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Abstract. In [2], J. Klime$ studied rotations of lattices. The aim of the paper is to
research rotations of the so-called A-lattices introduced in [3] by V. Snésel.
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The set of all lower (upper) bounds of a subset X of an ordered set A will
be denoted by L(X)(U(X)). In the case of a finite set X = {a,b,...} we write
L(a,b,...)(U(a,b,...)) instead of L(X)(U(X)). As usual, under a Galois correspon-
dence we mean a pair (f, g) of mappings between ordered sets P and @ such that f,
g are antitone and the compositions gf, fg are extensive.

It is easy to prove the following

1. Lemma. Let P, @ be ordered sets, f: P — @, g: Q@ — P mappings. Then
the pair (f, g) is a Galois correspondence between P and Q if and only if we have,
for eachx € P,y € Q,

U(f(z),y),
g(L(f(2),y)) CU(z,9(y))-

2. Definition. A below directed ordered set A with a binary operation A is
called a A-A-semilattice if it satisfies the following three axioms:
(1) anbe L(a,b) for each a, b € A.
(2) If a < b, then a A b= a for each a, b € A.
(3) A is commutative.

293



A A-A-semilattice is defined dually. An ordered set with two binary operations A
and V is called a A-lattice if it is a A-A-semilattice and \-V-semilattice.

3. Theorem. Let K, L be A\-A-semilattices, f: K — L, g: L — K mappings.
Then the pair of mappings (f, g) is a Galois correspondence between K and L if and
only if, for each x € K, y € L,

Proof. “=7: Let (f,g) be a Galois correspondence between K and L. Let x €
K,y e L. By 1, we have f(L(z,9(y))) C U(f(2),9), 9(L(f(2),y)) € U(z,9(y))-
But z A g(y) € L(m,g(y)) by 2(1), so that f(:z: A g(y)) € U(f(a:),y) Interchanging
K and L, f and g, we obtain the second assertion.

“<": Let z € K,y € L. We have gf(z) = g(f(z) A f(z)) € U(x,gf(x)), thus
gf(x) = x by 2(2). The mapping gf is therefore extensive. Now, let z;, 22 € K,
x1 < z3. Then, by 2(2), 21 = z1Agf(xz2), for, by extensivity of gf, 1 < z2 < gf(x2).
This implies f(z1) = f(z1 A gf(22)) € U(f(z1), f(x2)) and f(z1) > f(x2); hence
the mapping f is antitone. Interchanging K and L, f and g, we obtain extensivity
of fg and antitony of g. Consequently, the pair (f,g) is a Galois correspondence
between K and L. d

4. Definition. Let K, L be A-lattices, f: K — L, g: L — K mappings. The
pair of mappings (f, g) is called
a) a left semirotation between K and L if

flzAgly) e U(f(x),y) NL(f(x)Vy),
9(f(@)Ay) € U(z,9(v))

foreachx e K,y€ L,
b) a right semirotation between K and L if

flzAgly) e U(f(x),y),
g(f(z) ANy) € U(z,g(y)) NL(zVg(y))
foreach z € K,y € L,
c) a rotation between K and L if it is a left and a right semirotation.

5. Remark. (1) In the case of K, L being lattices, the notion of a left semiro-
tation, right semirotation, and rotation coincide with the corresponding notions in-
troduced by J. Klimes in [2].
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(2) In the definition of a left semirotation, it suffices to require that K is a
A-A-semilattice; similarly for a right semirotation.

6. Lemma. Let K, L be A-lattices, (f,g) a left or right semirotation between
K and L. Then the pair of mappings (f,g) is a Galois correspondence between K
and L.

Proof. It follows from 3. O

7. Lemma. Let K, L be A-lattices, f: K — L, g: L — K mappings. Then the
following statements are equivalent:
(a) (f,g) is a left semirotation between K and L.
(b) (f,g) is a Galois correspondence between K and L and, for each x € K,y € L,

f(L(z Ag(y)) NL(f(x) Vy) #0.

Proof. (a)= (b): Let (a) hold. Then (f,g) is a Galois correspondence between
K and Lby 6. Forany z € K,y € L, f(L(zAg(y)))NL(f(z)Vy) # 0, for f(xAg(y))
belongs to this intersection by 4.

(b) = (a): Let (b) hold. Let z € K,y € L . As f(L(zAg(y)))NL(f(z)Vy) #0,
there exists u € L(z A g(y)) such that f(u) € L(f(z) Vy). Thus u < 2 A g(y),
f(u) < f(z) Vy. Regarding the antitony of f we obtain f(z A g(y)) < f(u) <

f(z)Vy, so that f(a;/\g( )) € L(f(a;)\/y) By 3, we have f(a;/\g(y)) € U(f(a:),y),
9(f(x)Ay) € U(z,g(y)). Summarizing, we get f(zAg(y)) € U(f(z),y)NL(f(z)Vy),
g( (z) A y) € U(a: g(y )), and (f,g) is a left semirotation between K and L. O

8. Lemma. Let K, L be \-lattices, f: K — L, g: L — K mappings. Then the
following statements are equivalent:
(a) (f,g) is a right semirotation between K and L.
(b) (f,g) is a Galois correspondence between K and L and, for eachx € K,y € L,

g(L(f(x) Ay))NL(zVg(y)) # 0.
Proof. Dualto 7. a

9. Theorem. Let K, L be A-lattices, f: K — L, g: L — K mappings. Then the
following statements are equivalent:
(a) (f,g) is a rotation between K and L.
(b) (f,g) is a Galois correspondence between K and L and, for each x € K,y € L,

the sets f(L(a: A g(y))) N L(f(a;) \Y, y) and g(L(f(a:) A y)) N L(a: Vv g(y)) are
nonempty.

Proof. It follows from 7 and 8. O
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10. Remark. Whilein the case of lattices, both sets in (b) are singletons under
the assumptions of 9, in our case any of them may contain more elements, which is
shown by the following example.

11. Example. Let K, L be A-lattices with isomorphic Hasse diagrams:

K CLGZCLQ\/(I3 b()‘:bg\/b;; L

a4 as by bs

as as bo bs = by A bs
a] = a4 N\ as by

If two elements z, y in K or L have the standard supremum or infimum, we put
x Vy =sup{z,y} or z Ay = inf{z,y}. In the other cases the joins and meets are
inscribed in the diagrams. Define a mapping f: K — L as follows:

f(a;) =br_; for each i € {1,2,3,4,5,6},
and put g = f~1. Then (f,g) is a rotation between K and L, but

g(L(f(CLQ) A b4)) N L(CLQ V g(b4)) = {a4, (16}.
12. Notation. Let A, B besets, f: A— B, g: B — A mappings. Denote

Cor ={z € A5 2 =gf(2)},
Crg={y € B;y=fg(y)}.

13. Lemma. Let K, L be A-lattices, (f,g) a left semirotation between K and
L. Then the set Cy, is an upper subset of the ordered set L such that y;, y2 € Cyq
implies fg(y1 Ny2) € L(y1,y2).-

Proof. Lety e Cpy, s € L, y < s. By 6, (f,g) is a Galois correspondence
between K and L, so that g is antitone and we have g(y) > g¢(s), thus g(s) =
g(s) A g(y). Using extensivity of fg we obtain f(g(s) A g(y)) = fg(s) > s, and,
moreover, fg(y) =y (for y € Cp,). As (f,g) is a left semirotation, s < fg(s) =
flg(y)Ag(s)) < fg(y) Vs =yVs =s, hence fg(s) = s and s € Cy,. Further, let yi,
Y2 € Crg. Asy1 > y1 A2, Y2 2 1 AYa, we get g(y1) < g(y1Ay2), 9(y2) < 9(y1 Aye).
In view of the antitony of f, fg(y1 Ay2) < fg(y1) =y, fa(yr Ay2) < fg(y2) = e,
hence fg(y1 Aya) € L(y1,y2)- O
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14. Lemma. Let K, L be A-lattices, (f,g) a right semirotation between K and
L. Then the set Cy; is an upper subset of the ordered set K such that xi, 2 € Cy5
implies gf(x1 A z2) € L(z1,x2).

Proof. Dual to 13. O

15. Theorem. Let K, L be \-lattices, (f,g) a rotation between K and L. Then:

(1) Cyy is an upper subset of the ordered set K.

(2) Cy4 is an upper subset of the ordered set L.

(3) x1, z2 € Cyy implies gf (z1 A x2) € L(z1,x2), f(x1 Ax2) € U(f(l‘l),f(l‘g)) N
L(f(ﬂﬂl) \ f(372))-

(4) y1, y2 € Cy, implies fg(yr Aya) € L(y1,42), 9(y1 A y2) € U(g(yr),9(x2)) N
L(g(y1) V g(y2))-

(5) f I Cyy is an order antiisomorphism of Cyy onto Cjy.

(6) g | Cygy is an order antiisomorphism of C, onto Cyy.

Proof. (1) follows from 14.

(2) follows from 13.

(3) The first part follows from 14. Further, let =1, 22 € C,y. Then f(z1 A x2) €
U(f(z1), f(w2)), for f is antitone. We have f(z1 Axz) = f(z1 Agf(x2)) € L(f(x1)V
f(mg)) by 4. Hence f(z1 A x3) € U(f( 1), f(xg)) N L(f(xl) vV f(mg))

(4) Dual to (3).
(5) an

5 d (6) hold for any Galois correspondence and are well-known. a

16. Theorem. Let K, L be A-lattices, f: K — L, g: L — K mappings such that
gf and fg are extensive on K and L, respectively. If, for any z, w € K, y, v € L,
x A gly) < uVg(v) is equivalent to f(z) Vy > f(u) Av, then (f,g) is a rotation
between K and L.

Proof. First, we shall show that f is antitone. Let zq, x5 € K, z1 < 3. Then
1 Agf(z1) < o1 <22 < 22V gf(22), thus f(z1) = f(z1) V fz1) > f@2) A f(22) =
f(z2), and f is antitone. Interchanging K and L, f and g, we obtain antitony
of g. Hence the pair (f,g) is a Galois correspondence between K and L. Hence,
by 3, f(z Ag(y) € U(f(2),y), 9(f(x) Ay) € U(z,g(y)) for any z € K, y € L.
Further, we have zAg(y) < gf (xAg(y)) = gf (xAg(y)) Vaf(zAg(y)), consequently
f@)vy = faf(zngly) Af(zAgly). But faf(zAgly)) > f(zAg(y)), so that
faf(zAngy) A flzAgly) = flzAgly), and we get f(zAgly) < flz)Vy
Again, interchanging K and L, f and g, we have g(f( YA y) zV g(y). This yields
FlzAg(y) € U(f(x),y) NL(f(z) Vy), 9(f(x) Ny) € U(z,g(y)) N L(z V g(y)) for
any x € K,y € L, and (f, g) is a rotation between K and L. O
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17. Lemma. Let K, L be A-lattices, f: K — L, g: L — K mappings. If, for any
z,a € K,y,be L,
(1) f(z) = f(a) Ab implies z < a V g(b), and
(2) 9ly) > ang(b) implies y < f(a) Vb,
then (f,g) is a rotation between K and L.

Proof. First, we shall show extensivity of the mapping gf. For any a € K,
we have f(a) > fgf(a) A f(a). By (1), we obtain a < gf(a) V gf(a) = gf(a).
Now, let us show antitony of the mapping f. Let x;, 2o € K, 1 < z3. As gf
is extensive, x2 < g¢f(x2), so that gf(z2) > x1 A gf(x1). This implies, by (2),
f(z2) < f(z1) V f(z1) = f(z1). Interchanging K and L, f and g, we get extensivity
of fg and antitony of g. By 3, we have f(z A g(y)) € U(f(z),y) for any z € K,
y € L. As gf is extensive, gf(z A g(y)) > = A g(y), and by (2), f(z A g(y)) <
f(@)Vy, ie f(zAgly)) € L(f(z) Vy) for any z € K, y € L. Summarizing, we
obtain f(z A g(y)) € U(f(z),y) N L(f(z) Vy) for any 2 € K, y € L. Similarly
g(f(x)ny) € U(z,g(y)) N L(zV g(y)) for any x € K, y € L and (f,g) is a rotation
between K and L. d

18. Lemma. Let K, L be A-lattices, (f,g) a left semirotation between K and L.
Then, for anya € K, y, b€ L, g(y) > a A g(b) implies y < f(a) V b.

Proof. By 6, (f,g) is a Galois correspondence between K and L. Let a € K,

y, b€ L, gly) > aAgd). Then y < fgly) < flaAgh)) < fla) Vb in view of
extensivity of fg, antitony of f, and Definition 4. O

19. Lemma. Let K, L be A-lattices, (f,g) a right semirotation between K and
L. Then, for any z, a € K, b€ L, f(z) > f(a) A b implies x < a V g(b).

Proof. Dual to 18. O

20. Theorem. Let K, L be A-lattices, f: K — L, g: L — K mappings. Then

the following statements are equivalent:

(1) (f,9) is a rotation between K and L.

(2) For each z, a € K, y, b € L, f(z) > f(a) A b implies x < aV g(b), and
9(y) > a A g(b) implies y < f(a) V b.

(3) fg and gf are extensive and, for any z, a € K, y, b € L, a > x A g(y) implies
fla) < f(z) Vy, and b > f(z) Ay implies g(b) < z V g(y).

(4) fg and gf are extensive and, foranyx € K,y € L, f(U(zAg(y))) € L(f(z)Vy),
g(U(f(x) Ay)) € L(zVg(y)).

Proof. (1) (2): It follows form 17, 18, and 19.
(1)=(3): By 6, (f,g) is a Galois correspondence between K and L, thus the
mappings fg and gf are extensive. Let a > x A g(y). Then, by antitony of f and
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4, f(a) < f(a; A g(y)) < f(z) Vy. Interchanging K and L, f and g, we obtain the
other implication.

(3)=(1): First, let us show antitony of f. Let z;, 22 € K, #; < z2. Then
2 =1 =21 Agf(xr), thus f(x2) < f(z1)V f(z1) = f(x1). Again, interchanging K
and L, f and g, we obtain antitony of g. Let x € K,y € L. As z A g(y) <z A g(y),
we have f(z A g(y)) < f(z) Vy. Further, z A g(y) < =, z A g(y) < g(y), hence
flzngly) = f(x), flzAgly) = faly) > y, so that f(z Ag(y) € U(f(2),y).
Altogether, f(z A g(y)) € U(f(x),y) N L(f(z) Vy). Analogously, g(f(z) Ay) €
U(z,g9(y)) NL(zV g(y)) and (f,g) is a rotation between K and L.

(3)<=(4): Trivial. O

21. Definition. A bounded ordered set A with two mappings A and \/ of the
power set R(A) of A into A is called a complete A-lattice if it satisfies the following
three conditions:

(1) Ile g XQ g A, then /\X1 2 /\)(27 \/X1 < \/XQ
(ii) If X C A has a least element x, then A X = x.
(i) VX € U(X) for each X C A.

Instead of A{a,b} we write a A b for any a, b € A; similarly with \/.

22. Remark. A complete A-lattice need not be a A-lattice with regard to the
binary operations A and V. It becomes a A-lattice, if we add the condition
(iv) Ifa, be A, a < b, then a Vb =b.

23. Theorem. Let K, L be complete A-lattices, f: K — L a mapping satisfying
the conditions

F(VX) > A f(X) for each X C K, and

flxAy) > f(z)V fly) for each z, y € K.
Then there exists a unique mapping g: L — K such that (f,g) is a Galois corre-
spondence between K and L.

Proof. Define a mapping g: L — K as follows:
:\/{xéK;f(a;)>y} for any y € L.

We have fg(y) = f(V{z € K; f(z) > y}) > /\{f z); ¢ € K fv) >y} >
/\U(y):yfor anyyeL because {f ;v € K f(x) 2y} CU Thus fg is
extensive. Now, let y1, y» € L, y1 < y2. Then

{mEK; f(x)>y1}2{x€K;f($)>y2}

and g(y1) = V{z € K; f(zx) > } V{z € K; f(z) > 2} =
(

9(y2) and g is
antitone. Let € K. Then gf(z) = \/ {21 € K; f(z1) > f(2)} > =,

because

299



T € {:171 € K; f(z1) > f(a:)}, and gf is extensive. Further, let x1, x5 € K, 21 < 2.
Then ;1 = @1 A za, consequently f(z1) = f(z1 Az2) = f(z1) V f(x2) = f(x2) and
f is antitone. Therefore (f,g) is a Galois correspondence between K and L. Let
(f,g') be a Galois correspondence between K and L as well. Then, by 3, ¢'(y) =
g (y A fg(y)) = g(y) for any y € L. Similarly g(y) > ¢'(y) for any y € L. Hence g is
unique such that (f,g) is a Galois correspondence between K and L. O

24. Theorem. Let K, L be complete A-lattices, f: K — L a surjective mapping
satisfying the conditions

FVX)=Af(X) for any X C K, and

f(z A y) = F@)V [(y) for any o, y € K.
Then there exists a unique mapping g: L — K such that (f, g) is a left semirotation
between K and L; moreover, fg =idy.

Proof. Define a mapping g: L — K as follows:
\/{xEK f(z —y}forannyL

We have fg(y) = f(V{z € K; f(z) = y}) =/\{f(33);w€K,f(1‘)=y}=y-
Thus fg = 1dL and fg is extensive. Now, let y1, yo € L, y1 < y2. Asy; =y1 Ays =
Fa(y) A fg(yz) Fg(y1) v g(y2)), we obtain g(y1) V g(y2) € {z € K; f(z) = w1 }.
Hence g(y1) = V {z € K; f( ) =y} > g(y1) Vg(y2) > g(y2) and g is antitone.
Let z € K. Then gf(z) = \/ {z1 € K; f(z1) = f(z)} > z, because z € {z1 € K;
f(z) = f(z } and gf is extensive. Further, let z;, 3 € K, ;1 < z2. Then
1 = 1 A Za, so that f(x1) = f(xy Axe) = f(x1) V f(z2) = f(z2) and f is antitone.
Consequently, (f, g) is a Galois correspondence between K and L. The uniqueness of
g follows from 23. By 3, we have f(z A g(y)) € U(f(2),y), 9(f(z) Ay) € U(z,9(y))
for any z € K, y € L. It remains to show that f(zAg(y)) < f(z)Vy for any z € K,
y € L. But we have f(z Ag(y)) = f(z) V fg(y) = f(z) Vy, and (f,g) is a left
semirotation between K and L. O
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