185 1.242 0.970 1.230 1.045 
 [0.317] [0.214] [0.426] [0.323] [0.457] [0.564] [0.544] [0.617] [0.436] [0.336] [0.39] [0.308] [0.593] [0.348] [0.529] [0.394] [0.261] [0.144] [0.136] [0.082] 
2002 1.444 1.318 1.405 1.461 0.972 1.685 1.155 1.234 1.196 1.303 1.306 1.380 1.113 0.921 1.124 1.193 1.242 0.970 1.224 1.043 
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 [0.322] [0.208] [0.397] [0.292] [0.457] [0.561] [0.577] [0.436] [0.436] [0.336] [0.435] [0.325] [0.594] [0.347] [0.529] [0.397] [0.261] [0.144] [0.136] [0.082] 
2003 1.433 1.323 1.454 1.509 0.973 1.668 1.152 1.333 1.184 1.213 1.430 1.603 1.060 1.220 1.124 1.200 1.242 0.970 1.196 1.000 
 [0.312] [0.204] [0.411] [0.301] [0.458] [0.555] [0.615] [0.503] [0.447] [0.324] [0.396] [0.314] [0.474] [0.385] [0.529] [0.399] [0.261] [0.144] [0.13] [0.077] 
2004 1.456 1.388 1.454 1.509 0.974 1.660 1.152 1.333 1.175 1.203 1.430 1.603 1.059 1.221 1.121 1.213 1.242 0.970 1.233 1.081 
 [0.329] [0.222] [0.411] [0.301] [0.459] [0.553] [0.615] [0.503] [0.444] [0.321] [0.396] [0.314] [0.473] [0.386] [0.528] [0.404] [0.261] [0.144] [0.132] [0.081] 
2005 1.456 1.388 1.448 1.510 0.974 1.663 1.131 1.290 1.175 1.203 1.274 1.338 1.057 1.225 1.119 1.221 1.244 0.965 1.226 1.076 
 [0.329] [0.222] [0.409] [0.301] [0.459] [0.554] [0.604] [0.487] [0.444] [0.321] [0.437] [0.324] [0.472] [0.387] [0.527] [0.406] [0.265] [0.145] [0.134] [0.083] 
2006 1.445 1.398 1.445 1.509 0.974 1.664 1.125 1.276 1.168 1.198 1.254 1.321 1.057 1.224 1.118 1.236 1.244 0.965 1.224 1.098 
 [0.327] [0.223] [0.408] [0.301] [0.459] [0.554] [0.601] [0.482] [0.441] [0.32] [0.43] [0.32] [0.472] [0.387] [0.527] [0.412] [0.265] [0.145] [0.13] [0.082] 
2007 1.445 1.398 1.442 1.583 0.974 1.663 1.121 1.269 1.151 1.220 1.258 1.391 1.099 0.910 1.114 1.249 1.241 0.976 1.229 1.078 
 [0.327] [0.223] [0.416] [0.323] [0.459] [0.554] [0.598] [0.479] [0.435] [0.326] [0.419] [0.327] [0.587] [0.343] [0.525] [0.416] [0.264] [0.147] [0.132] [0.082] 
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Table A.5.2.1.  The dynamics of the regression estimate of the Pareto exponent 

0.50

0.75

1.00

1.25

1.50

1.75

1970 1975 1980 1985 1990 1995 2000 2005
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1970 1975 1980 1985 1990 1995 2000 2005

a. Russian Federation b. Ukraine 

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

1970 1975 1980 1985 1990 1995 2000 2005
0.30

0.65

1.00

1.35

1.70

2.05

1970 1975 1980 1985 1990 1995 2000 2005

c. Poland d. Romania 

0.00

0.40

0.80

1.20

1.60

2.00

2.40

1970 1975 1980 1985 1990 1995 2000 2005
-0.20

0.10

0.40

0.70

1.00

1.30

1.60

1.90

2.20

2.50

2.80

1970 1975 1980 1985 1990 1995 2000 2005

e. Former Yugoslavia f. Belarus 

-0.20

0.20

0.60

1.00

1.40

1.80

2.20

1970 1975 1980 1985 1990 1995 2000 2005
-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1970 1975 1980 1985 1990 1995 2000 2005

g. Baltic States h. Hungary 



 104

-0.20

0.20

0.60

1.00

1.40

1.80

2.20

2.60

1970 1975 1980 1985 1990 1995 2000 2005
-0.40

0.20

0.80

1.40

2.00

2.60

1970 1975 1980 1985 1990 1995 2000 2005

i. Former Czechoslovakia j. Bulgaria 
 
 
 

Table A.5.2.1.  The dynamics of the difference between the regression and the MLE estimates of the 
Pareto exponent 
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Table A5.3.1. Parameters of regression of logarithms of city ranks i for largest cities 
in Russia (with the population above  100 thousand people) against the logarithms of 

city size  Ni: 
ln(i-1/2) = a - ζ·ln Ni 

Dependent variable Logarithm of city ranks ln(i-1/2) 
Years 1897 1926 1939 1959 1970 

Independent 
variable Regression coefficient 

Constant 
 

lnNi 
 

R2 
F(R2) 

5.589910 
(0.748386) 
-0.824135 
(0.135973) 

0.860 
36.74 

7.920504 
(0.487601) 
-1.113586 
(0.090925) 

0.893 
150.00 

9.900424 
(0.258400) 
-1.275446 
(0.046920) 

0.938 
738.94 

10.59869 
(0.185453) 
-1.303802 
(0.032391) 

0.961 
1620.21 

10.96055 
(0.209420) 
-1.297354 
(0.035298) 

0.949 
1350.90 

Sample size n=8 n=20 n=51 n=66 n=75 
Years 1979 1989 2002 2003 2004 

Independent 
variable Regression coefficient 

Constant 
 

lnNi 
 

R2 
F(R2) 

11.01538 
(0.116334) 
-1.266171 
(0.020597) 

0.965 
3778.86 

11.00539 
(0.124625) 
-1.237672 
(0.021873) 

0.956 
3201.90 

10.92802 
(0.113270) 
-1.227856 
(0.020085) 

0.960 
3737.37 

10.92045 
(0.113024) 
-1.226676 
(0.020043) 

0.960 
3745.54 

10.93742 
(0.112480) 
-1.229840 
(0.019950) 

0.960 
3800.33 

Sample size n=138 n=151 n=159 n=159 n=159 
Years 2005 2006 2007 2008 2009 

Independent 
variable Regression coefficient 

Constant 
 

lnNi 
 

R2 
F(R2) 

10.96038 
(0.108596) 
-1.233169 
(0.019318) 

0.962 
4075.05 

10.97003 
(0.109227) 
-1.234586 
(0.019426) 

0.962 
4039.18 

10.96880 
(0.108756) 
-1.234937 
(0.019351) 

0.962 
4072.86 

10.96678 
(0.108854) 
-1.234633 
(0.019369) 

0.962 
4063.22 

10.95741 
(0.107797) 
-1.232836 
(0.019195) 

0.962 
4125.06 

Sample size n=163 n=163 n=163 n=163 n=164 
 

Table A5.3.2. Parameters of the regression of the logarithm of the population of 
Russian cities (except for Moscow and Saint-Petersburg) against their  rank for the 

years 1897-2009 

Dependent 
Variable Logarithm of the population Ni 

Independent 
variable 

Regression coefficient 
1897 1926 1939 1959 1970 1979 

Const 
i 

R2... 
F(R2) 

5.078591 
-0.040165 

0.848 
518.01 

5.819091 
-0.049725 

0.888 
562.24 

6.462330 
-0.041254 

0.857 
449.02 

6.801082 
-0.036110 

0.854 
439.91 

6.959886 
-0.030297 

0.900 
677.90 

6.715370 
-0.016405 

0.943 
2610.93 

Included 95 73 77 77 77 159 
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observations 
 

Dependent 
Variable Logarithm of the population Ni 

Independent 
variable 

Regression coefficient 
1989 2002 2003 2004 2005 2006 

Const 
i 

R2... 
F(R2) 

6.823465 
-0.015847 

0.948 
2894.26 

6.761217 
-0.015022

0.956 
3478.67 

6.757072 
-0.014964 

0.956 
3488.50 

6.755904 
-0.014973 

0.956 
3423.99 

6.736914 
-0.014572 

0.950 
3062.22 

6.736782 
-0.014553 

0.951 
3082.90 

Included 
observations 162 161 162 161 162 162 

 

Dependent 
Variable Logarithm of the population Ni 

Independent 
variable 

Regression coefficient 
2007 2008 2009 

Const 
i 

R2... 
F(R2) 

6.733465 
-0.014545 

0.950 
3059.02 

6.733453 
-0.014547

0.951 
3073.39 

6.734632 
-0.014545 

0.950 
3046.31 

Included 
observations 162 162 162 

 
Note: The coefficients are significant if the significance level is above  0.00005. R2 is 
significant if the significance level is not larger than 0.0000005. 
 

Table A5.3.3. Parameters of regression of c and k agaist  ranks Years and 
political variables P1, P2, P3 for the cities in Russia 

Dependent 
variable 

c c c c k Model 1 Model 2 Model 3 Model 4 
Independent 

variable Regression coefficient Regression 
coefficient 

Const 
 
t 
 

P1 
 

P2 
 

P3 
 

R2 
F(R2) 
DW 

-4.889177 
(11.36847) 
0.005254 

(0.005992) 
0.875585 

(0.280179) 
0.464865 

(0.281449) 
-0.245474 
(0.208275) 

0.933 
35.09 
2.613 

5.078591 
(0.146145) 

--- 
 

1.062120 
(0.178990) 
0.630060 

(0.111620) 
--- 
 

0.923 
72.02 
2.743 

-31.47273 
(4.668597) 
0.019399 

(0.002392) 
--- 
 

--- 
 

-0.687989 
(0.163097) 

0.869 
39.64 
1.179 

--- 
 

0.002678 
(7.55E-05) 
0.966226 

(0.177637) 
0.572450 

(0.124103) 
-0.164946 
(0.087757) 

0.932 
--- 

2.859 

-1.349853 
(0.171911) 
0.000690 

(9.06E-05) 
-0.029829 
(0.004237) 
-0.008002 
(0.004256) 
-0.011622 
(0.003149) 

0.977 
106.57 
2.329 

Sample size n=15 
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Note: Standard errors of the regression coefficients are given in brackets.  
Table A5.3.4. Parameters of the regression of the logarithm of the population of 
Belarusian cities against their  rank (lnSize=C+к Rank) for the years 1970-2009 

Year
s N Variabl

e 
Coefficien

t 
Std.Erro

r 

t-
statisti

c 
p R2 

F-
statisti

c 

1970 19
8 

Rank -0.018014 0.0006 -29.560 0.000
0 0.81

7 873.80 
C 3.656932 0.0699 52.297 0.000

0 

1979 20
0 

Rank -0.019605 0.0006 -33.610 0.000
0 0.85

1 
1129.6

2 C 4.017004 0.0676 59.418 0.000
0 

1989 20
2 

Rank -0.020990 0.0006 -37.683 0.000
0 0.87

7 
1420.0

2 C 4.333892 0.0652 66.468 0.000
0 

1990 20
2 

Rank -0.021041 0.0006 -37.946 0.000
0 0.87

8 
1439.9

1 C 4.366013 0.0649 67.264 0.000
0 

1991 20
2 

Rank -0.021133 0.0006 -38.365 0.000
0 0.88

0 
1471.9

0 C 4.382248 0.0645 67.963 0.000
0 

1992 20
2 

Rank -0.021238 0.0006 -38.535 0.000
0 0.88

1 
1484.9

3 C 4.398832 0.0645 68.183 0.000
0 

1993 20
2 

Rank -0.021356 0.0005 -39.016 0.000
0 0.88

4 
1522.2

2 C 4.416907 0.0641 68.936 0.000
0 

1994 20
2 

Rank -0.021437 0.0005 -39.377 0.000
0 0.88

6 
1550.5

5 C 4.432715 0.0637 69.557 0.000
0 

1995 20
2 

Rank -0.021431 0.0005 -39.341 0.000
0 0.88

6 
1547.7

4 C 4.437681 0.0638 69.593 0.000
0 

1997 20
3 

Rank -0.021565 0.0005 -40.505 0.000
0 0.89

1 
1640.6

8 C 4.457189 0.0626 71.168 0.000
0 

1998 20 Rank -0.021255 0.0005 -39.865 0.000 0.88 1589.2
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5 0 7 2 

C 4.434770 0.0633 70.021 0.000
0 

1999 20
5 

Rank -0.021485 0.0005 -40.402 0.000
0 0.88

9 
1632.3

2 C 4.423677 0.0632 70.029 0.000
0 

2000 20
5 

Rank -0.021539 0.0005 -40.513 0.000
0 0.89

0 
1641.3

4 C 4.428232 0.0632 70.118 0.000
0 

2001 20
7 

Rank -0.021282 0.0005 -40.434 0.000
0 0.88

9 
1634.8

7 C 4.414205 0.0631 69.921 0.000
0 

2002 20
7 

Rank -0.021354 0.0005 -40.476 0.000
0 0.88

9 
1638.3

0 C 4.416414 0.0633 69.792 0.000
0 

2003 20
6 

Rank -0.021361 0.0005 -40.089 0.000
0 0.88

7 
1607.1

6 C 4.412470 0.0636 69.376 0.000
0 

2004 20
6 

Rank -0.021384 0.0005 -40.065 0.000
0 0.88

7 
1605.2

2 C 4.409145 0.0637 69.207 0.000
0 

2005 20
6 

Rank -0.021489 0.0005 -40.056 0.000
0 0.88

7 
1604.4

8 C 4.410506 0.0640 68.874 0.000
0 

2006 20
6 

Rank -0.021573 0.0005 -40.143 0.000
0 0.88

8 
1611.4

2 C 4.411310 0.0641 68.767 0.000
0 

2007 20
7 

Rank -0.021660 0.0005 -40.484 0.000
0 0.88

9 
1638.9

9 C 4.414477 0.0642 68.791 0.000
0 

2008 20
6 

Rank -0.021725 0.0005 -40.246 0.000
0 0.88

8 
1619.7

5 C 4.416968 0.0644 68.549 0.000
0 

2009 20
6 

Rank -0.021776 0.0005 -40.365 0.000
0 0.88

9 
1629.3

3 C 4.421704 0.0644 68.665 0.000
0 
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Table A5.3.5. Parameters of the regression of the logarithm of the population of 
Belarusian cities against their  rank (lnSize=C+к Rank) for the years 1970-2009 

without MINSK 

Year
s N Variabl

e 
Coefficien

t 
Std.Erro

r 

t-
statisti

c 
p R2 

F-
statisti

c 

1970 19
7 

Rank -0.017521 0.0005 -32.184 0.000
0 0.84

2 
1035.8

3 C 3.591554 0.0626 57.349 0.000
0 

1979 19
9 

Rank -0.019126 0.0005 -36.860 0.000
0 0.87

3 
1358.6

3 C 3.952871 0.0603 65.563 0.000
0 

1989 20
1 

Rank -0.020532 0.0005 -41.469 0.000
0 0.89

6 
1719.6

6 C 4.271895 0.0581 73.525 0.000
0 

1990 20
1 

Rank -0.020587 0.0005 -41.711 0.000
0 0.89

7 
1739.8

0 C 4.304593 0.0579 74.320 0.000
0 

1991 20
1 

Rank -0.020689 0.0005 -42.012 0.000
0 0.89

9 
1765.0

3 C 4.322171 0.0578 74.792 0.000
0 

1992 20
1 

Rank -0.020786 0.0005 -42.394 0.000
0 0.90

0 
1797.2

4 C 4.337667 0.0575 75.389 0.000
0 

1993 20
1 

Rank -0.020905 0.0005 -42.982 0.000
0 0.90

3 
1847.4

5 C 4.355911 0.0571 76.320 0.000
0 

1994 20
1 

Rank -0.020989 0.0005 -43.402 0.000
0 0.90

4 
1883.7

4 C 4.371978 0.0567 77.042 0.000
0 

1995 20
1 

Rank -0.020982 0.0005 -43.351 0.000
0 0.90

4 
1879.2

9 C 4.376965 0.0568 77.062 0.000
0 

1997 20
2 

Rank -0.021123 0.0005 -44.775 0.000
0 0.90

9 
2004.8

2 C 4.397009 0.0556 79.039 0.000
0 

1998 20
4 

Rank -0.020815 0.0005 -43.967 0.000
0 0.90

5 
1933.1

2 C 4.374362 0.0564 77.594 0.000
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0 

1999 20
4 

Rank -0.021047 0.0005 -44.558 0.000
0 0.90

8 
1985.4

4 C 4.363493 0.0562 77.578 0.000
0 

2000 20
4 

Rank -0.021101 0.0005 -44.687 0.000
0 0.90

8 
1996.9

1 C 4.368049 0.0562 77.683 0.000
0 

2001 20
6 

Rank -0.020849 0.0005 -44.567 0.000
0 0.90

7 
1986.1

9 C 4.354215 0.0562 77.411 0.000
0 

2002 20
6 

Rank -0.020921 0.0005 -44.609 0.000
0 0.90

7 
1989.9

5 C 4.356310 0.0564 77.256 0.000
0 

2003 20
5 

Rank -0.020921 0.0005 -44.217 0.000
0 0.90

6 
1955.1

3 C 4.351832 0.0566 76.865 0.000
0 

2004 20
5 

Rank -0.020943 0.0005 -44.217 0.000
0 0.90

6 
1955.1

1 C 4.348269 0.0567 76.723 0.000
0 

2005 20
5 

Rank -0.021046 0.0005 -44.194 0.000
0 0.90

6 
1953.1

0 C 4.349380 0.0570 76.327 0.000
0 

2006 20
5 

Rank -0.021129 0.0005 -44.300 0.000
0 0.90

6 
1962.5

3 C 4.350032 0.0571 76.222 0.000
0 

2007 20
6 

Rank -0.021219 0.0005 -44.648 0.000
0 0.90

7 
1993.4

6 C 4.353375 0.0571 76.184 0.000
0 

2008 20
5 

Rank -0.021279 0.0005 -44.416 0.000
0 0.90

7 
1972.7

6 C 4.355422 0.0573 75.975 0.000
0 

2009 20
5 

Rank -0.021329 0.0005 -44.570 0.000
0 0.90

7 
1986.4

5 C 4.360096 0.0573 76.140 0.000
0 
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Table A5.3.6. Estimation results for the regression ln Ni = c+k·i of the population of 
Central Asian cities in 1999 

Dependent variable ln Ni 
Independent variable Regression coefficient 

Constant 
i 

R2 
F(R2) 

Sample size 

13.36066 (0.081707) 
-0.045002 (0.003093) 

0.831 
211.64 
n=45 

Note: Standard errors of the regression coefficients are given in brackets. All the coefficients 
are significant at the significance level of  0.00005. 
 
Table A5.3.7. Estimates for the regression ln Ni = c+k·i for cities of Central Asia in 

1970-2006 

Dependent variable log of the population Ni 
1970 1971 1975 1980 1985 

Independent 
variable Regression coefficient 

Constant 
 

Rank 
 

R2 
F(R2) 

13.21387 
(0.1064) 

-0.068835 
(0.0064) 

0.816 
115.30 

13.24355 
(0.1057) 

-0.068835 
(0.0064) 

0.818 
116.82 

13.30165 
(0.0973) 

-0.063167 
(0.0053) 

0.830 
141.69 

13.32473 
(0.0858) 

-0.053994 
(0.0038) 

0.846 
198.00 

13.39433 
(0.0852) 

-0.051997 
(0.0037) 

0.841 
195.94 

Sample size 28 28 31 38 39 

Independent 
variable 

 
1987 1990 1999 2006 

Regression coefficient 
Constant 

 
Rank 

 
R2 

F(R2) 

13.40747 
(0.0830) 

-0.049425 
(0.0034) 

0.841 
205.95 

13.41749 
(0.0855) 

-0.050689 
(0.003633) 

0.837 
194.69 

13.36066 
(0.0817) 

-0.045002 
(0.003093) 

0.831 
211.64 

13.48998 
(0.0842) 

-0.051685 
(0.0035) 

0.849 
219.04 

Sample size 41 40 45 41 
Note: Standard errors of the regression coefficients are given in brackets. All the coefficients 
are significant at the significance level of  0.00005. 
 

Table A5.3.8. Parameters of the regression of c and k on the time trend t  and the 
political variable P for cities of Central Asia in 1970-2006 

Dependent variable c k 
Independent 

variable Regression coefficient 

Const 
t 
P 
R2 

F(R2) 
DW 

-7.601766 (2.123907) 
0.010573 (0.001073) 
-0.144598 (0.029940) 

0.955 
64.08 
1.947 

-1.877394 (0.443553) 
0.000919 (0.000224) 
-0.011148 (0.006253) 

0.801 
12.09 
2.422 

Sample size n=9 
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Note: Standard errors of the regression coefficients are given in brackets.  

Table A5.3.9. Estimation results for the regression ln Ni = c+k·i of the population of 
Caucasus cities in 2007 
Dependent variable ln Ni 

Independent variable Regression coefficient 
Constant 

i 
R2 

F(R2) 
Sample size 

14.50335 (0.240176) 
-0.336194 (0.038708) 

0.904 
75.44 
n=10  

Note: Standard errors of the regression coefficients are given in brackets. All the coefficients 
are significant at the significance level of 0.00005. 
 
Table A5.3.10. Parameters of regression of logarithms of the population Ni  for cities 

of Caucasus agaist its ranks: ln Ni =c+k·i 

Dependent 
variable 

log of the population Ni 
1970 1971 1975 1980 

Independent 
variable Regression coefficient 

Constant 
Rank 

R2 
F(R2) 

13.86252 (0.2725) 
-0.276535 
(0.0439) 

0.832 
39.63 

13.88072 
(0.2747) 

-0.274877 
(0.0443) 

0.828 
38.56 

13.98215 (0.2970) 
-0.257304 
(0.0438) 

0.793 
34.52 

14.12501 (0.2799) 
-0.261800 
(0.0413) 

0.817 
40.24 

Sample size 10 10 11 11 
 

Independent 
variable 

1985 1987 1990 2007 
Regression coefficient 

Constant 
Rank 

2 
F(R2) 

14.21326 (0.2773) 
-0.262220 
(0.0409) 

0.820 
41.14 

14.24711 (0.2751) 
-0.262647 
(0.0406) 

0.823 
41.93 

14.29858 (0.2583) 
-0.299119 
(0.0416) 

0.866 
51.62 

14.50335 (0.2402) 
-0.336194 
(0.0387) 

0.904 
75.44 

Sample size 11 11 10 10 
 

Table A5.3.11. Parameters of the regression of c and k on the time trend t  and 
the  

political variable P for cities of Caucasus in 1970-2007 
Dependent variable c k 

Independent variable Regression coefficient 
Const 
Year 

P 
R2 

F(R2) 
DW 

-30.22902 (1.815403) 
0.022385 (0.000917) 
-0.194493 (0.031475) 

0.995 
535.60 
1.4994 

-0.270643 (0.005465) 
--- 

-0.065551 (0.015458) 
0.750 
17.98 
1.9714 

Sample size n=8 
Note: Standard errors of the regression coefficients are given in brackets.  
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Table A5.3.12. Parameters of the regression of logarithms ln4 of the population Ni for 
the populated areas of Russia (except for Moscow and Saint-Petersburg) in the years 

1897-2009 against their ranks i: ln4 Ni = c+k·i 
Dependent 
Variable ln4 Ni 

Independent 
variable Regression coefficient 

 1897 1926 1939 1959 1970 1979
Const 

i 
R2... 
F(R2) 

-0.162999 
-0.043392 

0.760 
206.36 

-0.432231
-0.019682 

0.812 
250.31

-0.310213
-0.013837

0.631 
123.29

-0.289375
-0.010744 

0.323 
35.36

-0.351581 
-0.006421 

0.655 
142.61 

-0.396210
-0.003505

0.975 
6090.79

Sample size 67 60 74 76 77 158
Dependent 
Variable ln4 Ni 

Independent 
variable 

Regression coefficient
1989 2002 2003 2004 2005 2006

Const 
i 

R2... 
F(R2) 

-0.365500 
-0.003580 

0.556 
200.50 

-0.400339
-0.003003 

0.986 
11079.18

-0.400607
-0.003001

0.986 
11666.09

-0.401202
-0.002994 

0.985 
10506.97

-0.407275 
-0.002870 

0.994 
26019.70 

-0.407282
-0.002866 

0.994 
25547.44

Sample size 162 161 162 161 162 162
Dependent 
Variable ln4 Ni  

Independent 
variable 

Regression coefficient
2007 2008 2009

Const 
i 

R2... 
F(R2) 

-0.407732 
-0.002867 

0.994 
25553.24 

-0.407672
-0.002868 

0.994 
26221.30

-0.407659
-0.002865

0.994 
26060.48

Sample size 162 162 162
 

Table A5.3.12. Parameters of the regression coefficient  c4 of the equation ln4Ni 
=c4+k4i for time t (except for Moscow and Saint-Petersburg) 

Dependent variable C4
Independent 

variable Regression coefficient 

Const 
t 

R2 
F(R2) 
DW 

-0.258998 (0.032879) 
-0.001264 (0.000285) 

0.767 
19.72 
1.479 

Sample size n=8 (2002-2009 years) 
Note. Standard errors of the regression coefficients are given in brackets. The regression 
coefficients are significant at the significance level not larger than  0.0045; R2 is significant at 
the significance level not larger than 0.0044. 
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Table A5.3.13. Parameters of the regression coefficients  k4 of the equation ln4Ni 
=c4+k4i for time t (except for Moscow and Saint-Petersburg) 

Dependent variable k4
Independent 

variable Regression coefficient 

Const 
lnt 
R2 

F(R2) 
DW 

-0.071110 (0.001650) 
0.014469 (0.000375) 

0.991347 
1489.387 
1.114548 

Sample size n=15 
Note. Standard errors of the regression coefficients are given in brackets. The regression 
coefficients are significant at the significance level not larger than  0.0000005; R2 is 
significant at the significance level not larger than 0.0000005 
 

Table A5.3.14. Regression lnr Ni = c+k·i of the logarithm iterations lnr Ni on  
the ranks i of city sizes Ni of the Central Asian cities in 1999 

Dependent 
variable 

Hierarchy of logarithms of the population Ni 
Ln(Ni) Ln2(Ni) Ln3(Ni) Ln4(Ni) 

Independent 
variable 

Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Constant 
 

Rank 
 

R2 
F(R2) 

13.36066 
(0.081707) 
-0.045002 
(0.003093) 

0.831 
211.64 

2.592944 
(0.005919) 
-0.003590 
(0.000224) 

0.856 
256.62 

0.952914 
(0.002253) 
-0.001421 
(8.53E-05) 

0.866 
277.41 

-0.048076 
(0.002331) 
-0.001534 
(8.83E-05) 

0.875 
301.98 

Sample size n=45 
Note: Standard errors of the regression coefficients are given in brackets. All the coefficients 
are significant at the significance level of  0.00005. 
 

Table A5.3.15. Regression lnr Ni = c+k·i of the logarithm iterations lnr Ni on  
the ranks i of city sizes Ni of the Caucasus in 2007 

Dependent variable Hierarchy of logarithms of the population Ni 
Ln(Ni) Ln2(Ni) Ln3(Ni) Ln4(Ni) 

Independent variable Regression coefficient 
Constant 

 
Rank 

 
R2 

F(R2) 

14.50335 
(0.240176) 
-0.336194 
(0.038708) 

0.904 
75.44 

2.678939 
(0.017464) 
-0.026196 
(0.002815) 

0.915 
86.62 

0.986183 
(0.006662) 
-0.010276 
(0.001074) 

0.920 
91.62 

-0.013023 
(0.006911) 
-0.010991 
(0.001114) 

0.924 
97.39 

Sample size n=10 
Note: Standard errors of the regression coefficients are given in brackets. All the coefficients 
are significant at the significance level of  0.00005. 
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Table A.5.4.1. Description of the dataset for the “within” distribution analysis 

Country Investigated period by 
decades 

Numbers of cities 

Poland 1961-2004 890 
Belarus 1970-2009 207 
Hungary 1970-2001 237 
Russia 1897-2002 479 

 
Table A.5.4.2. Values of LR statistics to test Markovity of Polish cities distribution 

Years 1961 1974 1985 1994 
LR(O(0)) 1943.578 1966.536 2562.915 2880.135
LR(O(1)) -396.545 -402.227 -478.677

 
Table A.5.4.3. The probability of acceptance of Markovity of appropriate order in Poland 
Years DF 1961 1974 1985 1994

0 order 
Markovity  

36 0 0 0 0 

≥ 1 order 
Markovity  

28 1 1 1 1 

DF - Degrees of freedom 
 
Table A.5.4.4. Values of LR statistics to test Markovity of Belarusian cities distribution 

Years 1970 1979 1989 1999 

LR(O(0)) 478.2052689 563.5174 566.3945 548.5899 
LR(O(1)) -100.6281285 -103.289 -115.623  

 
Table A.5.4.5. The probability of acceptance of Markovity of appropriate order in Belarus 
Years DF 1970 1979 1989 1999 
0 order 
Marcovity  

36 
1.19068E-78 5.72E-96 1.48E-96 6.33E-93 

≥ 1 order 
Marcovity  

14 1 1 1 1 

DF - Degrees of freedom 
 

Table A.5.4.6. Values of LR statistics to test Markovity of Hungarian cities distribution 

 

Years 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2001 

LR(O(0)) 662 693 558 662 698 672 642 657 501 555 570 689 702 

LR(O(1)) 6.55 12.8 8.3 5.4 5.7 10.3 16.4 23.5 13.8 5.9 -0.64721 1.73  
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Table A.5.4.7. The probability of acceptance of Markovity of appropriate order in Hungary (1880-
1940) 

Years DF 1880 1890 1900 1910 1920 1930 1940 

0 order 
Marcovity 36 2.9E-

116 1.5E-122 6.3E-95 2.9E-116 1.2E-123 2.5E-
118 3.6E-112 

≥ 1 order 
Marcovity 22 0.9993 0.9395 0.9963 0.9998 0.9998 0.983 0.7955 

DF - Degrees of freedom 
 
Table A.5.4.8. The probability of acceptance of Markovity of appropriate order in Hungary (1950-
2001) 

Years DF 1950 1960 1970 1980 1990 2001 

0 order 
Marcovity is 36 4E-

115 2.74E-83 2.93E-94 2.22E-97 1E-121 2.2E-
124 

≥ 1 order 
Marcovity 22 0.374 0.90 0.9997 1 1  

DF - Degrees of freedom 
 

Table A.5.4.9. Values of LR statistics to test Markovity of Russian cities distribution 

Years 1897 1926 1939 1959 1970 1979 
LR(O(0)) 605.109 599.7309 938.1978 1211.197 1340.7 1358.753 
LR(O(1)) 45.33589 64.50166 17.65158 36.06105 43.01439 41.3714 

 
Table A.5.4.10. The probability of acceptance of Markovity of appropriate order in Russia 

 

Years DF 1897 1926 1939 1959 1970 1979 

0 order 
Marcovity  36 1.8E-104 2.2E-103 1.4E-173 5.6E-231 2.4E-258 3.6E-262 

≥ 1 order 
Marcovity  67 0.980458 0.563856 1 0.9992 0.99007 0.99418 
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Table A.5.4.11.  Probability transition matrix for Poland, 1961-2004 

 1 2 3 4 5 6 7 Number of 
observations <10% <20% <30% <50% <100% <200% >200% 

1 0.786 0.155 0.024 0.0065 0.026 0.002 0 459 
2 0.072 0.838 0.082 0.004 0.0028 0.0014 0 722 
3 0.004 0.123 0.73 0.14 0.002 0 0 480 
4 0.002 0 0.0687 0.77 0.147 0.0076 0 524 
5 0.003 0.003 0 0.027 0.888 0.072 0.005 582 
6 0.004 0.0035 0 0.0035 0.042 0.866 0.081 284 
7 0 0 0 0 0 0.02 0.979 290 
 

Table A.5.4.12. Probability transition matrix for Belarus, 1970-2009 

 1 2 3 4 5 6 7 Number of 
observations <10% <20% <30% <50% <100% <200% >200% 

1 0.944 0.043 0.012 0 0 0 0 162 
2 0.265 0.649 0.086 0 0 0 0 151 
3 0 0.106 0.807 0.087 0 0 0 161 
4 0 0 0.128 0.832 0.040 0 0 149 
5 0 0 0 0.149 0.824 0.027 0 74 
6 0 0 0 0 0.098 0.854 0.049 41 
7 0 0 0 0 0 0.027 0.973 75 
 
Table A.5.4.13. Probability transition matrix for Hungary, 1970-2001 

 1 2 3 4 5 6 7 Number of 
observations <10% <20% <30% <50% <100% <200% >200% 

1 0.87 0.12 0 0.01 0 0 0 151 
2 0.03 0.88 0.077 0.003 0.005 0.003 0 376 
3 0 0.086 0.82 0.09 0.003 0.001 0 427 
4 0 0 0.1 0.85 0.05 0 0 729 
5 0 0 0 0.1 0.88 0.02 0 786 
6 0 0 0 0 0.09 0.88 0.03 388 
7 0 0 0 0 0 0.08 0.92 224 

 
Table A.5.14. Probability transition matrix for Russia, 1897-2002 

 1 2 3 4 5 6 7 Number of 
observations <10% <20% <30% <50% <100% <200% >200% 

1 0.92 0.05 0.017 0.011 0.002 0 0 524 
2 0.179 0.736 0.057 0.021 0.006 0 0.001 700 
3 0.022 0.330 0.525 0.100 0.022 0 0 448 
4 0.002 0.057 0.232 0.609 0.092 0.007 0.002 557 
5 0 0.016 0.028 0.220 0.654 0.069 0.014 509 
6 0 0 0 0.004 0.152 0.726 0.119 270 
7 0 0 0 0 0.003 0.061 0.936 345 
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Table A.5.4.2.15. Mean first passage time matrix for Poland, years 

Class 1 2 3 4 5 6 7 
<10% <20% <30% <50% <100% <200% >200% 

1 588 920 115 850 417 536 827 
2 2053 260 739 689 430 550 843 
3 3438 1890 476 380 340 470 760 
4 4659 3480 2600 340 188 340 610 
5 5173 413 3690 1955 100 226 487 
6 5556 4530 4160 2590 1020 60 290 
7 6060 5020 4630 3076 1520 470 17 
 
Table A.5.4.2.16. Mean first passage time matrix for Belarus, years 

Class 1 2 3 4 5 6 7 
<10% <20% <30% <50% <100% <200% >200% 

1 18 220 490 1085 3200 15840 40077 
2 99 80 400 994 3110 15750 39980 
3 290 190 63 597 2716 15340 39585 
4 410 300 117 91 212 14720 38980 
5 530 420 238 120 330 12510 36830 
6 820 700 529 410 290 1250 24620 
7 1190 1070 907 780 660 386 670 
 
Table A.5.4.2.17. Mean first passage time matrix for Hungary, years 

Class 1 2 3 4 5 6 7 
<10% <20% <30% <50% <100% <200% >200% 

1 188.7 124.8 254 390 725 2618.8 8168.8 
2 1300 45.5 178.8 348 672 2551 8107 
3 1620 320 43.5 228 590 2508 8068 
4 1795 495 174 40 440 2435 8000 
5 1920 622 302 130 58.8 2118 7710 
6 2077.6 778 457.8 289 157 200 5780 
7 2195 895 576 409 276 124 500 
 
Table A.5.4.2.18. Mean first passage time matrix for Russia, years 

Class 1 2 3 4 5 6 7 
<10% <20% <30% <50% <100% <200% >200% 

1 20 160 318 497 1060 2900 4477 
2 95 47 270 460 1020 2850 4420 
3 144 60 125 370 936 2780 4350 
4 200 120 130 140 739 2580 4160 
5 290 210 227 1690 230 2030 3646 
6 469 380 400 346 190 357 2110 
7 617 530 550 498 340 247 150 
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Table A.5.4.2.19. Initial and ergodic distributions for Polish cities 

 1 2 3 4 5 6 7 
<10% <20% <30% <50% <100% <200% >200% 

Initial 
distribution 0.137 0.216 0.14 0.157 0.174 0.085 0.087 

Ergodic 
distribution 0.017 0.038 0.02 0.029 0.1 0.156 0.64 

 
 

 

Table A.5.4.20. Initial and ergodic distributions for Belarusian cities  

 1 2 3 4 5 6 7 
<10% <20% <30% <50% <100% <200% >200% 

Initial 
distribution  0.199 0.186 0.198 0.183 0.091 0.05 0.092 

Ergodic 
distribution 0.56 0.12 0.16 0.11 0.03 0.008 0.015 
 
 
Table A.5.4.21. Initial and ergodic distributions for Hungarian cities 

 1 2 3 4 5 6 7 
<10% <20% <30% <50% <100% <200% >200% 

Initial 
distribution 0.049 0.122 0.139 0.237 0.255 0.126 0.073 

Ergodic 
distribution 0.053 0.22 0.23 0.25 0.17 0.05 0.02 

 
Table A.5.4.22. Initial and ergodic distributions for Russian cities 

 1 2 3 4 5 6 7 
<10% <20% <30% <50% <100% <200% >200% 

Initial 
distribution 0.156 0.209 0.134 0.166 0.152 0.081 0.103 

Ergodic 
distribution 0.497 0.212 0.08 0.07 0.043 0.028 0.067 

 
Table A.5.4.23 Initial vs ergodic distribution 1900—2001: Spain 

 1 2 3 4 5 6 
<20% <50% <80% <135% <185% >185% 

Initial 
distribution 

0.356 0.243 0.143 0.118 0.044 0.098 

Ergodic 
distribution 

0.254 0.355 0.181 0.098 0.035 0.078 
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Table A.5.4.24. The values of kurtosis across countries 

 Poland Belarus Hungary Russia 

Initial distr. -0.40628 -1.98351 -0.98227 -0.00516 
Ergodic distr. 5.84045 5.03177 -2.41139 4.18436 

Difference 4.99726 6.80950 -1.64034 5.75212 
 
Figure A.5.4.1 Initial vs ergodic distributions  (Blue – Initial, Red – Ergodic).  
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Belarusian Initial vs Ergodic distribution
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Hangarian Initial vs Ergodic distribution
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Figure A.5.4.2. Map of Belarus, by red is depicted growing cities, by blue is depicted 
vanishing cities 
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 Table A5.5.1.  Model 1 results 

 

pareto_cons     Coef Std. Err.             t P>|t|      [95% Conf. Interval] 

gdpa 0,000366 7,05E-05 5,19 0 0,000227 0,000506 
raila 0,065931 0,015812 4,17 0 0,034668 0,097195 
telpc 0,001087 0,001053 1,03 0,304 -0,001 0,003169 

mobpc -0,0008 0,000224 -3,56 0,001 -0,00124 -0,00036 

fri -0,0059 0,00548 -1,08 0,283 -0,01674 0,004934 
prim1 0,860976 1,907311 0,45 0,652 -2,91012 4,632068 
prim5 -3,01251 1,156043 -2,61 0,01 -5,29821 -0,7268 
ab_ratio -4,3E-05 1,87E-05 -2,3 0,023 -8E-05 -6.04e-06 
year 0,000413 0,001561 0,26 0,792 -0,00267 0,0035 
_cons 0,51106 3,058127 0,17 0,868 -5,5354 6,55752 
R-sq: within   0.7406  sigma_u    0,423641  
 between 0.2170  sigma_e    0,042469  
 overall 0.1920  rho 0,99005  
 F(9,139) 44.09     
 corr(u_i, Xb) -0.9630     
   

 

Table A5.5.2.  Model 2 results 

pareto_cons       Coef Std. Err.            t P>|t|     [95% Conf. Interval] 

gdpa 0,0001147 0,0000775 1,48 0,141 -0,0000386 0,000268 

raila 0,0089764 0,0147515 0,61 0,544 -0,0201936 0,0381464 
telpc -0,004689 0,0011027 -4,25 0 -0,0068695 -0,0025086 
mobpc 0,0021019 0,0046139 0,46 0,649 -0,0070217 0,0112255 
fri 1,357783 1,570498 0,86 0,389 -1,74778 4,463334 
prim1 1,357783 1,570498 0,86 0,389 -1,747767 4,463334 
prim5 -3,782911 0,9720792 -3,89 0 -5,70513 -1,860691 
ab_ratio 0,1360431 0,034285 3,97 0 0,0682469 0,2038392 
year 0,0100561 0,001723 5,84 0 0,0066489 0,0134633 

_cons 0,8426203 2,627306 0,32 0,749 -4,352696 6,037937 

R-sq: within   0.8289  sigma_e   0,0347403  
 between 0.1176  rho 0,9992547  
 overall 0.0859     
 F(9,139) 60.34     

 corr(u_i, 
Xb)  -0.9951                

   
 

 


