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THE CAUCHY PROBLEM FOR THE HOMOGENEOUS
TIME-DEPENDENT OSEEN SYSTEM IN R3:
SPATIAL DECAY OF THE VELOCITY
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(Received May 20, 2012)

Abstract. We consider the homogeneous time-dependent Oseen system in the whole space
R3. The initial data is assumed to behave as O(|z| "1 7%), and its gradient as O(|z|~3/27¢),
when |z| tends to infinity, where ¢ is a fixed positive number. Then we show that the
velocity u decays according to the equation |u(z,t)| = O(|z|~1), and its spatial gradient
Vzu decreases with the rate |x|_3/2, for |z| tending to infinity, uniformly with respect to
the time variable ¢t. Since these decay rates are optimal even in the stationary case, they
should also be the best possible in the evolutionary case considered in this article. We also
treat the case ¢ = 0. Then the preceding decay rates of u remain valid, but they are no
longer uniform with respect to t.
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1. INTRODUCTION
Consider the homogeneous time-dependent Oseen system
(1.1) Opu(z,t) — Agu(z,t) + TO1u(x, t) + Vom(x,t) =0, diveu(x,t) =0
for (x,t) € R3 x (0,00), under the initial condition
(1.2) u(z,0) = a(z) for x € R3,

Here the initial data a: R3 — R? and the parameter 7 € (0,00) are given, whereas
the velocity u: R3 x [0,00) — R? and the pressure 7: R? x (0, 00) +— R are unknown.
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We are interested in the question as to what are the minimal assumptions on a such
that the velocity u decays in the following way:

(1.3)  |8%u(x, t)| = O([|z|v, (x)]1711/2)  for |x| — oo, uniformly in ¢ € (0, oc),
where « is a multiindex in N3 with || < 1, and where the function v, is defined by
(1.4) Ve(2) := 1+ k(|z| —2z1) for k € (0,00), z € R3.

Here and in the following, we use the notation |3 for the length (31 + 32+ 035 of 8 € N3.
The condition |a| < 1 in (1.3) means that we consider the asymptotic behaviour of
u(a = 0) and of the gradient of u with respect to z(|a|] = 1). The term v,(z) may
be seen as a mathematical manifestation of the wake extending behind a rigid body
moving with constant velocity through a viscous incompressible fluid. We further
note that the decay rates of u and V,u given by (1.3) are the best possible, in the
sense that no better rates could be detected in general in the stationary case ([1],
[18, Chapter IX], [16], [24], [4]). Returning to the question concerning the minimal
conditions on a such that (1.3) holds, an ideal answer would, of course, consist in
requiring that
9°a(y)| = O([lylv, ()] 712V/2)for |y — oo,

with o as in (1.3). However, although we did obtain a decay rate as in (1.3) under
this condition, we could not show this rate to be uniform in ¢ € (0, 00). In order to
get a decay uniform in ¢, we had to assume there is an € > 0 with

0%a(y)| = O([lylv-(y))~*71*1727%) " for |y| — oo,
Let us state our results in more detail. To this end, we have to introduce some
notation. Put e; := (1,0,0) and A¢ := R3\ A for A C R3. By §, we denote the
usual heat kernel in R3, that is,

(1.5) H(z,t) = (dnt) 32 1F/0 for 2 € R3¢ € (0, 00).

We define the volume potential 3¢ (c): R3 x (0, 00) — R3 by
(1.6) 39 (e)(x,t) = | Oz —y— rtey,t)e(y)dy for z € R, k.t € (0,00),
R3

and for suitable functions ¢: R3 — R3.

Our main result may now be stated as follows:
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Theorem 1.1. Fix the parameters 1,5y, 09,00,01 € (0,00), ko € [0,1], S €
(S0, ). Let a € Li (R*)? with

loc

(1.7) la(y)| < dollyl,v-(y)] """ fory € BE,.

Then the function 3(7)(a) is well defined and belongs to C*(R3 x (0, 00))3.
If kg > 0, we have

(1.8) 37 (@) (@, )] < C1(8o + llalBs, 1) [[elvr(2)] ™ for x € B, t € (0,00),

where the constant Cy > 0 depends on Sy, S, kg and 7, with the dependence on T
being such that C is an increasing function of 7.
Otherwise, not excluding the case kg = 0, we have

(1.9) 137 (@) (2, )] < C2(60 + l|al Bsyll1) (L + )7 [Jafvr (2)]

for x € Bg, t € (0,00), with the constant Cy > 0 depending on Sy, S, 00 and 7, and
again being an increasing function of T.
Now additionally suppose that a|Bs,” € W2! (Bs, )® and

loc
(1.10)  [0%a(y)| < dullylvs ()] 1PI="0 fory € Bg,", B €N with |8] < 1.

Then, if ko > 0, there is a constant C5 of the same type as the constant Cy in (1.8)
such that

(1.11) 10237 (@), )] < (61 + lla] By 1) [l ()] 119172

for x € BE, t € (0,00), 8 € N3 with |3| < 1. If we do not exclude the case ko = 0,
we obtain

(112) 10897 @), )] < Caldr + lalBsyl) (1 + 07 laly ()] 7192

for x,t,( as in (1.11), with Cy being the same kind of constant as Cy in (1.9).

Note that since the constants C1,...,C4 in Theorem 1.1 are increasing functions
of 7, we may let 7 tend to zero in (1.8), (1.9), (1.11), (1.12). Actually an estimate of
3(7)(a) with 7 = 0 is implicitly given in the second part of the proof of Lemma 4.1;
this estimate corresponds to the limit case 7 = 0 in (1.8) and (1.11), respectively,
and holds even for kg = 0.

Lemma 2.3 below states conditions on a such that the function 37 (a) is the
velocity part of a solution to (1.1), (1.2), with vanishing pressure. This type of result

301



justifies the title of this paper. But we do not attempt to identify those functions
that are the velocity part of a solution to (1.1), (1.2) and may be represented by
the volume potential 3 (a). It is for a different reason that we study the latter
function: we are interested in the asymptotic behaviour of solutions to the time-
dependent Navier-Stokes system with Oseen term,

(1.13) Owu—Agu+7ou+7(u-Vy)u+Vep=f, divyu=0 inﬁcx(O,To)

for some Tj € (0, o0o], under Dirichlet boundary conditions on 92 x (0, T) and a decay
condition at infinity,

(1.14) ul0Q x (0,To) =b, wu(z,t) — 0 (|Jz| = c0) fort € (0,Tp),
and under an initial condition,
(1.15) u(z,0) = a(x) for z € Q'

where Q C R? is an open and bounded set, so that Q0 is an exterior domain. In [12],
we considered the situation that the velocity part u of a solution to (1.13)—(1.15)
may be represented in the form

(1.16) w(z,t) = RO (f — 7(u- Vo )u)(z, t) + 37 (a)(x, t) + B (@) (x, t)

for z € Q°, t € (0,Tp) ([12, Theorem 3.1]), where R (f — 7(u - V,)u)(x,t) is
a convolution integral on Q° x (0, Tp) pertaining to a fundamental solution of (1.1) and
the function f —7(u-V,)u. The single layer potential 87 (®)(z,t) is also defined as
a convolution integral, but the integral in question extends over 9 x (0, Tp), and the
convolution involves a function ® which solves an integral equation on 92 x (0, Tp).
We discussed in [12] how formula (1.16) may be exploited in order to show that
u decays as indicated in (1.3). The proof we presented in [12] for this result uses
Theorem 1.1 in order to deal with the term 37 (a)(z,t) in (1.16). The work at hand
is motivated by this role of Theorem 1.1 in a theory on asymptotic behaviour of
solutions to (1.13)—(1.15).

Let us indicate some further references related to the work at hand. Knightly
[22] proved that solutions to (1.13)—(1.15) exhibit a wake, but he required various
smallness conditions. Mizumachi [27], too, studied the asymptotic behaviour of
solutions to (1.13)—(1.15), showing (1.3) for o = 0, under assumptions that are more
restrictive than those in [12]. In his proof, he also estimated the potential 3(T)(a)
([27, p. 514-515]), establishing (1.8). But he did not consider the other estimates
presented in Theorem 1.1, and his conditions on a are stronger than those in that
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latter theorem. In fact, he suppposed there is a stationary solution ug of (1.13) such
that a(z) = us(x) + 2|72 for |z| — oo ([27, (1.11)]).

The representation formula (1.16), introduced in [12, Theorem 3.1}, is a conse-
quence of results from [5]-[11]. We refer to [10, Section 1] for an overview of this
part of our theory. References [9] and [11] give a proof of (1.3) for the case that
u is the velocity part of a solution to the Oseen system (1.1) in an exterior domain
in R? (instead of the whole space R?), under Dirichlet boundary conditions, with [9)]
requiring that a and f have compact support, whereas [11] handles a more general
situation. Theorem 1.1 enters into the theory in [11].

Existence results for problem (1.13)—(1.15) were established by Heywood [19], [20],
who used variational arguments, by Solonnikov [30] (solutions in Sobolev and Holder
spaces, as a consequence of an extensive linear theory), and by Miyakawa [26] and
Shibata [28] (mild solutions). LP-Li-estimates for the Oseen system in €° were
treated by Kobayashi and Shibata [23] (space dimension n = 3), [15] (n > 3), [14]
(local LP-L9-estimates in the case n > 3), and by Bae, Jin [2] (weighted LP-norms).
The temporal decay of spatial LP-norms of the velocity part of solutions to (1.13)—
(1.15) was studied by Masuda [25], Heywood [20, p. 675], Shibata [28], Enomoto,
Shibata [15] (case n > 3), and Bae, Roh [3]. Finally, as concerns the Cauchy problem
(1.1), (1.2), Knightly [21, p. 507] and Takahashi [31] deduced results on pointwise
spatial and temporal decay of solutions to (1.1), (1.2) by exploiting a theory on
asymptotic behaviour of solutions to the instationary Stokes system.

2. AUXILIARY RESULTS
Here and in the following, we write C for numerical constants, and €(vy, ..., ~,) for
constants depending on parameters i, ..., v, € (0,00) for some n € N. For z € R3,

we put 2’ 1= (22, 23), 50 2 = (21, 2') and |2|? = 22 + |2/|2. Recall the definition of the
heat kernel § in (1.5). The following estimate of §) was shown in [29].

Lemma 2.1. $ € C*(R3 x (0,0)) and
(2.1) 10959 (2,1)| < €L, |B]) (|2 + ) ~3/2-181/2- L= 12/ (30

for € R3, t € (0,00), B €NG, 1 €No.

The ensuing result is well known and will be used frequently.

Lemma 2.2. [, H(z,t)dz =1 for t € (0,00).
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We remark that for our purposes, it would be enough to know that the integral in
Lemma 2.2 is bounded independently of ¢ € (0, 00). Since the function a introduced
in Section 1 may be written as XBs, @ + XBg, @ with the first term of the sum
belonging to L'(R?®)? and the second to L°°(R?)2, the ensuing lemma implies in
particular that the volume potential 3 (a) introduced in (1.6) is well defined and
belongs to C°°(R3 x (0, 00))3.

Lemma 2.3. Let k € (0,00), p € [1,00], ¢ € LP(R3)3. Then
(2.2) /R 1089(x — rter —y, e(y)| dy < oo forz € B, ¢ € (0,00), B € N2.
Moreover, 3% (¢) € C=(R3 x (0,00))? and
(2.3) (’9533(%)(0)@7 t) = . 855’)@ — kter —y,t)c(y) dy
for x, t, B as in (2.2),
(24) 8,3 (e)(x,t) — AITW (), ) + kO TP () (z,8) =0 (z € R®, £>0).

If p < co and if ¢ belongs to the closure of the set {¢ € C§°(R3)3: divyp = 0} in
LP(R®)3, then div,3"(c)(z,t) = 0 for z € R3, t € (0,00). If ¢ € CO(R®)?, we
further have

(2.5) 3% (e) € COR® x [0,00))® and T%(¢)(x,0) = ¢(z) for z € R®.

Proof. Let R,§,M € (0,00) with 6 < M. For z € Bg,y € BSg, we have
|z —y|l > |yl — R > |y|/2, so we find by Lemma 2.1 that

(2.6) 101029(= =y, )e(y)]
< (1, [))5 322 W20y e () + X ()] ()]

(» € Br,y € R3 t € (6,M), B € N3, 1 € Ng). The right-hand side of (2.6) is
integrable with respect to y € R3. Thus it follows by a standard application of
Lebesgue’s theorem and by the properties of the heat kernel that the statements of
Lemma 2.3 up to and including (2.4) hold in Bg x (6, M), and thus in R? x (0, c0).

Let p € [1,00), and suppose that ¢ € LP(R3)3. Then we deduce from Lemma 2.1,
2.2 and Young’s inequality for integrals that

193" (&), D)l < / 1029(= — wter, )| dzle]l, < €12l
R3

for t € (0,00), B € N} with |3] < 1. Therefore equation (2.3), an integration by
parts and a density argument yield that div, 3" (¢) = 0, under the assumptions on ¢
specified in the passage following equation (2.4). As for (2.5), we refer to [17, proof
of Theorem 1.2.1]. O

304



The following estimate of |z — kte;|? + ¢ constitutes the basic observation that
allows us to detect a wake in time-dependent Oseen flows.

Lemma 2.4 ([5, Lemma 2]). Let s € (0,00). Then
(|2 — wter)* + 1)~ < C(K) max{1, k}(or.n(2) +1) 7"

for z € R3, k,t € (0,00), where ok .(2) := |z|? for 2 € By, and ok . (2) := |2|vi(2)
else.

Another useful observation is stated in

Lemma 2.5 ([13, Lemma 4.8]). v.(z —y)™' < €max{1,x}(1 + |y|)vs(x)~! for
z,y € R3, K € (0,00).

By exploiting the exponential factor in the inequality in Lemma 2.1, we get
Lemma 2.6. Let ¢,t € (0,00), 2z € R3, 3 € N} with || < 1. Then

10753(2, )] < €e) (L +6)2(L+ [2) 7= (| + 1) 72/271012,

Proof. If |z] < 1, Lemma 2.6 is an immediate consequence of Lemma 2.1. Sup-
pose that |z| > 1. Then

e FPBY = (4/]2|2)5/2 (|22 /1) 2e 1217/ 81)
< Ee)(t/[21?)/? < €t (1 + |2)) 7%,

where the last inequality is valid because |z| > 1. Now Lemma 2.6 follows from
Lemma 2.1. g

To end this section, two technical lemmas that will be used frequently later on.
Lemma 2.7. Let z € R®. Then

(2.7) (2l +20)(12l = 20) = [, 1+ [zDa(z) = 1+ [2])%/8.

Proof. The first equation is obvious. The second follows from the first by ob-
serving that in the case |z| > 1, we have

(L4 l2wa(2) = |2l = 21) = (2] + 21) (1] = 21) /2 = [£'2/2 > (1 + ['])?/8.

If |2’| <1, the second inequality in (2.7) is immediate. O
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Lemma 2.8. Let ¢ € (0,1] and 2z € R®. Then

29) [0+ 1D+ 2 = e =) dy < )

(29) [l el o= ot = ) dy < <o)

Proof. Let the left-hand side of (2.8) be denoted by 2A. We find by wirtue of
(2.7) that

(210) A< /W(l DT A+ 2 = y) TP e =y = )] T dy
< [ D+ =) -y )y
R3

<e( farimasta—=2ar) ([ @)

< €(e) /[R(l + |r|)_1(1 + |21 — 7“|)_€/2 dr.

By Holder’s inequality with exponents 1/(1 —e/4) and 4/e, we may conclude

A < e (/Ra ) dr>1_6/4 (/Ra o — 1)) dr) " e

This proves (2.8). We further observe that by (2.7), the left-hand side of (2.9) is
bounded by

¢ [ @l ) =y ) Ry,

The latter term may be estimated in a similar way as the right-hand side of the
second inequality of (2.10). O

3. A SCALING ARGUMENT

Recall the quantities 7, Sy, 09, do, 01, Ko, S chosen in Theorem 1.1. Further
recall that at the beginning of Section 2, we introduced the notation €(y1,...,v,)
for constants that may depend on 71,...,7, € (0,00), with n € N. In the sequel, if
vi = 7 for some i € {1,...,n}, then the symbol €(vy,...,7,) stands for constants
that are additionally supposed to be increasing functions of 7.
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We want to prove (1.8) and (1.11) on the one hand, and (1.9) and (1.12) on the
other, by a single argument. To this end, we fix a € N3 with |a| < 1. In the case
a = 0, we suppose assumption (1.7) to hold, and if |a| = 1, we require (1.10) to be
valid. Thus a € L. _(R?)3 in both cases, a[Bs, € Wli)cl (Bs, )% if |a| = 1, and

(3.1) 10%a(y)| < 8allylv- ()] 1717170 for y € Bg,", B € {0,a}

in both cases. Note that (3.1) corresponds to two inequalities if || = 1, and to
a single one if & = 0. We choose a function g € C*(R?) with ©5|Bsy+(5—50)/4 = 0,
905|B(CSO+S)/2 =1 and 0 < ¢pg < 1. This function will be kept fixed throughout. We
begin our estimates by considering 3™ ((1 — ¢g)a).

Lemma 3.1. Let z € Bg, t € (0,00). Then
(32) 10937((1 — ws)a)(x,1)| < €(So, S,7)([la| Bs, 1 + 8jag) (|vr ()71 1o/2,
Proof. For y € R3 with (1 — ¢s)(y) # 0 we have |y| < (S + So)/2, hence with
the abbreviation 57 := (S + Sp)/2,
(3-3) [z =yl = |2] = S1 = [x|(1 = 51/5) + [2]51/5 = S
> z|(1—-51/5) =5 — 51 =(5S—5)/2,
and by Lemma 2.5,
(3.4) ve(z —y) 7 SN+ [yv(2) 7 < €S, v ()7

Now we get by Lemma 2.1, Lemma 2.4 with K = (S — Sp)/2, (3.3), and (3.4) that
for y € R3 with (1 — ¢g)(y) # 0,

|099(x — Tter — y,t)| < €(So, S, 7)(|Jz — ylvr(x —y) + t)_3/2_‘°‘|/2
< €(So, S, 7)(||vs () ~3/2 11/,

Therefore by (3.1) and (2.3),

0237((1 = ps)a)(w, 1) < (S, S, T)(levr(x))"g/%‘a'”/ (1= @s)(y)aly) dy

Bs,
< (s, lalr ) 222 ([ fatlay+ sy [ )
Bs, Bs,\Bs,
< ©(S. 5,7 (lal By 1 + 1)l (@) 212172
(I

Now we turn to psa. Since this function vanishes on Bg,y(s_s,)/4, assumption
(3.1) implies
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Lemma 3.2. gga € L (R?)3, and psa € WI})’;([R?’)‘[3 if |a] = 1. Moreover,

loc

(3.5) 10%(psa)(y)] < €(So, 8)ja|(lylvr (y)) 1~ 1P1/2ro

for y € R®\ {0}, B € {0,a}.

In the ensuing corollary, we introduce a function ag which is a scaled version of
¢sa. This function as vanishes in the neighbourhood Bg, /. of the origin. However,
we do not want to exploit this fact because it would introduce a dependency on Sy/7
in our constants, which then would no longer be increasing functions of 7. So in
Corollary 3.1 below, we estimate ag by an upper bound which is singular at y = 0.
However, this singularity is weak in R? and can be handled without problem. The
factor T1tlal/2+50 a]s0 appearing in our bound of ag will be useful later on when we
will return from 3 (@s) to 3 (¢pga) (Section 5). But when estimating 3™ (ag), we
will have to start all over again, in the sense that first we will introduce another cut-
off function, this time denoted by %, which we will require to satisfy the equations
¥|B; = 0 and ¢|BS = 1. Then we will evaluate 3V ((1 — )ag) (Lemma 4.1), before
turning to the main difficulty of our argument, that is, an estimate of 3(1)(1/)&5). We
indicate that it is only in the proof of Lemma 4.1, which deals with J% ((1 —)as),
that the singularity of the upper bound of ag matters.

Corollary 3.1. Put as(y) := (psa)(t7'y) for y € R3. Then as € Li (R3)3,
with as € WL (R?)? if |a| = 1, and

10%as ()] < €(So, §)jay7! 1R |yl (y)) 101270
for y € R®\ {0}, B € {0,a}. In particular, for y, 3 as before,

(36)  [0%as(y)] < €S0, S)djay(L+ 7 1VE) TR (Jyfun (y) 7102

Finally, by a change of variables, we scale 3() (psa):

Lemma 3.3. 77 (pga)(z,t) = 3 (ag)(rz, 72t) for z € R3, t € (0, 00).
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4. DEcAy ESTIMATES oF 3 (ag)

In this section, we study the asymptotic behaviour of 3(1)(615). But in order to
avoid the cumbersome constant in (3.6), we replace ag by a slightly more general
function b € LL (R?)3 with b € W2! (R3)? if |a| = 1, and

loc loc

(4.1) 107b(y)] < A(lyln(y)) " 10270 (y € R\ {0}, B € {0,a}),
for some number v € (0,00). Recall that a € N3 with |a| < 1 was fixed at the
beginning of Section 3. We choose a cut-off function 1) € C°°(R3) with |B; = 0,

¥|BS =1, 0 < 1 < 1. For brevity, we put b := 1b. Let t € (0,00) be fixed in this
section.

Lemma 4.1. Let x € R?\ {0}. Then

(4.2) 079D ((L =)o) (@, 1)] < &y(Jalva(@)) ™ 712 (00 (2]) + x00,01 (J2]) 2] 7).

Proof. We first suppose that |z| > 4. Since (1 — ¢)b|B§ = 0, we may then
proceed similarly as in the proof of Lemma 3.1, with the parameters 57, .S replaced
by the numbers 2 and 4, respectively. In particular, we obtain |0“$)(x —te; —y,t)| <
C(|x|vy(2))~3/27121/2 for y € R3 with (1 —)(y) # 0, and thus

053V (1 = ¢)b) (. 8)] < (|| (@)73/27'&‘/2/ b(y)] dy.
B>

But by (4.1), [5, [b(y)[dy < v [5, lyl~'7" dy < &y, so that (4.2) is proved in the
case |z| > 4. Now suppose that |z| < 4. We note that

(4.3) 10°((1 = ¥)b)(y)] < Ex, (y)yly|~~11/2=ro

by (4.1). Now we find

(4.4) / Oz —ter —y, 1)|[0%((1 — ¥)b)(y)| dy
R\ Bz /2
< 67/ ff)(x —ter — y7t)|y|_1_‘0‘|/2—*€0 dy
B2\Bjz|/2
< Q:’y|x|*1*|a\/2*fio / H(x —ter —y,t)dy < Q:»)/|x|71*|oz\/27no7
Ba\B|g|/2
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where the last inequality holds by Lemma 2.2. Moreover, by virtue of (4.3),
Lemma 2.1 and Lemma 2.4 with K = 6, and because |z — y| > |z|/2 for y € By,

(4.5) / A — ter —,£)|0°((1 — $)b) ()| dy
Bz /2
<&y / & — y| 3y |11l gy
Bm/zﬂBg

< €7|x|_3/ y| 1120 dy < @yfa| T lel/2 R0,
Biz/2

We use (2.3), perform integration by parts, and then apply (4.4) and (4.5) to obtain

0530 ((1 = )b (, )] = |3V (0°((1 — ¥)b]) (. t)]

< [ D@ —ter —y,0)|0%((1 = ¥)b)(y)| dy < Cyfa| o2,
R3

But 1 < €uy(x)~17121/27%0 gince |x| < 4, so we have proved (4.2) in the case |z| < 4

as well. O

In view of the choice of b and 1) at the beginning of this section, the ensuing lemma
is obvious.

Lemma 4.2. b € L. _(R3)3, with b € WL (R?)? if |a| = 1, and

(4.6) 107b(y)| < (L +lyhra(y) 2770 fory € R?, 5 € {0,a}.

Lemma 4.3. Let K € (0,00), z € Bg. Then

o (2 =y, 1)[0°b(y)| dy < EK)Y((1+ |z])wa ()12,

Proof. By (4.6), we have |[0°b(y)| < €y for y € R3. Since |z| < K, Lemma 4.3
follows by Lemma 2.2. O

Lemma 4.4. Let © € R3. Then

030 () t) = [ 90  ter — ) dy.
R3
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Proof. By (2.3) and a change of variables, we have

(@.7) 9230 () (2, 1) = /R Oy, b — ter — ) dy.

But H(y,t) and 0*$(y,t) decay exponentially for |y| — oo (Lemma 2.1), and b and
0°b are in particular bounded (Lemma 4.2). So we may integrate by parts on the
right-hand side of (4.7). Lemma 4.4 then follows. O

Lemma 4.5. Let z € R?\ {0}. Then

(4.8) /W 9y, )(1 — %(y)9°b(z — y) dy| < Cy(|2|v(2)) 1712,

Proof. For y € R3 with (1 —)(y) # 0 we have |y| < 2. Suppose that |z| > 4.
Then, for y € R with (1 —v)(y) # 0, we get |z —y| > |2]/2 and v1(z —y)~! <
€vy(2)7 L, where we used Lemma 2.5 in the second estimate. In view of (4.6), we
obtain

Asﬁ<y’t>(1—¢<y>>3a5<z—y> ay| < @ (1 + () [ o0y
<Oy ((1+ |Z|)V1(2:))71*‘04/27

where the last inequality is a consequence of Lemma 2.2. If |z] < 4, inequality (4.8)
follows from Lemma 4.3 with K = 4. O

Lemma 4.6. Let z € R3\ {0} with |2| — 21 < 1. Then

(4.9)

[ 9005 -) dy\ < &y (Jzfn ()2,
R3
Proof. By (4.6) we have

(4.10)

3
[ a.00%i: ~ ) dy\ <o Y
R3 i=1
with
Boim [ S0+ 1z — )y fori € {1,2,3)
A

with Ay := B\, 2, A2 := Byjz \ B|2|/2, 43 1= Bg‘z‘. For y € A; the relation |z —y| >
|z|/2 holds, hence

(4.11) Pl <€+ |z|>+‘a'/2/ 9y, 1) dy < €1+ =)~ 11/2,
Bzi/2
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where we used Lemma 2.2. For y € Az we have |y| > |2|/2 and |z — y| < 3|z|, in
particular Ay C {y € R3: |z — y| < 3|2|}. It follows from Lemma 2.1 that

(4.12) M| < @/ (lyP +8) 7321 + |z — y|) 2112 ay
Az
< QIZI’?’/ (14 |z — y)~ 12172 4y < @]z~ 1-lel/2,
[z2—y|<3|z|
Finally, for y € As we have |z —y| > |y| — |2| > |y|/2, hence Lemma 2.1 yields

M3 < ¢/ (Jyl? + )32 + |y|) 112 dy < ¢/ |~ lel/2 4y,

c c
BQ\Z\ B2\z\

so that |M3| < €|z|~1121/2, Therefore, by virtue of (4.10)—(4.12),

(4.13)

(3. 00°H: ) dy| < el I
R3
Since |z| — z1 < 1, we have 1 > v1(z)/2. Thus (4.9) follows from (4.13). O

Lemma 4.7. Let z € R? with z; < 0. Suppose that ko > 0. Then

'/ 929(z — y, )b(y) dy‘ < €(ro)ylza |72l
R3

Proof. Fory € R? with y; > 0 we have |z; —y1| = |21| +y1. Using this equation,
Lemma 2.1, (4.6) and (2.7), we get

(4.14)

/ 029(z -y, t)b(y) dy‘ < Q'y/ |z —y| 73711 4 |y )220 dy
y1>0 >0
< Q:'Y/ (|Zl| +y1 + |Z’ _ y/|)737\a|(1 + |y/|)7272no dy
y1>0
= @'y/ / (1] + 7+ |2/ — ) =37 1el(1 + |y) =220 dr dy
r2 Jo
= Q:’)/ /R2(|Zl| + |z/ _ n|)727|a\(1 + |n|)7272no d77
< Q:’y|zl|*2*|a\/ (1+|n|)7272;¢0 dn < Q:(Ho)’y|zl|72*|a‘.
R2
Abbreviating H := {y € R®: y; < 0}, we get by integration by parts that
(415) / 8?55(z -, t)E(y) dy = 21 + Ao,
H
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with
W= / 9z —y, )0%b(y)dy, Ay := — H(z =y, 1)b(y)(e1 - @) doy,.
H OH

This integration by parts is possible because b and *b are bounded according to
(4.6), and $H(z — y,t) and 9°H(z — y,t) decay exponentially for |y| — oo. Observe
that for y € H we have v1(y) > 1 + |y|. Therefore, using (4.6) and Lemma 2.1, we
get in the case |z| > 1 that

(4.16) 20| < / Sﬁ(z—y,t)(l—k|y|)*2’|‘1"2“0dy
H

<& ( [ ety
By /2

+
Bl /2

< €v(|zl3/ (1+ [y[) =2 1e=2m0 4y
B2

Bz —y.t)(1+ [y]) 21 dy)

+ IZI_Q_""/ ﬁ(z—yvt)dy)
BL‘

I=1/2
In the case o = 0, we observe that

[oasmray < [ @)ty < el
B2z Bz /2
If |a| = 1, we use the estimate
/ (1+ [y 2l =2m0qy < / (1+ Jy) ™72 dy < €(ro).
Bz1/2 R3

Recalling Lemma 2.2, we thus deduce from (4.16) that
(4.17) 0] < €(ro)yl2| 2717,

Noting that v1(y) = 1+ |y| for y € 0H, we further find by Lemma 2.1 and (4.6) that
(18) (2l <laley [ -yl (1 )2 do,
OH
<laley [ (] +1 =)0+ a2 dy

<laferfal @ [ (1 )22 dy < Jalelno)aal
R
< €ro)y|za| 71

Combining (4.14), (4.15), (4.17) and (4.18), we obtain the lemma. O
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Lemma 4.8. Let z € R? with z; < 0. Then

/ 929 (2 — v, )b(y) dy| < €(oo)y(1 4 )70 |z | 7271l
R3

Note that contrary to Lemma 4.7, we do not suppose in Lemma 4.8 that kg > 0.

Proof of Lemma4.8. Proceed as in the proof of Lemma 4.7, but use Lemma 2.6
with € = 209 instead of Lemma 2.1. Thus, when revisiting (4.14) and (4.18), we may
exploit the fact that

L1 = ) dn < o),

as follows by Holder’s inequality. Concerning (4.16), we observe that by Lemma 2.6,
[ ot -pna ey
Byzi/2

< €ao) (L +)7 / 2=yl P+ [z =y (L + )1 dy
Biz1/2

< €(o0)(1 + 1)°0 2|32 / (1+ Jy) 21 dy.
Byzi/2

In view of this inequality, the estimate in (4.16) may be modified in an obvious way.
O

Lemma 4.9. Let z € R3\ {0} with |2'| > |2|/2. Suppose that ro > 0. Then

/ 029z =y, 1)b(y) dy‘ < o)yl 21,
R3
Proof. Put H := {y € R3: |y/| < |z|/4}. Then, by integration by parts,
(4.19) ‘/ 999 (z — y, t)b(y) dy‘ < ngi,
RS :

with

B, ‘ / 925 (z — v, )b(y) dy|, By =
H

/ 9z —y,1)0%b(y) dy|,
R3\ H

9z =y, )b(y)((0,9) - @) /]y'| doy,
OH

%3 =
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Due to the decay properties of (-, t) and l~), this integration by parts is possible
although H is unbounded. Now (4.6), Lemma 2.1 and (2.7) yield

(420) By <Oy /H 12 — 51737191 (1 + [y ()1 dy
_ I =3 —]| /1\—2—2kKo
“”/H“Zl il + 12— /)31 4 [y ]) 220 dy
e [ | = a) e )2 dr
{neR?: |n|<|z|/4} JO

< Qv/ B e (S U Rt )
{neR2: |n|<|z|/4}

But for n € R? with || < |2|/4, we find by our assumption on z that |2’ — 5| >
|2'] = |n| = 12|/2 — In| = |#|/4. Therefore we may conclude

(4.21) |B1] < Ey]z] 71 / (1+ [n) 2720 dyy < €(ko)y2| 7271
R2
For y € R3\ H we have |y’| > |z|/4. Therefore, by (4.6) and (2.7),
(422) Bal <0 [ 9 p )
R3\ H
< ¢7|Z|_2—|O(‘/ ﬁ(z_y,t)dy<¢7|z|—2—|o(\,
R3\ H

where the last inequality follows from Lemma 2.2. For y € 9H, the equation |y| =
|z|/4 holds. Recalling (4.6) and (2.7), we thus get

B3] < |a]Cy / Az — . 1)1+ y']) 2 do,
OH
< Jaley(1 + [2]) 2 / 9= — 1) doy.
OH
Next we use Lemma 2.1 to conclude that
1985 < [aley|| 2 / |2 — 4% do,
oOH
< Jajey|| 2 / (le1 — ] + | — o/}) % do,
oOH
— Jafey|| ! / / (r + 12" — (|2l/4)n])~3 dr do,
{neRr2: |n|=1} Jo
<laferel [ 12/ = (I21/4)n]~2 doy.

{neR?: |n|=1}
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But for n € R? with |n| = 1, the estimate |2/ — (|z|/4)n| > |2'| — |2]/4 > |2|/4 holds.
(Recall we have assumed |2/| > |z|/2.) Thus we arrive at the inequality

(4.23) B3| < laj@y]z| ™ < &yfz| 727l
The lemma follows from (4.19) and (4.21)—(4.23). O

Lemma 4.10. Let z € R3\ {0} with |2/| > |2|/2. Then

(4.24)

[ o290~ .0it) dy\ < C(oo)y(1 + 1)z 2o,
[R3

Proof. The proof is almost identical to that of Lemma 4.9; only the estimate of
the term B; must be modified. In fact, by (4.6), (2.7), and using Lemma 2.6 with
€ = 20y instead of Lemma 2.1, we get

(4.25)  [Ba] < oo)y(1+1)7 / R R R Rl G A 72
H

with H defined as in the proof of Lemma 4.9. By starting with (4.25), and then
proceeding as in (4.20) and (4.21), we find

1] < e+ 072 [ (11 ) ()

But the last integral is bounded by a constant only depending on oy, as follows from
Holder’s inequality. Combining this estimate of B; with (4.19), (4.22) and (4.23),
we arrive at (4.24). O

Corollary 4.1. Let z € R? with z; < 0. If kg > 0, then

(4.26)

/ 029(z =y, 1)b(y) dy‘ < €(ro)yl2[ 7271,
[R3
In any case, we have

(4.27)

[ o290~ u.0i0) dy\ < C(oo)y(1 + 1)z 2o,
[Rl}

Proof. For any z € R3\ {0}, at least one of the two relations |z1| > |z|/2
and |z'| > |z|/2 is valid. Therefore inequality (4.26) follows from Lemma 4.7 (if
|z1| = |2]/2) or from Lemma 4.9 (if |z'| > |z|/2), whereas (4.27) is a consequence of
Lemma 4.8 and 4.10. g

Now we are in a position to prove a decay estimate of [92T™M (b)(z,t)].

316



Theorem 4.1. Let z € R3. If kg > 0, we have

(4.28) 10230 () (,1)] < €r0)y(Jalw () 71102,
Otherwise,
(4.29) 1093 () (x, )| < €(00)y(1 + ) (J|w () 11172,

Proof. Suppose that kg > 0. Abbreviate x; := x — te;. We first determine
a bound of 3 (b)(x,t) in terms of |x|v (2;). Then we use this bound in order
to establish (4.28). We distinguish several cases. First assume that z;; > 0 and
|zt| — 241 > 1. In this case, we start from Lemma 4.4, observing that

(4.30) 10231 (B) (, £)] < |90 | + |9,
with
(4.31) My = R3ﬁ(y,t)w(y)3“5(xt —y)dy,

My = g Hy )1 =¥ (y)0%b(we — y) dy.

We observe that the conditions x4 > 0, |z:] — zy1 > 1 together with (2.7) imply
|24]? = (|J2¢| + 201) (|| — 1) > |x¢], s0 that |a}| > |2|'/2. On the other hand, it is
obvious that |z}| < |z¢|. Thus there is a o € [1/2, 1] such that |z}| = |x¢|?. It follows
by (2.7) and the assumption x;; > 0 that

(4.32) 22?7 = |23 * = [l (Jee] — 201) = |we|vi(22) /2,
where the last inequality holds because of the assumption |x¢| — 241 > 1.
Now put G := {y € R3: |¢/| > |x;|°/2}. Using (4.32), we find for y € R*\ G
(hence |y'| < |x¢|7/2) that
2y — | = lat] = [y| = [e]” = |y'| = 24| /2 > €(|e|wn (w4)) /2,

so that by virtue of (2.7),

(4.33) (Lt |z = yDra(ze =) = Clay =y P = a7 > Cla|vn ().
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Now we may conclude using (4.6) that

(434) Ay, ()0 b — ) dy‘
RI\G
< &y 90y, (A + |z —y)a(z —y)) 12 dy
R3\G
< Q:’Y(|J?t|u1(a:t))—1—\al/2 9y, 1) dy < €y (|ae|m (a?t))_l_‘o‘l/Q,

R3\G

where the last inequality follows from Lemma 2.2. We further obtain by integration
by parts that

(4.35) /G 90, 00 ()~ y) dy = DB,

with
B, = / 25 (y, ) ()bl — y) dy,
G

B, = [a] /G Ay, )" ()b(: — y) dy,

Bs:= [ Dy, ) (y)blz —y)((0,y) - a)2]|a| 77 dy.
oG

For y € R? with ¢(y) # 0 we have |y| > 1, so that |y| > €(1+ |y|). As a consequence,
we may deduce from Lemma 2.1 and (4.6) that

(4.36) %81 < 67/6(1 + 1y [ =yl (e —y) T dy,
But for y € G, the inequality 1+ |y| > |y| = |v'| = |#¢|? /2 holds. Hence

B1] < Exe| 77T /G (L )™M =yl (e =) 770 dy.
Therefore, (2.8) and (4.32), imply
(4.37) |9B1] < €(ko)ylae| =7 < €(ro)y(|me|va (we)) 7112,

Since |b(z¢ —y)| < €y for y € R3 by (4.6), and because |y| > |y/| > |27 /2 for y € G,
hence $(y,t) < €|x;| 37 for such y (Lemma 2.1), we see that

1%Bs] < a]Cr|ze| 57 /G 0% (y)] dy.
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But if |a| = 1, we have 0%¢(y) = 0 for y € BS, so that

(4.38) |B2| < |a|¢7|$t|73"/}3 0°%(y)| dy < |alCyla| =

< lafey(zdvi (@) ™2 < eyl (2) 7112,

where we have again used (4.32). Once more referring to (4.6) and Lemma 2.1, we
get

Bal < Jales [ 71+ o = l)on i = ) o,
But for y € 0G, the relation |y’| = |z+|?/2 holds, so that

Iyl = C(lyal + [v']) = €|y | + |24]7).

Moreover, inequality (4.33) holds for y € OG. Therefore we may conclude that
(4.39) 1Bl < loleslon 2 [ (| + ") doy,

On the other hand,

/(|y1|+|xt|0)_3d0y:/ / (|z¢|7 /2)(r + |2¢|7) 3 do,, dr
oG 0 {neR2: |n|=1}

<" [ ) dr = o]
0
so that from (4.39) and (4.32),

(4.40) B3| < lal@ylad] 77 < Jaly(lzelvi(er)
< &y(fagfwn () "1V,

By Lemma 4.5 we have |9y| < €y(|a¢|vr ()~ 191/2) so we may conclude from
(4.30), (4.34), (4.35), (4.37), (4.38) and (4.40) that

(4.41) |8§‘j(1) (B) (@, )| < €(ro)y(|ze|vn ()1 101/2,

This estimate was shown under the assumptions that z;7 > 0 and |z — 21 > 1.
If these assumptions do not hold, we may use the previous lemmas. In fact, if
|zt| — 241 < 1, Lemma 4.4 and 4.6 yield inequality (4.41) even with a constant that
does not depend on kg. In the case x4 < 0 and |z¢| > 1, estimate (4.41) follows
from (2.3), (4.26) and the inequality

e > 30+ foel) = 31+ 3wl — 20)) > bia(ae).
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Finally, if |z;| < 1, we may use Lemma 4.4 and Lemma 4.3 with K = 1, z = z;
in order to obtain (4.41), again with a constant independent of ky. Thus we have
shown (4.41) for all cases.

Now we turn to estimates in terms of |z|v1(x). First suppose that |z| — 21 > 1,
21 > 0. Then (2.7), implies
(lze] + ze) (o] — wea) = 5]l = 3]’ |

(Il + z1)(l2] = 21) > 3l2|(|2] — 21) > af(2);

|l () > 5
-1
=2

note that |z| — 1 > 11 (z) because |z| — z1 > 1. It thus follows from (4.41) that
(4.28) holds. Next suppose that 1 < 0. Then x;; = z1 — ¢ < 0, so that by (2.3) and

(4.26),
(4.42) 023D () (2, )| < E(ro)y|aze| 72710,

Moreover, we have z1; = x; —t < 1 < 0, so that |z;| > |z|. In the case |z > 1,
we additionally observe that |z| > (1 + |z|) > 111 (z). Thus, under our assumption
x1 < 0, and if |z| > 1, we see that inequality (4.28) follows from (4.42). In the case
x1 < 0, |z] < 1, we still have |z¢| > |z|, and inequality (4.42) continues to hold. If
|z;] > 1, we may conclude from that latter estimate and the relation |x;| > |x| that
|8§3(1)(I~J)(x,t)| < C(ko)7|z|~t121/2. The same inequality follows from Lemma 4.4
and Lemma 4.3 with K = 1, z = x4 if |2¢] < 1. On the other hand, the relation
|z| <1 implies that 1 > 114 (x). Thus we see that inequality (4.28) holds also in the
case z1 < 0, |z| < 1. Suppose that |z| — 21 < 1 and |z;| > %|z|. Then

il (1) > il > Blal > Lol ().

Hence inequality (4.28) follows from (4.41). Consider the case |z| — x1 < 1, |z¢] <
]z[, |z| < 1. The first of these three relations yields 1 > v;(x)/2. The second and
the third imply |a¢| < % Thus, by Lemma 4.4 and Lemma 4.3 with K = %, z = xy,
we have

1023 (0) (2, 1)] < €y < Ey([zfvy (@) 7171V,

so that (4.28) is valid once more. This leaves us to consider the situation that the
conditions |z| — x1 < 1, |z¢] < |#[/2 and |z| > 1 hold. The inequalities |z¢| < 3|z|
and |z| > 1 yield

(4.43) t=la— | > |o| - || > L]a] >
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Thus, by (2.3), (4.6) and Lemma 2.1,

(4.44) 10230 (B)(a, )] < &y /R (e =y + )72 (1 fy () 10 dy
<ot [ ol VIO i) dy

< sfol 2 [ (gl 1)+ ()7

where we have used (4.43) in the last inequality. Now (2.8) implies the estimate
1023V (B) (z,8)| < €(ko)7y|x| 71972, Since 1 > 14(2)/2 because of the condition
|z] — 21 < 1, we see that (4.28) is valid in the present situation as well. This
completes the proof of (4.28). Turning to the proof of (4.29), we suppose that
zy1 =2 0, |x¢] — 241 = 1. Then, using Lemma 2.6 instead of Lemma 2.1, we may
replace (4.36) by

B1| < €(oo)y(1+1)7 /G(l + [y R (1 4 e — gl (e — ) dy.

Starting from this estimate, we continue as in the passage following (4.36), but refer
to (2.9) instead of (2.8). In this way we obtain

(4.45) 19B1] < €(00)Y(L + £)7 (g () L 1e/2,
In the case 41 < 0, |x¢| > 1, we apply (4.27) instead of (4.26) to obtain
(1.46) 18230 ()2, )] < (o) (1 + 1 (o () 111,

Similarly, if 1 < 0 (hence 241 = 1 — ¢ < 0), we again refer to (4.27) instead of
(4.26) in order to replace (4.42) by

(4.47) 1093 (B) (2, )| < E(0)y(1 + )70 |, | 72710

We finally have to modify (4.44). To this end, we suppose as in (4.44) that |z| —2; <
1, |z¢| < 3|z| and |z| > 1, and then use Lemma 2.6 instead of Lemma 2.1, to obtain
by (4.43) that

059V (B) (. 1)] < €(o0)y(1+ )7 / (g = yf? + 1) /2l
x (14 e — )2 (1 + [y ()~ dy

<01+ 71l 2 [ (1t lm = )+ () .
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Now (2.9) implies
(4.48) 10230 (b) (2, )] < €(o0)y(1 + t)70 | 1o/,

All the other estimates used in the proof of (4.28) need not be modified. These
estimates combined with (4.45)—(4.48) imply (4.29). O

Theorem 4.1 and Lemma 4.1 imply
Corollary 4.2. Let x € R3\ {0}. If kg > 0, we have

10530 (b) (2, )] < o)y (Jaelva () 1V (00 (12]) + (0,01 (2] 7).
Otherwise, [02TM (b)(x, )| < €(00)y(1 + )70 (|a|p (2)) 1~ 1e1/2,
Comparing (4.1) with (3.6), we may deduce the following result from Corollary 4.2:
Corollary 4.3. Let x € R3\ {0}. If ko > 0, we have
1053 (@s) (@, 1)) < €(So. 8, £0)jag (1 + 7 12) 450 ([af () =1 10172
X (X (4,00) ([7]) + X (0,41 (|Z])]2] "),

else

1093M) (@s) (2, )| < €(So, S, K0)ja) (1 + 771/2)7 (1 + )70 (|z|vy (2)) ~71e1/2,

5. PROOF OF THEOREM 1.1

The first statement of Theorem 1.1 is true according to Lemma 2.3. Let ¢ € (0, c0),
x € Bg. Suppose that kg > 0. Then, by Lemma 3.3 and Corollary 4.3,

(5.1) 10237 (sa) (@, )] = 71119530 (@s) (y, 7°8) jy=r|
< €(S0, S, £0)8ja (71712 + 1) ||y (2)) 7710172
X (X(4,00) (IT2) 7™ + X (0,01 (IT]) ]| 7).

If |72| < 4, we have X (4,00) (|72[)7"° + X(0,4(|72])|2| 7" = |2[7" < &(S). In the case
|| > 4, the equation X (4,00 (|72[)7"° + X (0,4) (|77|)|z| =" = 7" holds. Thus we may
deduce from (5.1) that

|3§‘j<7)(¢8a)(x, t)] < €(So, S, ko, T)d|a (|z|vs (z)) 21012,
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Hence by virtue of Lemma 3.1,

(5:2) 10537 (@) (@, )| < €(So, S, ko, 7)(8jay + lalBs, 1) (el () 7'V,

Since we chose « as an arbitrary multiindex with |a| < 1 (see at the beginning of
Section 3), inequalities (1.8) and (1.11) follow from (5.2). The estimates in (1.9) and
(1.12) may be deduced in a similar way from Corollary 4.3 and Lemma 3.1.
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