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Interactions in complex systems

COMPLEX DYNAMICS
Not explained by a sum of properties of system components

INTERACTIONS OF SYSTEM COMPONENTS
EMERGENT PHENOMENA

STUDY OF INTERACTIONS
@ clues to understanding complex behaviour
@ facts for model building
@ characterization — diagnostics
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Mutual information

@ mutual information
I(X;Y)=H(X)+ H(Y)—H(X,Y)

@ average amount of common information, contained in the
variables X and Y

@ measure of general statistical dependence
e /(X;Y)>0
@ /(X;Y)=0iff Xand Y are independent
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Conditional mutual information

@ conditional mutual information /(X; Y|Z) of variables X, Y
given the variable Z

I(X;Y|Z)=H(X|Z)+ H(Y|Z) - H(X,Y|Z)
@ Z independent of X and Y
I(X;Y|Z2)=1(X;Y)

@ I(X;Y|Z)=I(X;Y;2Z2)-I(X;Z) - I(Y;2)
@ “net” dependence between X and Y without possible
influence of Z
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Dynamics

@ stochastic process { X;}:

indexed sequence of random variables Xj, ..., X,
characterized by p(x1, ..., Xn)

@ uncertainty in a variable X is characterized by entropy
H(X)

@ entropy rate of { X} is defined as

h= lim 1H(X1,...,X,,)

n—oo N

@ N =limp o0 H(Xn| X1, ..., X7)
@ for strictly stationary process h = H
@ dynamical systems: Kolmogorov-Sinai, metric entropy
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n random variables

R(X1: Xoi ... Xn) = H(X;) + H(Xo) + - - + H(Xp)
~HX, Xo, .., X)

@ marginal redundancy
Q(X‘IaXZ)' . -aan1?Xn) = H(X17X27 s 7an1) + H(Xn)

—H(X1, Xo, ..., Xp)
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; Xn) — R(X;
° Q(X1 g aXn—1an) = H(Xn) - H(Xn|X1,

- Xn-1)
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Information-theoretic functionals from time series

a time series {y(t)} considered as a realization of a
stochastic process { Y(t)}, which is stationary and ergodic

due to ergodicity, information-theoretic functionals can be
estimated by using time averages instead of ensemble
averages

variables X; are substituted as
Xi = y(t+(i—1)7),
due to stationarity, the redundancies
R"(r) = R(y(t);y(t+7);...;y(t+ (n—1)7))

&"(r) = e(y(®), y(t+7),....y(t+(n=2)7); y(t+(n—1)7))

are functions of the number n of variables
and the time lag 7, and are independent of t
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KSE and marginal redundancy

@ forn — oo
Qn(T) ~ A{ - h( T‘I‘7£)7

where A, is a parameter independent of n and 7 (and,
clearly, dependent on the partition &), and h(T;, &) is the
entropy of (continuous) transformation T, with respect to
the partition £, corresponding to the probability distribution
p(xi)
@ ¢ generating partition with respectto T
lim o"(7) = A—|7|h(TH).

n—oo

originally conjectured by Andy Fraser
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Lorenz system

(dx/dt,dy/dt, dz/dt) = (10(y — x),x(28 — z) — y, xy — 8z/3)
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KSE from marginal redundancy
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FIG. 1. Time lag 7 plots of marginal redundancies " (r) for the Lorenz system computed with different numbers g of marginal
(equi)quantization levels: a) q b) ¢ = 16, c) q = 40, d) ¢ = 64. Four different curves in each figure represent different
numbers n of lagged series, n = 4 and 5, reading from the bottom to the top.
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Entropy rate of Gaussian processes

@ stochastic process {X;}:
indexed sequence of random variables, characterized by

p(X1,...,Xn)
@ entropy rate of { X} is defined as

h= lim YH(X,,.... Xy)

n—oo N

@ for a Gaussian process with spectral density function f(w)

1 T
hg = 27r/ log f(w)dw

—T
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Gaussian process — (nonlinear) dynamical systems
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Baker transformation

@ baker transformation

1
(Xn+1, Ynt1) = (AXn, aYn)

for yp < a, or:

1
(Xn+1, Ynt1) = (0.5 + Axp, m(}’n —a))

for yn > «;
0<xp,yn<1,0<a<1,A=025

@ Lyapunov exponent (KSE) analytical function of «

h(a):alogé—&—ﬁ —a)log_I 1
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Dynamical systems

@ the logistic map
Xpy1 = axp(1 — Xn);
@ the continuous Lorenz system
(dx/dt,dy/dt ,dz/dt) = (o(y — x),rx —y — xz,xy — bz),

oc=16,b=4.
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Entropy rates: Gaussian process — dynamical systems
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Figure 1: (a—c) Results for the baker map: a) The Lyapunov exponent as the analytic function of the
parameter o. b) The GP entropy rates estimated from 15 realizations of 16k time series (mean — thick
line, mean-=SD — thin lines, coinciding with the mean) for different values of the parameter o varying from
0.01 to 0.49 by step 0.005. ) Plot of GPER (the same line codes as in b) vs. LE. (d f) Results for the
Lorenz system: d) The positive Lyapunov exponents computed from the Lorenz equations for the parameter
r varying from 33.75 to 65 by step 0.25. ) The GP entropy rates estimated from 15 realizations of 16k time
series (mean  thick line, mean+SD  thin lines) for different values of the parameter r varying as in plot d.
) Plot of GPER (the same line codes as before) vs. LE.
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Entropy rates: Gaussian process — dynamical systems
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l‘l,’!,ur(‘ 2: Results for the logistic map: a) The Lyapunoy exponents computed from the map for the parameter

ng from 3.857 to 4 by step 0.001. b) The GP entropy ted from 15 realizations of 16k
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parameter a varying as in plot a. ¢) Plot of GPER (the same line codes a3 before) vs. LE. Plots d, e, f: The
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Entropy rates: Gaussian process — dynamical systems
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Figure 5 Further results for the Lorenz system: a) The positive Lyapunoy exponents computed from the
cing from 33 to 120 by step 1. b) The GP entropy rates estimated
ations of 16k thme series (mons  thick line, means SD  thin lines r‘ounmd)ng with the mean)
for different values of the neter v varying as in plul a. ) Plot of GPER codes as before)
vs. LE. Plots d, e, f: The same as the plots a, b, St ely, except of the er v varying from 33
to 200 by step 1.

M. Palu$ Interactions and Information Flow in Multiscale Systems



Interactions in complex systems

@ Coupling / dependence

@ none, unidirectional, bidirectional
@ linear, nonlinear

@ Synchronization

e identical; generalized
e phase

@ Direction of coupling (causal interaction)
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Mutual information rate

@ stochastic processes { X}, {Y;}, characterized by
p(X1, ..., Xn) and p(y1, ..., ¥n)
@ mutual information rate

1
(X‘],...,Xn; Y‘],...,Yn)

i(X;: ¥;) = lim_ 1
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Mutual information rate

@ for Gaussian stochastic processes { X}, {Y;},

characterized by power spectral densities (PSD) & x(w),
dy(w) and cross PSD ¢x y(w)

@ mutual information rate

' 1 27
i ¥) = = [ Toa(1 ~ b v(w)P)els
™ Jo
@ magnitude-squared coherence

> |Pxyv(w)?
|7X,Y(w)| - CDX(w)(Dy(w)
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Route to synchronization

@ unidirectionally coupled Réssler systems

X1
Xo
X3

o=
Vo =
Vs =

—W1Xo — X3
= wiX1+ a3 Xo
= b1 +x3(x1 — 1)

—waYo — Y3+ €(X1 — yy)
w2y + as Yo
bo + y3(y1 — C2)

a=a =015 b1 =b,=02,¢ci=¢c =100
frequencies wy = 1.015, wo = 0.985.
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Route to synchronization and MIR, ER

COUPLED ROESSLER SYSTEMS, NOISE 10%
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Route to synchronization and MIR, ER

PHYSICAL REVIEW E, VOLUME 63, 046211
Synchronization as adjustment of information rates: Detection from bivariate time series

Milan Palus
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pemhskaia Vi 2, 182 07 Prague 8, Czech Republic

Viadimir Koméek, Zbyrié Hmar, and Katalin $rbova
Clinic of Paediatric Neurology, 2nd Medical Faculty of Charles University,wlu 84, 150 06 Prague-8iotol, Czech Republic
(Received 5 July 2000; revised manuscript received 4 December 2000; published 28 Margh 2001

An information-theoretic approach for studying synchronization phenomena in experimental bivariate time
series is presented. “Coarse-grained” information rates are introduced and their ability to indicate generalized
synchronization as well as to establish a “direction of information flow" between coupled systems, i.e., to
discern the driving from the drivefiesponsesystem, is demonstrated using numerically generated time series
from unidirectionally coupled chaotic systems. The method introduced is then applied in a case study of
electroencephalogram recordings of an epileptic patient. Synchronization events leading to seizures have been
found on two levels of organization of brain tissues and “directions of information flow” among brain areas
have been identified. This allows localization of the primary epileptogenic areas, also confirmed by magnetic
resonance imaging and pasitron emission tomography scans.

DOI: 10.1103/PhysRevE.63.046211 PACS nunfter05.45.Tp, 05.45.Xt, 89.76.c

I. INTRODUCTION electroencephalografEEG) recordings of an epileptic pa-
tient. A conclusion is given in Sec. V.
During the last decade there has been considerable inter-
est in the study of the cooperative behavior of coupled cha- ||, COARSE-GRAINED INFORMATION RATES
otic systemg1]. Synchronization phenomena have been ob- . ) ) .
served_in_manv_nhvsiral and_hinlnnical qustems  Aven in Consider discrete random variablésand Y with sets of

M. Palu$ Interactions and Information Flow in Multiscale Systems



Route to synchronization and MIR, ER

COUPLED ROESSLER SYSTEMS, NOISE 10%
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Interactions in complex systems

@ Coupling / dependence
@ none, unidirectional, bidirectional

@ Direction of coupling (causal interaction)
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Information flow, (Granger sense) causality

@ {x(#)} and {y(t)} time series considered as realizations of
stationary and ergodic stochastic processes {X(t)} and
{Y(t)}, respectively, t =1,2,3,....

@ we will mark x(t) as x and x(t + 7) as x;, and the same
notation holds for the series {y(t)}

e mutual information /(y; x;) measures the average amount
of information contained in the process { Y} about the
process { X} in its future 7 time units ahead (7-future
thereafter).

@ This measure, however, could also contain an information
about the 7-future of the process { X} contained in this
process itself if the processes {X} and {Y} are not
independent, i.e., if I(x; y) > 0.
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Conditional mutual information

@ In order to obtain the “net” information about the 7-future of
the process { X} contained in the process { Y}, use the
conditional mutual information

I(y; x-[x)
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Conditional mutual information

@ time series {x(t)} and {y(t)} as realizations of stochastic
processes {X(t)} and {Y(t)}

@ alternatively {X(t)} and {Y(t)} dynamical systems
evolving in measurable spaces of dimensions m and n,
respectively
the variables x and y in I(y; x-|x) and I(x; y,|y) should be
considered as n— and m—dimensional vectors
one observable is recorded for each system — instead of
the original components of the vectors X(t) and Y(t), the
time delay embedding vectors according to Takens
embedding theorem
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Conditional mutual information

@ in time-series representation we have
(Y (t); X(t+7)|X(2)) =
(0 y(E = p)s- ooy (t = (m=1)p))i x(t +7)]

(x(t), x(t = n), ..., x(t - (n— 1)n))),

where 1 and p are time lags used for the embedding of
trajectories {X(t)} and {Y(t)}, respectively
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Conditional mutual information

@ conditional mutual information
(Y (t); X(t+7)|X(1))

@ equvalent to transfer entropy (Schreiber, 2000)
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Conditional mutual information

@ in practice it is sufficient

I(Y(t); X(t+7)|X()) =

I x(+ D) (x(@), x(E = 1), x(E = (0= 1)) ),

i.e., the dimension of the condition matters
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Roéssler -> Rdssler systems

M, A

I0cy,ly)

Ity )y )

0.1

LYAPUNOV EXPONENTS ]

1-D CONDITION

3-D CONDITION

M. Palu$

0.1
COUPLING STRENGTH &

Interactions and Information Flow in Multiscale Systems



Inference of causality

@ Inference of direction of coupling is possible

e when systems are coupled
@ but NOT yet synchronized

@ synchronization = equivalence of states of the systems
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Instantaneous phases

for a signal (time series) s(t), analytic signal

W(t) = s(t) + j3(t) = A(t)e*®

5(t) = L P, / © s g,

instantaneous phase
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CMI from phases

I(61(2); d2(t + 7)[92(1)) and [(¢2(1); ¢1(t + 7)|d1(1))

phase difference

Ardr2(t) = ¢12(t+7) — ¢12(1),

1(01(1); Arga(t)]P2(1))
I(p2(t); Arpq(t)|1(1))

short notation:

I($1; Argo|g2) and (p2; Ard1|p1)
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Roéssler -> Rdssler systems
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Significance testing using surrogate data

@ Use of bootstrap-like strategy (surrogate time series)
@ Ideally preserve all properties except tested (coupling)

Coupling destroyed in surrogates !
|
| Surrogate 1

A
| Surrogate 2

distribution on

original time \\ surrogate
series

[ E i : Surrogate N

|

|

Surrogate Generating Algorithm
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Rossler -> Rdssler - surrogate type
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SCALE-SPECIFIC INTERACTIONS

OSCILLATORY PROCESS - specific frequency

BROAD-BAND SIGNALS

@ DIGITAL FILTERING

@ WAVELET DECOMPOSITION

e EMPIRICAL MODE DECOMPOSITION
@ SINGULAR SPECTRUM ANALYSIS

@ SCALE-SPECIFIC SYNCHRONIZATION

@ SCALE-SPECIFIC GRANGER CAUSALITY
@ CROSS-SCALE INTERACTIONS

@ CROSS-FREQUENCY COUPLING
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Phase dynamics approach

ANALYTIC SIGNAL

INSTANTANEOUS PHASE
_ 5(1)
¢(t) = arctan )
INSTANTANEOUS AMPLITUDE
A(t) = 1/5(t)% + s(t)?

FILTERING — HILBERT TRANSFORM
COMPLEX CONTINUOUS WAVELET TRANSFORM

M. Palu$ Interactions and Information Flow in Multiscale Systems



WITHIN AND CROSS-SCALE INTERACTIONS

Cross-frequency interactions
@ phase—phase
@ amplitude—amplitude
@ phase—amplitude

e neurophysiology: phase of slow oscillations (9, 6)
modulates the amplitude of fast oscillations ()
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CROSS-SCALE INTERACTIONS

CAUSAL PHASE — AMPLITUDE INTERACTIONS

@ phase ¢4 of slow oscillations
@ amplitude Ay of higher-frequency oscillations
® I(1(1); Ao(t + 7)Ao (1), Az(t — 1), ..., Ap(t — myp))
@ testing using surrogate data approach
e Fourier transform (FT) surrogate data (Theiler et al.)
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Monkey LFP causality in phase-amplitude coupling
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Monkey LFP causality in phase-amplitude coupling

SIGNIFICANT CAUSALITY [Z-score]
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CROSS-SCALE INTERACTIONS

CAUSAL PHASE — AMPLITUDE INTERACTIONS
in about a century long records of daily near-surface air
temperature records from European stations

@ phase ¢ of slow oscillations (around 10 year period)

@ amplitude A, of higher-frequency variability (periods 5
years and less)

(*] /(¢1(t), Ag(t + T)|A2(t), Ag(t — 77), ... ,Ag(t — mT]))
@ testing using surrogate data approach

e Fourier transform (FT) surrogate data (Theiler et al.)
e multifractal (MF) surrogate data (Palus)
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TESTING INTERACTIONS WITH & WITHIN
MULTISCALE PROCESSES

PRL 101, 134101 (2008)

PHYSICAL REVIEW LETTERS

week ending
26 SEPTEMBER 2008

Bootstrapping Multifractals: Surrogate Data from Random Cascades on Wavelet Dyadic Trees

Milan Palus*

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod voddrenskou vézi 2, 182 07 Prague §, Czech Republic
(Received 30 March 2007; revised manuscript received 21 June 2008; published 25 September 2008)

A method for random resampling of time series from multiscale processes is proposed. Bootstrapped
series—realizations of surrogate data obtained from random cascades on wavelet dyadic trees—preserve
the multifractal properties of input data, namely, interactions among scales and nonlinear dependence
structures. The proposed approach opens the possibility for rigorous Monte Carlo testing of nonlinear
dependence within, with, between, or among time series from multifractal processes.

DOI: 10.1103/PhysRevLett. 101134101

The estimation of any quantity from experimental data,
with the aim to characterize an underlying process or its
change, is incomplete without assessing the confidence of
the obtained values or significance of their difference from
natural variability. With the increasing performance and
availability of powerful computers, Efron [1] proposed to
replace (not always possible) analytical derivations based
on (ot always realistic) narrow assumptions by computa-
tional estimation of empirical distributions of quantities
under interest using so-called Monte Carlo randomization
procedures. In statistics, the term “bootstrap” [2] s coined
for randam resamnling of eynerimental data_nsually with

PACS numbers: 05.45.Tp, 05.45.Df, 89.75.Da

data in combinations with some constraints. Possible non-
linear dependence between a signal s(1) and its history
s(t = m) is destroyed, as well as interactions among vari-
ous scales in a potentially hierarchical, multiscale process.
Multiscale processes that exhibit hierarchical information
flow or energy transfer from large to small scales, success-
fully described by using the multifractal concepts (see 7]
and references therein) have been observed in diverse fields
from turbulence to finance [8], through cardiovascular
physiology [9] or hydrology, meteorology, and climatology
[10]. Angelini e al. [11] express the need for resampling
technianes in evalnating data from atmoenherie trhnlence

M. Palu$
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CAUSAL PHASE — AMPLITUDE INTERACTIONS

® [(p1(1); Ao(t + 7)[Ax(t), Ao(t — 1), ..., Ax(t — mm))

@ series length 32768

@ forward lags 7 = 1 — 750 days

@ backward condition lags n = 1/4 of the slow period

@ Gaussian process estimator

@ conditioning dimension: stable results from 3

@ raw data include annual cycle

@ seasonal mean and variance removed before surrogate

randomization

@ seasonal mean and variance added back to surrogate
realizations
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CAUSAL PHASE — AMPLITUDE INTERACTIONS
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CAUSAL PHASE — AMPLITUDE INTERACTIONS
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CAUSAL PHASE — AMPLITUDE INTERACTIONS
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EFFECT PHASE — AMPLITUDE COUPLING

@ HOW TO QUANTIFY THE EFFECT
OF PHASE — AMPLITUDE COUPLING ?

e EXTRACT THE CYCLE WITH PERIOD
AROUND 8 YEARS

@ EXTRACT ITS PHASE

e DIVIDE THE PHASE INTO 8 BINS

@ COMPUTE CONDITIONAL TEMPERATURE MEANS
< Tl¢p € (¢1,¢2) >
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SSA-extracted "7-8 yr cycle"
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EFFECT PHASE — AMPLITUDE COUPLING

[ I PRAGUE TEMPERATURE |

11

10

-3 -2 -1 0 1 2 3
[ PRAGUE TEMPERATURE ANOMALIES |
0.71

PHASE [RAD]

DIFF=1.52 K

CONDITIONAL MEAN TEMPERATURE [ °C]

-0.81
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CONCLUSION
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