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Actin and microtubule cytoskeleton interactions
Jan Petrášek1,2 and Kateřina Schwarzerová1
Plant cytoskeleton consists of two major networks of protein

polymers, actin microfilaments (AFs) and microtubules (MTs).

These networks perform numerous functions that are essential

for cell division and for maintaining the integrity of cytoplasm

required for intracellular transport and cell shape. Besides the

more or less indirect cooperation between AFs and MTs, their

direct interactions through specific physically interacting

proteins has been well described in yeast, nematodes, insect

and animal cells. Recently, promising candidates for

corresponding homologous proteins have been identified in

plants, although there is still lack of functional evidence for

these interactions. Here we summarize recent advances in our

knowledge about the candidate proteins or protein complexes

that interact with both AFs and MTs and their role in

fundamental cellular and developmental processes.
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Corresponding author: Petrášek, Jan (petrasek@ueb.cas.cz)

Current Opinion in Plant Biology 2009, 12:728–734

This review comes from a themed issue on

Cell Biology
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Introduction
AFs and MTs, forming two distinct networks, serve as

highly dynamic scaffolds for virtually all intracellular

processes in eukaryotes. They perform various functions

with the assistance of interacting molecular motor

proteins, signaling molecules or structure-supporting

elements. Although AFs and MTs fulfill many functions

independently, they often act in a coordinated manner.

The basic question, as put by Yarm et al. [1] several years

ago, is whether these two networks are coordinated

indirectly by independent regulation of one network

that subsequently affects the other network, or whether

they interact directly through specific bifunctional

proteins or multiprotein complexes. In plants, studies

based on analyses of cytoskeletal mutants, pharmacologi-

cal approaches that selectively interfere with AFs or MTs,

and microscopical observations have addressed the
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importance of their mutual coordination in intracellular

transport, directional cell expansion and cell division, as

reviewed in [2��]. Here we summarize recent progress in

molecular biology and modern visualization techniques

that provide solid evidence that at least part of the

coordination is indeed based on direct physical inter-

actions between AFs and MTs mediated by bifunctional

proteins or multiprotein complexes that act as ‘match-

makers’. Moreover, some of these interactions are con-

served in all eukaryotes including yeast, nematodes,

insect, and mammals. For reviews see [1,3,4].

Two of the fundamental cellular processes known to

integrate the functions of AFs and MTs in plants are

intracellular transport and the formation of the mitotic

and cytokinetic apparatus. These processes are essential

for the movement of organelles, directional cell expansion

([5], Szymanski, this issue) and also for mitosis [6] and

cytokinesis [Van Damme, this issue]. As will be shown

here, these processes may indeed involve direct inter-

actions, or ‘meetings’, between AFs and MTs through

specific proteins or protein complexes.

Meeting on cellular tracks: driving intracellular
transport
Intracellular transport along AFs and MTs depends on

the associated motor proteins, myosins for AFs and kine-

sins and dyneins for MTs. In higher plants, homologs of

both myosins and kinesins are represented by gene

families [7], whereas dynein homologs are lacking [8].

Cytoplasmic streaming and trafficking of membrane

vesicles are processes generally dependent on AFs and

myosin motors [9]. However, as reviewed in detail by

Collings [2��], recent evidence suggests that organelle

movement and positioning involves interactions of MTs

with organelles like plastids and mitochondria. While the

actomyosin system generates motility, MTs seem to

stabilize the positioning of organelles like mitochondria

[10,11�], perhaps through specific kinesins [11�,12]. The

actomyosin system also assists during transverse-to-obli-

que (or even longitudinal) reorientation of MTs that are

partly detached from the plasma membrane in fully

elongated cells [13�], where MTs are passively oriented

by the force generated by the actomyosin system.

On the basis of interactions described in non-plant cells,

there are two possible scenarios for interactions between

AFs and MTs based on the respective motor proteins.

Firstly, the motor protein may interact with its correspond-

ing cytoskeletal filament while being concurrently bound

to the other cytoskeletal filament. Such interaction has

been described for the MT motors kinesins binding AFs in
www.sciencedirect.com
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mammalian cells [14] and Dictyostelium discoideum [15]

(Figure 1a). In plants, class-14 kinesins containing calponin

homology domain (KCHs), which is important for binding

AFs, have been identified in several species as summarized

in [2��]. Among them, GhKCH1 [16] and GhKCH2 [17��]
Figure 1

Schematic depiction of possible direct interactions between AFs and MTs i

eukaryotic cells. Kinesin and myosin interact with MTs and AFs, respectively

Alternatively, myosin and kinesin motors interact to create an integrated mo

vesicles, which use both tracks for their intracellular movement, may interac

switched. Both motors bound to one cargo can interact functionally even w

enhancing the processivity of each other [22�]. Whereas all types of interact

between MTs and AFs was identified in plants [16,17��]. (b) Bundling of AFs

positioning of organelles. SB401 activity is regulated by phosphorylation tha

(c) The interaction between MTs and AFs mediated by complexes of protei

through other microtubule plus-end-binding proteins with actin-associated p

with AFs directly, as was shown for APC [42] or CLIP-Associated Protein CL

AFs and MTs [40,41]. (d) Both kinesin [17��] and MAP190 [55] may integrate

(e) Plasma membrane-associated lipid-hydrolyzing enzyme PLDd may intera

them into the downstream signaling pathways [56,58��].
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(Table 1) from cotton were shown to bind both AFs and

MTs in vitro. These kinesins co-localize with AFs and MTs

in the cortical cytoplasm as well as in the phragmoplast.

Both of these kinesins may play a role in targeted depo-

sition of material needed for directional cell expansion and
n plants. (a) The interactions through motor proteins are found in all

, while interacting with the other cytoskeletal filaments at the same time.

tor, which uses both AFs and MTs as a transport track. Organelles or

t with both types of motors that alternate in their function as tracks are

ithout a physical interaction, increasing the affinity to the track and

ions were described other organisms, only kinesin-mediated interaction

and MTs through the activity of SB401 protein may play a role in the

t decreases its affinity to MTs without influencing bundling of AFs [24].

ns interacting with plus-ends of MTs (+TIPs). +TIP protein EB1 interacts

rotein formin [35,37]. In addition, some proteins of +TIP family interact

ASP [43]. Also, formin might interact through specific domains with both

the function of AFs and MTs in the phragmoplast of dividing plant cells.

ct with both AFs and MTs or with actin and tubulin monomers integrating
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Table 1

Plant proteins interacting physically with both AFs and MTs

Protein (Ref.) Organism/cell type Localization or association Function

Kinesins with calponin

homology domains (KCHs)

GhKCH1 [16] Gossypium hirsutum

cotton fibers

Cortical MTs and transversal

cortical AFs

Coordination of AFs and MTs

during cell expansion

GhKCH2 [17��] Gossypium hirsutum

cotton fibers

Cortical AFs and MTs; midzone

of the phragmoplast

Coordination of AFs and MTs

during cell expansion

OsKCH1 [18��] Oryza sativa coleoptiles,

tobacco BY-2 cells

Cortical AFs and MTs in etiolated

rice coleoptiles, radial and

perinuclear AFs in tobacco

BY-2 cells

Coordination of AFs and MTs

during cell elongation and division

SB401 [23��,24] Solanum berthaultii

pollen tubes

Cortical MTs Coordination of AFs and MTs in

organelles transport in pollen tube

MAP190 [55,60] Nicotiana tabacum,

BY-2 cells

Mitotic spindle and phragmoplast;

nucleus during interphase

Nuclear during interphase Co-localizes

with spindle and phragmoplast

Formins [47,61] Arabidopsis thaliana AFs Control of AFs assembly Potential

cross-linking of AFs and MTs

EB1 [45,62] Arabidopsis thaliana Microtubule plus-end Potential integrator of protein

complex assembly on plus-end of

MTs interacting with AFs

CLASP [46�] Arabidopsis thaliana Microtubule plus-end Promotes microtubule stability

Potential cross-linking of AFs and MTs

TANGLED [49��,50] Zea mays, Arabidopsis

thaliana

MTs Deposited in a microtubule-

dependent manner into the

cortical region of PPB

Marks the cortical region

where fusion of phragmoplast

with plasma membrane occurs

Distantly related to APC Potential

cross-linking of AFs and MTs

PLDdelta [58��] Arabidopsis thaliana MTs Tubulin and actin in

pull-down assay

Initiation of signaling pathways, integration

of AFs and MTs into signaling pathways
formation of new cell plate during cytokinesis. Addition-

ally, KCHs might play a role also in cycling cells as it has

been shown for recently characterized rice OsKCH1 [18].

The opposite situation, in which the actin motor myosin

binds to MTs, has been described for frog oocytes [19]

where the cross-linking action of myosin Myo10 is necess-

ary for nucleus anchoring and spindle assembly (Figure 1a).

However, such interaction has not yet been described for

plant myosins. Secondly, two motor proteins may interact

with each other either through a physical interaction as

shown in yeast [20] and mice [21], or indirectly through

association with the same cargo as demonstrated using an in
vitro technique [22�] (Figure 1a). In cells where intracellu-

lar transport depends on both AFs and MTs, the quick

change of transport tracks can be facilitated by the pre-

sence of two motor types on the same cargo. This may be

the case of plant mitochondria that move along both AFs

and MTs [10], although such physical or functional inter-

actions between kinesins and myosins remain to be

demonstrated in plants.

The coordination between AFs and MTs in transporting

plant organelles may be also assisted by non-motor

proteins. Recently identified microtubule-associated

protein SB401 from Solanum berthaultii has been shown
Current Opinion in Plant Biology 2009, 12:728–734
to bind and bundle both AFs and MTs in vitro (Figure 2)

and to co-localize with cortical MTs in pollen tubes [23��]
(Table 1). In addition, its bundling activity requires the

formation of dimers, and is regulated by phosphorylation

that decreases its affinity to MTs without influencing

bundling of AFs [24] (Figure 1b). It seems that this

protein may regulate the transport and positioning of

organelles in pollen tubes characteristic for their highly

active cytoplasmic streaming. SB401 homologs have been

found exclusively in Solanaceae and there are no similar

proteins known outside the plant kingdom.

Meeting in the cortical cytoplasm: regulating
cell expansion and division
The coordination between AFs and MTs in the cortical

cytoplasm in close vicinity of plasma membrane plays a

key role during directional expansion of both tip-growing

cells and diffusely growing cells as well as in the position-

ing of the plane of cell division. In tip-growing cells (root

hairs and pollen tubes), AFs are necessary for the growth

itself [25], while MTs maintain the directionality of

growth [26] and determine the site of exocytosis of cell

wall material, as reviewed in [27]. In diffusely growing

cells, MTs provide tracks for the movements of cellulose

synthases and hence directional deposition of cellulose,
www.sciencedirect.com
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Figure 2

Confocal images of in vitro-induced gradual bundling of MTs and AFs after

the addition of SB401 protein. In the absence of SB401, taxol-stabilized

rhodamine-labelled MTs and Alexa-488 phalloidin-stabilized AFs are

distributed uniformly (a). After the addition of SB401 MTs start to form

bundles (b) and later also AFs form bundles that co-localize with bundles

of MTs (c). Importantly, addition of antibody against SB401 restores

original state of MTs and AFs confirming reversible bundling role of SB401

(d). Scale bar 10 mm. Reproduced with the permission from [23��].
the main factor controlling cell expansion [28], for review

see [29]. However, mutations in actin and actin-associated

proteins as well as pharmacological treatments with actin

drugs also induce various growth defects including inhi-

bition of cell elongation [2]. This suggests an important,

but not yet fully understood role of AFs in diffuse growth.

Microtubule interaction with cortical AFs may also occur

in the exact positioning of the cell plate at the division site

during cytokinesis, as predicted by the cytoskeletal struc-

ture preprophase band (PPB) that forms in the cortical

cytoplasm before mitosis. While MTs of the PPB depo-

lymerize before mitosis, AFs remain in the cortical cyto-

plasm throughout cell division [6], possibly including also

an actin-depleted zone in the place of the PPB [30].

A candidate mechanism that may integrate the functions of

AFs and MTs is manifested during the expansion and

shaping of cells with complex shape such as leaf epidermal

pavement cells and trichomes. Here, the formation of lobes

is under the control of ROP (Rho of plants) GTPases and

their interacting proteins, which stimulate the alignment of

MTs in the neck of the lobe and polymerization of AFs

inside the lobe [31]; for review see [32,33]. However, this

regulatory system does not seem to include physical inter-

action between AFs and MTs.
www.sciencedirect.com
Promising candidates for direct interaction between AFs

and MTs in the cortical cytoplasm may be found within a

family of plus-end-tracking proteins (+TIPs). +TIPs

represent a class of diverse proteins associated with the

growing ends of MTs (plus-ends) that include structurally

unrelated, motor and non-motor proteins. At the plus-end

of MTs, they often form protein complexes that control

the dynamics and organization of MTs and their inter-

actions with membranes, organelles and proteins [34].

+TIPs have been implicated in the control of AFs in the

cell cortex in yeast and mammalian cells through inter-

action with the actin-nucleating factors, formins. In fission

yeast, reorganization of AFs in the cell tip is modulated by

the interaction with plus-ends of MTs, which is the

location of a protein complex consisting of tea1p, tea4p,

tea2p (kinesin motor), tip1p (a +TIP CLIP 170, Cyto-

plasmic Linker Protein-like protein) and End-Binding 1

(EB1)-like protein mal3p [35,36]. At the cell tip, tea4p

directly interacts with formin for3p, which becomes acti-

vated and induces reorganization of cortical AFs [35]. In

mammalian cells, two +TIPs, EB1 and adenomatous

polyposis coli (APC) proteins interact with formin mDia

to stabilize MTs [37]. Formins contain sequence motifs

known as formin homology (FH) domains that are respon-

sible for interactions with either monomeric (FH1) or

filamentous actin (FH2) [38]. Interestingly, FH1/FH2

region of mDia was shown to bind MTs directly [39�].
Direct interaction of FH2 domain with MTs was reported

also for the Drosophila formin Cappuccino [40] and animal

formins with unusually structured FH domains [41].

Therefore, formins may form a direct link between

AFs and MTs. Importantly, some proteins of the +TIP

family interact with actin directly as well, as has been

shown for APC [42] and CLIP-associated protein CLASP

[43], making the +TIPs possible candidates for cross-

linkers of AFs and MTs (Figure 1c).

Orthologs of EB1 have been found in Arabidopsis thaliana
[44,45] and CLASP was identified as a plus-end-interacting

protein as well [46�]. Similarly, formins constitute a large

protein family in plants [47,48]. It has been proposed that

dynamic MT plus-ends reaching the cortical cytoplasm in

the root hair tip are involved in the control of AFs during

tip-growth [27]. Interactions between AFs and MTs

mediated by +TIPs may be involved also in other processes

in plant cells. Before cell division, cortical AFs undergo

specific reorganization and PPB is formed in the cell cortex.

Here, protein TANGLED, which is distantly related to

vertebrate APC, is deposited as a molecular ‘memory’ for

the site of the future phragmoplast [49��,50]. EB1 is

localized on plus-ends of MTs in the PPB before mitosis

as well as MTs of the growing phragmoplast that reach the

cell cortex at the cell division site during cytokinesis [51].

Although the basic components of protein complexes that

facilitate interactions between MT plus-ends and AFs are

conserved in plants, their precise involvement in such

interactions remains to be elucidated.
Current Opinion in Plant Biology 2009, 12:728–734
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Meeting during cell division: coordination in
mitotic and cytokinetic apparatus
During mitosis and cytokinesis, arrays of AFs and MTs

closely co-exist and play indispensable roles in the PPB

[52] and the phragmoplast [53,54]. The incidence and

possible role of AFs in the mitotic spindle remains to be

elucidated [6]. The mechanism of AFs and MTs coopera-

tion or interaction remains largely unknown and only a

few proteins have been suggested to interact with both of

them in these cytoskeletal structures (Figure 1d). Cotton

kinesin GhKCH2 (Table 1), which has been shown to

bind to both AFs and MTs, was found to localize also to

the midzone of the phragmoplast in dividing root tip cells

[17��]. Another candidate is microtubule-associated

protein 190 (MAP190) that has been shown to co-sedi-

ment with both AFs and MTs in vitro using a crude

protein fraction from BY-2 cells [55]. MAP190 was found

to localize in the nucleus during interphase and associate

with the mitotic spindle and phragmoplast during cell

division. Although a direct interaction of MAP190 with

AFs and MTs has not been demonstrated, and sequence

motifs for known microtubule-binding and actin-binding

domains have not been identified, there remains the

possibility that MAP190 may be involved in integrating

the functions of AFs and MTs during mitosis and cyto-

kinesis.

Other proteins interacting with AFs and MTs
There are proteins that bind both AFs and MTs even

though their specific function does not seem to be related

to the cytoskeleton. Therefore, their interaction with the

cytoskeleton may help to fulfill their primary role rather

than cross-linking AFs and MTs. Phospholipase D

(PLD), which belongs to a superfamily of signaling

enzymes, associates with the plasma membrane and binds

MTs [56] and this binding is important for the organiz-

ation of MTs [57] (Table 1). Recently, both actin 7 and

b-tubulin have been identified together with several

other components of intracellular trafficking machinery

in a pull-down assay using GFP-PLDd as a bait [58��],
suggesting that the isoform PLDd may initiate important

cytoskeleton remodeling processes (Figure 1e). The

translational elongation factor 1a (EF-1a) was shown to

bind through specific domains both AFs and MTs in

animal and plant cells, as reviewed by Collings [2��],
and appears to regulate cytoskeleton bundling. Bundling

activity for both AFs and MTs has been also reported for

plant membrane-pinching dynamin-related protein 3

(DRP3) [59].

Conclusions
Proteins connecting AFs and MTs physically are found in

all eukaryotic cells, but their identification in plants is

only beginning. On the basis of our current knowledge, it

seems that the interaction through one bridging protein is

a rather rare case in plants, as expected. However,

dynamic interactions using molecular motors, signaling
Current Opinion in Plant Biology 2009, 12:728–734
molecules or microtubule plus-ends appear to be well

conserved in eukaryotic cells. In the next years, we expect

that new proteins involved in AFs and MTs interactions

will be identified using advanced techniques. More

importantly, the roles of interacting proteins identified

so far and their regulation will need to be elucidated.
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