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PARTITION SENSITIVITY FOR MEASURABLE MAPS
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Abstract. We study countable partitions for measurable maps on measure spaces such
that, for every point x, the set of points with the same itinerary as that of x is negligible.
We prove in nonatomic probability spaces that every strong generator (Parry, W., Aperi-
odic transformations and generators, J. London Math. Soc. 43 (1968), 191–194) satisfies
this property (but not conversely). In addition, measurable maps carrying partitions with
this property are aperiodic and their corresponding spaces are nonatomic. From this we
obtain a characterization of nonsingular countable-to-one mappings with these partitions
on nonatomic Lebesgue probability spaces as those having strong generators. Furthermore,
maps carrying these partitions include ergodic measure-preserving ones with positive en-
tropy on probability spaces (thus extending the result in Cadre, B., Jacob, P., On pairwise
sensitivity, J. Math. Anal. Appl. 309 (2005), 375–382). Some applications are given.
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1. Introduction

In this paper we study countable partitions P for measurable maps f : X → X on

measure spaces (X,B, µ) such that, for every x ∈ X , the set of points with the same

itinerary as that of x is negligible. In other words,

(1.1) µ({y ∈ X : fn(y) ∈ P (fn(x)), ∀n ∈ N}) = 0, ∀x ∈ X,

where P (x) stands for the element of P containing x ∈ X . For simplicity, we call

these partitions measure-sensitive partitions.

We prove in nonatomic probability spaces that every strong generator is a measure-

sensitive partition but not conversely (results about strong generators can be found

in [4], [7], [9], [12], [13] and [14]). We also show examples of measurable maps in

nonatomic probability spaces carrying measure-sensitive partitions which are not
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strong generators. Motivated by these examples we shall study measurable maps on

measure spaces carrying measure-sensitive partitions (calledmeasure-expansive maps

for short). Indeed, we prove that every measure-expansive map is aperiodic and also,

in the probabilistic case, that its corresponding space is nonatomic. From this we

obtain a characterization of nonsingular countable-to-one measure-expansive map-

pings on nonatomic Lebesgue probability spaces as those having strong generators.

Furthermore, we prove that every ergodic measure-preserving map with positive en-

tropy in a probability space is measure-expansive (thus extending a result in [3]). As

an application we obtain some properties for ergodic measure-preserving maps with

positive entropy (c.f. corollaries 2.1 and 2.4).

2. Statements and proofs

Hereafter, the term countable will mean either finite or countably infinite.

A measure space is a triple (X,B, µ) where X is a set, B is a σ-algebra of subsets of

X and µ is a positive measure in B. A probability space is a measure space for which

µ(X) = 1. A measure space is nonatomic if it has no atoms, i.e., measurable sets

A of positive measure satisfying µ(B) ∈ {0, µ(A)} for every measurable set B ⊂ A.

A partition is a disjoint collection P of nonempty measurable sets whose union is

X . We allow µ(ξ) = 0 for some ξ ∈ P . For f : X → X measurable and k ∈ N

we define f−k(P ) = {f−k(ξ) : ξ ∈ P}, which is a (countable) partition if P is. A

strong generator of f is a countable partition P for which the smallest σ-algebra of

B containing
⋃

k∈N

f−k(P ) equals B (mod 0) (see [12]).

The result below is the central motivation of this paper.

Theorem 2.1. Every strong generator of a measurable map in a nonatomic prob-

ability space is a measure-sensitive partition.

P r o o f. Recall that the join of finitely many partitions P0, . . . , Pn is the partition

defined by
n
∨

k=0

Pk =

{ n
⋂

k=0

ξk : ξk ∈ Pk, ∀0 6 k 6 n

}

.

Given partitions P and Q, we write P 6 Q if each member of Q is contained in

some member of P (mod 0). A sequence of partitions {Pn : n ∈ N} (or simply Pn)

is increasing if P0 6 P1 6 . . . 6 Pn 6 . . .. Certainly

(2.1) Pn =
n
∨

k=0

f−k(P ), n ∈ N,
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defines an increasing sequence of countable partitions satisfying

Pn(x) =

n
⋂

k=0

f−k(P (fk(x)), ∀x ∈ X.

Since for all x ∈ X we have

{y ∈ X : fn(y) ∈ P (fn(x)), ∀n ∈ N} =

∞
⋂

n=0

f−n(P (fn(x))) =

∞
⋂

n=0

Pn(x),

we obtain that the identity

(2.2) lim
n→∞

sup
ξ∈Pn

µ(ξ) = 0

implies (1.1).

Now suppose that P is a strong generator of a measurable map f : X → X

in a nonatomic probability space (X,B, µ). Then, the sequence (2.1) generates B

(mod 0). From this and Lemma 5.2 p. 8 in [10] we obtain that the set of all finite

unions of elements of these partitions is everywhere dense in the measure algebra

associated to (X,B, µ). Consequently, Lemma 9.3.3 p. 278 in [2] implies that the

sequence (2.1) satisfies (2.2) and then (1.1) holds. �

We shall see later in Example 2.4 that the converse of this theorem is false, i.e.,

there are certain measurable maps in nonatomic probability spaces carrying measure-

sensitive partitions which are not strong generators. These examples motivate the

study of measure-sensitive partitions for measurable maps in measure spaces. For

this we use the following auxiliary concept motivated by the notion of Lebesgue

sequence of partitions (c.f. p. 81 in [10]).

Definition 2.1. A measure-sensitive sequence of partitions of (X,B, µ) is an

increasing sequence of countable partitions Pn such that µ
(

⋂

n∈N

ξn

)

= 0 for all

sequences of measurable sets ξn satisfying ξn ∈ Pn, ∀n ∈ N. A measure-sensitive

space is a measure space carrying a measure-sensitive sequence of partitions.

At first glance we observe that (2.2) is a sufficient condition for an increasing

sequence Pn of countable partitions to be measure-sensitive (it is also necessary in

probability spaces). On the other hand, the class of measure-sensitive spaces is broad

enough to include all nonatomic standard probability spaces. Recall that a standard

probability space is a probability space (X,B, µ) whose underlying measurable space

(X,B) is isomorphic to a Polish space equipped with its Borel σ-algebra (e.g. [1]).

Namely we have the following proposition.
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Proposition 2.1. All nonatomic standard probability spaces are measure-

sensitive.

P r o o f. As is well-known, for every nonatomic standard probability space

(X,B, µ) there are a measurable subset X0 ⊂ X with µ(X \ X0) = 0, and a

sequence of countable partitions Qn of X0, such that
⋂

n∈N

ξn contains at most one

point for every sequence of measurable sets ζn in X0 satisfying ζn ∈ Qn, ∀n ∈ N

(c.f. [10] p. 81). Defining Pn = {X \ X0} ∪ Qn we obtain an increasing sequence of

countable partitions of (X,B, µ). It suffices to prove that this sequence is measure-

sensitive. For this we take a fixed (but arbitrary) sequence of measurable sets ξn

of X with ξn ∈ Pn for all n ∈ N. It follows from the definition of Pn that either

ξn = X \ X0 for some n ∈ N, or ξn ∈ Qn for all n ∈ N. Then, the intersection
⋂

n∈N

ξn either is contained in X \ X0 or reduces to a single measurable point. Since

both X \ X0 and the measurable points have measure zero (for nonatomic spaces

are diffuse [2]), we obtain µ
(

⋂

n∈N

ξn

)

= 0. Since ξn is arbitrary, we are done. �

Although measure-sensitive probability spaces need not be standard, all of them

are nonatomic. Indeed, we have the following result.

Proposition 2.2. All measure-sensitive probability spaces are nonatomic.

P r o o f. Suppose by contradiction that a measure-sensitive probability space

(X,B, µ) has an atom A. Take a measure-sensitive sequence of partitions Pn.

Since A is an atom, we have that ∀n ∈ N ∃! ξn ∈ Pn such that µ(A ∩ ξn) > 0

(and so µ(A ∩ ξn) = µ(A)). Notice that µ(ξn ∩ ξn+1) > 0 for, otherwise,

µ(A) > µ(A ∩ (ξn ∪ ξn+1)) = µ(A ∩ ξn) + µ(A ∩ ξn+1) = 2µ(A), which is im-

possible in probability spaces. Now observe that ξn ∈ Pn and Pn 6 Pn+1, so there

is L ⊂ Pn+1 such that

(2.3) µ

(

ξn △
⋃

ζ∈L

ζ

)

= 0.

If ξn+1 ∩
(

⋃

ζ∈L

ζ
)

= ∅ we would have ξn ∩ ξn+1 = ξn ∩ ξn+1 \
⋃

ζ∈L

ζ yielding

µ(ξn ∩ ξn+1) = µ

(

ξn ∩ ξn+1 \
⋃

ζ∈L

ζ

)

6 µ

(

ξn \
⋃

ζ∈L

ζ

)

= 0

which is impossible. Hence ξn+1 ∩
(

⋃

ζ∈L

ζ
)

6= ∅ and then ξn+1 ∈ L, for Pn+1 is a

partition and ξn+1 ∈ Pn+1. Using (2.3) we obtain ξn+1 ⊂ ξn (mod 0) so A ∩ ξn+1 ⊂
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A ∩ ξn (mod 0), for all n ∈ N
+. From this and well-known properties of probability

spaces we obtain

µ

(

A ∩
⋂

n∈N

ξn

)

= µ

(

⋂

n∈N

(A ∩ ξn)

)

= lim
n→∞

µ(A ∩ ξn) = µ(A) > 0.

But Pn is measure-sensitive and ξn ∈ Pn, ∀n ∈ N, so we have µ
(

⋂

n∈N

ξn

)

= 0 yielding

µ
(

A∩
⋂

n∈N

ξn

)

= 0, which contradicts the above expression. This contradiction yields

the proof. �

An interesting question (posed by an anonymous referee) is if the converse of

Proposition 2.2 is true for probability spaces, namely, if every nonatomic probability

space is measure-sensitive. So far we have not found any counterexample for this

question. Notice that such a counterexample (if it exists) must be nonstandard by

Proposition 2.1.

The following equivalence relates measure-sensitive partitions and measure-

sensitive sequences of partitions.

Lemma 2.1. The following properties are equivalent for measurable maps f :

X → X and countable partitions P on measure spaces (X,B, µ):

(i) The sequence Pn in (2.1) is measure-sensitive.

(ii) The partition P is measure-sensitive.

(iii) The partition P satisfies

µ({y ∈ X : fn(y) ∈ P (fn(x)), ∀n ∈ N}) = 0, ∀µ-a.e. x ∈ X.

P r o o f. First we introduce some notation.

Given a partition P and f : X → X measurable we define

P∞(x) = {y ∈ X : fn(y) ∈ P (fn(x)), ∀n ∈ N}, ∀x ∈ X.

Notice that

(2.4) P∞(x) =
⋂

n∈N+

Pn(x)

and

(2.5) Pn(x) =

n
⋂

i=0

f−i(P (f i(x))),
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so each P∞(x) is a measurable set. For later use we keep the following identity

(2.6)

( n
∨

i=0

f−i(P )

)

(x) = Pn(x), ∀x ∈ X.

Clearly (1.1) (or (iii)) is equivalent to µ(P∞(x)) = 0 for every x ∈ X (or for µ-a.e.

x ∈ X , respectively).

Next, we prove that (i) implies (ii). Suppose that the sequence (2.1) is measure-

sensitive and fix x ∈ X . By (2.4) and (2.6) we have P∞(x) =
⋂

n∈N

ξn where ξn =

Pn(x) ∈ Pn. Since the sequence Pn is measure-sensitive, we obtain µ(P∞(x)) =

µ
(

⋂

n∈N

ξn

)

= 0, which proves (ii). Conversely, suppose that (ii) holds and let ξn

be a sequence of measurable sets with ξn ∈ Pn for all n. Take y ∈
⋂

n∈N

ξn. It

follows that y ∈ Pn(x) for all n ∈ N whence y ∈ P∞(x) by (2.1). We conclude that
⋂

n∈N

ξn ⊂ P∞(x), therefore µ
(

⋂

n∈N

ξn

)

6 µ(P∞(x)) = 0, which proves (i).

To prove that (ii) and (iii) are equivalent we only have to prove that (iii) implies

(i). Assume by contradiction that P satisfies (iii) but not (ii). Since µ is a probability

and (3) holds, the set X ′ = {x ∈ X : µ(P∞(x)) = 0} has measure one. Since (ii)

does not hold there is x ∈ X such that µ(P∞(x)) > 0. Since µ is a probability and

X ′ has measure one, we have P∞(x) ∩ X ′ 6= ∅, so there is y ∈ P∞(x) such that

µ(P∞(y)) = 0. But clearly the collection {P∞(x) : x ∈ X} is a partition (because P

is), so P∞(x) = P∞(y) whence µ(P∞(x)) = µ(P∞(y)) = 0, which is a contradiction.

This ends the proof. �

Recall that a measurable map f : X → X is measure-preserving if µ ◦ f−1 = µ.

Moreover, it is ergodic if every measurable invariant set A (i.e. A = f−1(A) (mod

0)) satisfies either µ(A) = 0 or µ(X \ A) = 0; and totally ergodic if fn is ergodic for

all n ∈ N
+.

E x am p l e 2.1. If f is a totally ergodic measure-preserving map of a probability

space, then every countable partition P with 0 < µ(ξ) < 1 for some ξ ∈ P is measure-

sensitive with respect to f (this follows from the equivalence (iii) in Lemma 2.1 and

Lemma 1.1 p. 208 in [10]).

Hereafter, we fix a measure space (X,B, µ) and a measurable map f : X → X .

We shall not assume that f is measure-preserving unless otherwise stated.

Using the Kolmogorov-Sinai’s entropy we obtain sufficient conditions for the

measure-sensitivity of a given partition. Recall that the entropy of a finite partition

P is defined by

H(P ) = −
∑

ξ∈P

µ(ξ) log µ(ξ).
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The entropy of a finite partition P with respect to a measure-preserving map f is

defined by

h(f, P ) = lim
n→∞

1

n
H(Pn−1).

Then, we have the following lemma.

Lemma 2.2. A finite partition P with finite positive entropy of an ergodic

measure-preserving map f : X → X in a probability space (X,B, µ) is measure-

sensitive.

P r o o f. Since the map f is ergodic, the Shannon-McMillan-Breiman Theorem

(c.f. [10] p. 209) implies that the partition P satisfies

(2.7) − lim
n→∞

1

n
log(µ(Pn(x))) = h(f, P ), µ-a.e. x ∈ X,

where Pn(x) is defined as in (2.5). On the other hand, Pn+1(x) ⊂ Pn(x) for all n, so

(2.4) implies

(2.8) µ(P∞(x)) = lim
n→∞

µ(Pn(x)), ∀x ∈ X.

But h(f, P ) > 0, so (2.7) implies that µ(Pn(x)) goes to zero for µ-a.e. x ∈ X . This

together with (2.8) implies that P satisfies the equivalence (iii) in Lemma 2.1, so P

is measure-sensitive. �

In the sequel we study measurable maps carrying measure-sensitive partitions (we

call them measure-expansive maps for short). It follows at once from Lemma 2.1

that these maps only exist on measure-sensitive spaces. Consequently, we obtain the

following result from Proposition 2.2.

Theorem 2.2. Every probability space carrying measure-expansive maps is

nonatomic.

A simple but useful example follows.

E x am p l e 2.2. The irrational rotations of the circle are measure-expansive maps

with respect to the Lebesgue measure. This follows from Example 2.1 since all such

maps are measure-preserving and totally ergodic.

On the other hand, it is not difficult to find examples of measure-expansive

measure-preserving maps which are not ergodic. These examples together with

Example 2.2 suggest the question whether an ergodic measure-preserving map is

measure-expansive. However, the answer is negative by the following example.
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E x am p l e 2.3. A measure-sensitive partition has necessarily more than one

element. Consequently, if B = {X, ∅} then no map is measure-expansive although

they are all ergodic and measure-preserving.

In spite of this we still can give conditions for the measure-expansivity of ergodic

measure-preserving maps.

Recall that the entropy (c.f. [10], [16]) of f is defined by

h(f) = sup{h(f, Q) : Q is a finite partition of X}.

We obtain a natural generalization of Theorem 3.1 in [3].

Theorem 2.3. Ergodic measure-preserving maps with positive entropy in prob-

ability spaces are measure-expansive.

P r o o f. Let f be such a map with entropy h(f) > 0. We can assume that

h(f) < ∞. It follows that there is a finite partition Q with 0 < h(f, Q) < ∞. Taking

P =
n−1
∨

i=0

f−i(Q) with n large we obtain a finite partition with finite positive entropy

since h(f, P ) = h(f, Q) > 0. It follows that P is measure-sensitive by Lemma 2.2

whence f is measure-expansive by definition. �

The first consequence of the above result is that the converse of Theorem 2.1 is

false.

E x am p l e 2.4. Let f : X → X be a homeomorphism with positive topological

entropy of a compact metric spaceX . By the variational principle [16] there is a Borel

probability measure µ with respect to which f is an ergodic measure-preserving map

with positive entropy. Then, by Theorem 2.3, f carries a measure-sensitive partition

which, by Corollary 4.18.1 in [16], cannot be a strong generator. Consequently,

there are measurable maps in certain nonatomic probability spaces carrying measure-

sensitive partitions which are not strong generators.

On the other hand, it is also false that ergodic measure-expansive measure-

preserving maps on probability spaces have positive entropy. The counterexamples

are precisely the irrational circle rotations (c.f. Example 2.2). Theorems 2.2 and 2.3

imply the well-known result below.

Corollary 2.1. Probability spaces carrying ergodic measure-preserving maps

with positive entropy are nonatomic.

In the sequel we analyse the aperiodicity of measure-expansive maps. According

to [12], a measurable map f is aperiodic whenever for all n ∈ N
+, if fn(x) = x on a

measurable set A, then µ(A) = 0. Let us extend this definition in the following way.
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Definition 2.2. We say that f is eventually aperiodic whenever the following

property holds for every (n, k) ∈ N
+×N: If A is a measurable set such that for every

x ∈ A there is 0 6 i 6 k such that fn+i(x) = f i(x), then µ(A) = 0.

It follows easily from the definition that an eventually aperiodic map is aperiodic.

The converse is true for invertible maps but not in general (e.g. the constant map

f(x) = c where c is a measurable point of zero mass).

With this definition we can state the following result.

Theorem 2.4. Every measure-expansive map is eventually aperiodic (and so

aperiodic).

P r o o f. Let f be a measure-expansive map of X . Take (n, k) ∈ N
+ × N and a

measurable set A such that for every x ∈ A there is 0 6 i 6 k such that fn+i(x) =

f i(x). Then

(2.9) A ⊂
k

⋃

i=0

f−i(Fix(fn)),

where Fix(g) = {x ∈ X : g(x) = x} denotes the set of fixed points of a map g.

Let P be a measure-sensitive partition of f . Then
k+n
∨

m=0
f−m(P ) is a countable

partition. Fix x, y ∈ A ∩ ξ. In particular, ξ =
( k+n

∨

m=0
f−m(P )

)

(x) whence y ∈

( k+n
∨

m=0
f−m(P )

)

(x). This together with (2.5) and (2.6) yields

(2.10) fm(y) ∈ P (fm(x)), ∀m, 0 6 m 6 k + n.

But x, y ∈ A, so (2.9) implies f i(x), f j(y) ∈ Fix(fn) for some i, j ∈ {0, . . . , k}. We

can assume that j > i (otherwise we interchange the roles of x and y in the argument

below).

Now take m > k + n. Then, m > j + n, so m − j = pn + r for some p ∈ N
+ and

some integer 0 6 r < n. Since 0 6 j + r < k + n (for 0 6 j 6 k and 0 6 r < n), we

get

fm(y) = fm−j(f j(y)) = fpn+r(f j(y)) = f r(fpn(f j(y)))

= f j+r(y)
(2.10)
∈ P (f j+r(x)).

But

P (f j+r(x)) = P (f j+r−i(f i(x))) = P (f j+r−i(fpn(f i(x))))

= P (fm−i(f i(x))) = P (fm(x)),
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so

fm(y) ∈ P (fm(x)), ∀m > k + n.

This together with (2.10) implies that fm(y) ∈ P (fm(x)) for all m ∈ N whence

y ∈ P∞(x). Consequently, A ∩ ξ ⊂ P∞(x). As P is measure-sensitive, Lemma 2.1

implies

µ(A ∩ ξ) = 0, ∀ξ ∈
k+n
∨

i=0

f−i(P ).

On the other hand,
k+n
∨

i=0

f−i(P ) is a partition, so

A =
⋃

ξ∈
k+n∨

i=0

f−i(P )

(A ∩ ξ)

and then µ(A) = 0 since
k+n
∨

i=0

f−i(P ) is countable. This ends the proof. �

It follows from Lemma 2.1 that, in nonatomic probability spaces, every measurable

map carrying strong generators is measure-expansive. This motivates the question

whether every measure-expansive map has a strong generator. We give a partial pos-

itive answer for certain maps defined as follows. We say that f is countable-to-one

(mod 0) if f−1(x) is countable for µ-a.e. x ∈ X . We say that f is nonsingular if

a measurable set A has measure zero if and only if f−1(A) also does. All measure-

preserving maps are nonsingular. A Lebesgue probability space is a complete mea-

sure space which is isomorphic to the completion of a standard probability space

(c.f. [1], [2]).

Corollary 2.2. The following properties are equivalent for nonsingular countable-

to-one (mod 0) maps f on nonatomic Lebesgue probability spaces:

(1) f is measure-expansive.

(2) f is eventually aperiodic.

(3) f is aperiodic.

(4) f has a strong generator.

P r o o f. Notice that (1) ⇒ (2) by Theorem 2.4 and (2) ⇒ (3) follows from the

definitions. Moreover, (3) ⇒ (4) by Parry’s theorem (c.f. [12], [14], [13]) while (4)

⇒ (1) by Lemma 2.1. �

Recall that Fix(g) = {x ∈ X : g(x) = x} denotes the set of fixed points of a

mapping g.
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Corollary 2.3. If fk = f for some integer k > 2, then f is not measure-expansive.

P r o o f. If f were measure-expansive, then it would be eventually aperiodic by

Theorem 2.4. Besides, if x ∈ X then fk(x) = f(x), so fk−1(fk(x)) = fk−1(f(x)) =

fk(x), therefore fk(x) ∈ Fix(fk−1) whence X ⊂ f−k(Fix(fk−1)). But since f is

eventually aperiodic, n = k−1 ∈ N
+ andX measurable, we obtain from the definition

of eventual aperiodicity that µ(X) = 0, which is impossible. Then, the result follows

by contradiction. �

E x am p l e 2.5. By Corollary 2.3, neither the identity f(x) = x nor the constant

map f(x) = c are measure-expansive (because they satisfy f2 = f). In particular,

the converse of Theorem 2.4 is false, since the constant maps are eventually aperiodic

but not measure-expansive.

It is not difficult to prove that all ergodic measure-preserving maps of a nonatomic

probability space are aperiodic. Then, Corollary 2.1 implies the well-known fact that

all ergodic measure-preserving maps with positive entropy on probability spaces are

aperiodic. However, using Theorems 2.3 and 2.4 we obtain the following stronger

result.

Corollary 2.4. All ergodic measure-preserving maps with positive entropy on

probability spaces are eventually aperiodic.

Next, we study the following variant of aperiodicity introduced by Helmberg and

Simons (c.f. [4], p. 180).

Definition 2.3. We say that f is HS-aperiodic1 whenever for every measurable

set of positive measure A and for every n ∈ N
+ there is a measurable subset B ⊂ A

such that µ(B \ f−n(B)) > 0.

Notice that HS-aperiodicity implies the aperiodicity used in [7] or [15] (for further

comparisons see p. 88 in [9]).

A measurable map f is negative nonsingular if µ(f−1(A)) = 0 whenever A is

a measurable set with µ(A) = 0. Some consequences of the HS-aperiodicity on

negative nonsingular maps in probability spaces are given in [9]. Observe that every

measure-preserving map is negative nonsingular.

Let us present two technical (but simple) results for later usage. Hereafter, a

measurable set A satisfying A ⊂ f−1(A) (mod 0) will be referred to as a positively

invariant set (mod 0). For completeness we introduce the following property of

these sets.

1 called aperiodic in [4].
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Lemma 2.3. If A is a positively invariant set (mod 0) of finite measure of a

negative nonsingular map f , then

(2.11) µ

( ∞
⋂

n=0

f−n(A)

)

= µ(A).

P r o o f. It follows by induction that

(2.12) µ

( m
⋂

n=0

f−n(A)

)

= µ(A), ∀m ∈ N.

On the other hand,
∞
⋂

n=0

f−n(A) =

∞
⋂

m=0

m
⋂

n=0

f−n(A)

and
m+1
⋂

n=0
f−n(A) ⊂

m
⋂

n=0
f−n(A). As µ(A) < ∞, we conclude that

µ

( ∞
⋂

n=0

f−n(A)

)

= lim
m→∞

µ

( m
⋂

n=0

f−n(A)

)

(2.12)
= lim

m→∞
µ(A) = µ(A),

which proves (2.11). �

We only use this lemma to prove the proposition below.

Proposition 2.3. Let P be a measure-sensitive partition of a negative nonsin-

gular map f . Then, no ξ ∈ P with positive finite measure is positively invariant

(mod 0).

P r o o f. Suppose by contradiction that there is ξ ∈ P with 0 < µ(ξ) < ∞ which

is positively invariant (mod 0). Taking A = ξ in Lemma 2.3 we obtain

(2.13) µ

( ∞
⋂

n=0

f−n(ξ)

)

= µ(ξ).

As µ(ξ) > 0, we conclude that
∞
⋂

n=0
f−n(ξ) 6= ∅, and so there is x ∈ ξ such that fn(x) ∈

ξ for all n ∈ N. As ξ ∈ P , we obtain P (fn(x)) = ξ, and so f−n(P (fn(x))) = f−n(ξ)

for all n ∈ N. Using (2.5) we get

Pm(x) =

m
⋂

n=0

f−n(ξ).
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Then, (2.4) yields

P∞(x) =

∞
⋂

m=0

Pm(x) =

∞
⋂

m=0

m
⋂

n=0

f−n(ξ) =

∞
⋂

n=0

f−n(ξ),

and so µ(P∞(x)) = µ(ξ) by (2.13). Then, µ(ξ) = 0 by Lemma 2.1 since P is measure-

sensitive, which is impossible. This contradiction proves the result. �

We also need the following lemma resembling a well-known property of expansive

maps.

Lemma 2.4. If k ∈ N
+, then f is measure-expansive if and only if fk is.

P r o o f. The notation P f
∞(x) will indicate the dependence of P∞(x) on f .

First suppose that fk is a measure-expansive with a measure-sensitive partition

P . Then, µ(P fk

∞ (x)) = 0 for all x ∈ X by Lemma 2.1. But by definition, we

have P f
∞(x) ⊂ P fk

∞ (x), so µ(P f
∞(x)) = 0 for all x ∈ X . Therefore, f is measure-

expansive with the measure-sensitive partition P . Conversely, suppose that f is

measure-expansive with expansivity constant P . Consider Q =
k
∨

i=0

f−i(P ), which

is a countable partition satisfying Q(x) =
k
⋂

i=0

f−i(P (f i(x))) by (2.6). Now, take

y ∈ Qfk

∞ (x). In particular, y ∈ Q(x) hence f i(y) ∈ P (f i(x)) for every 0 6 i 6 k.

Take n > k, so n = pk + r for some nonnegative integers p and 0 6 r < k. As

y ∈ Qfk

∞ (x), we have fpk(y) ∈ Q(fpk(x)) and then fn(y) = fpk+i(y) = f i(fpk(y)) ∈

P (f i(fpk(x)) = P (fn(x)), which proves fn(y) ∈ P (fn(x)) for all n ∈ N. Then,

y ∈ P∞(x) which yields Qfk

∞ (x) ⊂ P∞(x). Thus, µ(Qfk

∞ (x)) = 0 for all x ∈ X by

the equivalence (ii) in Lemma 2.1, since P is measure-sensitive. It follows that fk is

measure-expansive with the measure-sensitive partition Q. �

With these definitions and preliminary results we obtain the following.

Theorem 2.5. Every measure-expansive negative nonsingular map in a proba-

bility space is HS-aperiodic.

P r o o f. Suppose by contradiction that there is a measure-expansive map f which

is negative nonsingular but not HS-aperiodic. Then, there are both a measurable set

of positive measure A and n ∈ N
+ such that µ(B \f−n(B)) = 0 for every measurable

subset B ⊂ A. It follows that every measurable subset B ⊂ A is positively invariant

(mod 0) with respect to fn. By Lemma 2.4, we can assume n = 1.

Now, let P be a measure-sensitive partition of f . Clearly, since µ(A) > 0, there

is ξ ∈ P such that µ(A ∩ ξ) > 0. Taking η = A ∩ ξ we obtain that η is positively
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invariant (mod 0) with positive measure. In addition, consider the new partition

Q = (P \ {ξ}) ∪ {η, ξ \ A}, which is clearly measure-sensitive (for P is). Since this

partition also carries a positively invariant (mod 0) member of positive measure

(say η), we obtain a contradiction by Proposition 2.3. �

To finish, we compare the measure-expansivity with the notion of pairwise sensi-

tivity in metric measure spaces introduced in p. 376 of [3]. Similar notions have been

introduced elsewhere (c.f. [5], [8] or [6]).

Recall that a metric measure space is a triple (X, d, µ), where (X, d) is a metric

space and µ is a measure in the corresponding Borel σ-algebra. Hereafter, the term

measurable will mean Borel measurable. The product measure in X × X will be

denoted by µ⊗2.

Definition 2.4. A measurable map f : X → X on a metric measure space

(X, d, µ) is pairwise sensitive if there is δ > 0 such that

µ⊗2 ({(x, y) ∈ X × X : ∃n ∈ N, d(fn(x), fn(y)) > δ}) = 1.

By a metric probability space we mean a metric measure space of total mass one.

Given a map f : X → X and δ > 0 we define the dynamical δ-balls

Φδ(x) = {y ∈ X : d(fn(x), fn(y)) 6 δ, ∀n ∈ N}, ∀x ∈ X.

The following characterization of pairwise sensitivity (similar to one in [11]) is in [8].

Lemma 2.5. The following properties are equivalent for measurable maps f on

metric probability spaces (X, d, µ):

(1) f is pairwise sensitive.

(2) There is δ > 0 such that

(2.14) µ(Φδ(x)) = 0, ∀x ∈ X.

By a separable probability space we mean a metric probability space whose under-

lying metric space is separable.
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Theorem 2.6. All pairwise sensitive maps on separable probability spaces are

measure-expansive.

P r o o f. Let f be a pairwise sensitive map on a separable probability space

(X, d, µ). By Lemma 2.5, there is δ > 0 satisfying (2.14). Since (X, d) is sepa-

rable, we can select a countable covering {Bk : k ∈ I} of X consisting of balls of

radius δ, where I is either N or {0, 1, . . . , s} for some s ∈ N. As usual we can trans-

form this covering into a countable partition P = {ξk : k ∈ I} by taking ξ0 = B0 and

ξk = Bk \
k−1
⋃

i=0

Bi for k > 1. Clearly this partition satisfies P∞(x) ⊂ Φδ(x). Then,

(2.14) implies µ(P∞(x)) 6 µ(Φδ(x)) = 0 for every x ∈ X , so P is measure-sensitive

by Lemma 2.1. �

The following example shows that the converse of Theorem 2.6 is false.

E x am p l e 2.6. An irrational circle rotation is measure-expansive with respect to

the Lebesgue measure (c.f. Example 2.2 or Corollary 2.2) but not pairwise sensitive

with respect to that measure (c.f. [3] p. 378).

Recall that a map f : X → X on a metric space (X, d) is expansive if there is

δ > 0 such that x = y whenever x, y ∈ X and d(fn(x), fn(y)) 6 δ for all n ∈ N.

Corollary 2.5. Every measurable expansive map in a nonatomic separable prob-

ability space is measure-expansive.

P r o o f. Notice that a map f is expansive if and only if there is δ > 0 such

that Φδ(x) = {x} for every x ∈ X . Then, Lemma 2.5 implies that every expansive

measurable map on a nonatomic metric measure space is pairwise sensitive. Now

apply Theorem 2.6. �
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