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Abstract. Here we initiate an investigation into the class mLM
n×m

of monadic
n × m-valued  Lukasiewicz-Moisil algebras (or mLMn×m-algebras), namely n × m-valued
 Lukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute
a generalization of monadic n-valued  Lukasiewicz-Moisil algebras. In this article, the
congruences on these algebras are determined and subdirectly irreducible algebras are char-
acterized. From this last result it is proved that mLM

n×m
is a discriminator variety and

as a consequence, the principal congruences are characterized. Furthermore, the number of
congruences of finite mLMn×m-algebras is computed. In addition, a topological duality for
mLMn×m-algebras is described and a characterization of mLMn×m-congruences in terms
of special subsets of the associated space is shown. Moreover, the subsets which correspond
to principal congruences are determined. Finally, some functional representation theorems
for these algebras are given and the relationship between them is pointed out.
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1. Introduction and preliminaries

In 1955, monadic Boolean algebras were introduced by P. Halmos in [11] as an al-

gebraic counterpart of the one variable fragment of classical predicate logic. One of

his well known results partially related with the present paper is that every monadic

Boolean algebra is a subalgebra of a rich one. As a consequence, he proved that each

monadic Boolean algebra can be embedded into a complete functional Boolean alge-

bra. This subject caused great interest and led several authors to deepen and general-

ize the algebras defined by Halmos, to such an extent that research is still being con-

ducted in this direction. For instance, the varieties of monadic MV-algebras, monadic

BL-algebras, monadic Wajsberg algebras, monadic Pavelka algebras, monadic Ock-

ham algebras, monadic distributive lattices, monadic n-valued  Lukasiewicz-Moisil
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algebras are being studied, to mention a few. It is worth mentioning that monadic

Heyting algebras constitute the first generalization of monadic Boolean algebras;

they were introduced by A. Monteiro and O. Varsavsky in [15] who defined them as

triples (L, ∃, ∀), where L is a Heyting algebra and ∃, ∀ are unary operations verifying

certain identities.

On the other hand, in 1974, L. Monteiro in his doctoral thesis [16] introduced

the notion of existential quantifier on a 3-valued  Lukasiewicz algebra and defined

monadic 3-valued  Lukasiewicz algebras. However, in 1971 Georgescu and Vraciu

[10] introduced a more general class of algebras which they called monadic n-valued

 Lukasiewicz-Moisil algebras.

In 1975, W. Suchoń [26] introduced matrix  Lukasiewicz algebras, so generalizing

the notion of n-valued  Lukasiewicz algebras without negation [14]. The only paper

about these algebras is the one mentioned above and a brief reference to them can

be found in [2]. In [24] we introduced n × m-valued  Lukasiewicz algebras with

negation. Later, following the terminology established in [2], they were called n×m-

valued  Lukasiewicz-Moisil algebras (or LMn×m-algebras for short) and since then,

we have named them in this way. These algebras are both a particular case of matrix

 Lukasiewicz algebras and a generalization of n-valued  Lukasiewicz-Moisil algebras [2].

LMn×m-algebras were studied in [21], [24], [25] and [8]. In particular, in [24] we

provided an important example which legitimated the study of this new class of

algebras. Besides, in [8] we presented a propositional calculus which has LMn×m-

algebras as algebraic counterpart.

In the present paper, we introduce and investigate monadic n × m-valued

 Lukasiewicz-Moisil algebras which constitute a generalization of monadic n-valued

 Lukasiewicz-Moisil algebras [2], [10].

The paper is organized as follows. In Section 1, we briefly summarize the main

definitions and results needed throughout this article. In Section 2, we introduce

monadic n× m-valued  Lukasiewicz-Moisil algebras (or mLMn×m-algebras), namely

LMn×m-algebras endowed with a unary operation called existential quantifier. Be-

sides, we show their most important properties which are necessary for further devel-

opment. Furthermore, we determine the relationship between the existential quan-

tifier and special subalgebras of LMn×m-algebras. In Section 3, we determine the

mLMn×m-congruences and characterize subdirectly irreducible algebras. In Sec-

tion 4, by applying the results obtained in the previous section, we show that this

variety is a discriminator variety and as a consequence, we deduce some proper-

ties of the congruences. In Section 5, we show a topological duality for mLMn×m-

algebras and characterize the congruences by means of special subsets of the as-

sociated space. In particular, we determine which of these subsets correspond to

principal congruences. Finally, in Section 6, we describe three functional repre-
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sentation theorems for mLMn×m-algebras, pointing out the relationshhip between

them.

We refer the reader to the bibliography listed here as [3], [1], [2], [12], [13], [4],

[14], [10], [17], [18], [19] for specific details of the many basic notions and results

of universal algebra, distributive lattices, De Morgan algebras, Boolean algebras,

monadic Boolean algebras, n-valued  Lukasiewicz-Moisil algebras, monadic n-valued

 Lukasiewicz-Moisil algebras and Priestley spaces considered in this paper.

As we mention above, from now on n×m-valued  Lukasiewicz algebras with nega-

tion will be called n×m-valued  Lukasiewicz-Moisil algebras or LMn×m-algebras for

short.

An n×m-valued  Lukasiewicz-Moisil algebra, in which n and m are integers, n > 2,

m > 2, is an algebra 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0, 1〉 where (n×m) is the cartesian

product {1, . . . , n− 1}× {1, . . . , m− 1}, the reduct 〈L,∧,∨,∼, 0, 1〉 is a De Morgan

algebra and {σij}(i,j)∈(n×m) is a family of unary operations on L which fulfils the

following conditions:

(C1) σij(x ∨ y) = σijx ∨ σijy,

(C2) σijx 6 σ(i+1)jx,

(C3) σijx 6 σi(j+1)x,

(C4) σijσrsx = σrsx,

(C5) σijx = σijy for all (i, j) ∈ (n × m) implies x = y,

(C6) σijx ∨ ∼σijx = 1,

(C7) σij(∼x) = ∼σ(n−i)(m−j)x.

This class of algebras will be denoted by LMn×m. An algebra of this class will

usually be indicated by L. The results announced here for LMn×m-algebras will be

used throughout the paper.

(LM1) σij(L) = B(L) for all (i, j) ∈ (n × m), where B(L) is the set of all Boolean

elements of L [21, Proposition 2.5].

(LM2) Every LMn×2-algebra is isomorphic to an n-valued  Lukasiewicz-Moisil alge-

bra. It is worth noting that LMn×m-algebras constitute a nontrivial gener-

alization of the latter [24, Remark 2.1].

(LM3) Let + be the binary operation on L defined as follows:

a + b =
∧

(i,j)∈(n×m)

((∼σija ∨ σijb) ∧ (∼σijb ∨ σija)).

Then + satisfies the following properties:

(T1) a + b = 1 if and only if a = b,

(T2) a + b = b + a,

(T3) (a + b) ∧ a = (a + b) ∧ b,
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(T4) a + 1 = σ11a,

(T5) σrs(a + b) = a + b for every (r, s) ∈ (n × m),

(T6) ∼(a + b) and a + b are Boolean complements [21, Proposition 2.6].

(LM4) The class of LMn×m-algebras is a variety and two equational bases for it can

be found in [21, Theorem 2.7] and [24, Theorem 4.6].

(LM5) Let → be the binary operation on L defined as follows:

x → y = σ(n−1)(m−1)(∼x) ∨ y.

Then, by defining the notion of a deductive system in the usual way, we infer

that D is a deductive system of L if and only if D is a Stone filter of L [21,

Proposition 3.3]. Besides, Stone filters were characterized as filters F of L

which verify this condition: x ∈ F implies σ11x ∈ F [21, Proposition 3.2].

Although these notions coincide, we will use either Stone filters or deductive

systems according to the nature of the problem to solve. In what follows, we

shall denote by D(L) and Fs(L) the set of all deductive systems and the set

of all Stone filters of L respectively.

(LM6) For each X ⊆ L, D(X) = F (σ11X) [22, Proposition 2.3.3], where D(X)

and F (X) denote the deductive system and the filter generated by X on L

respectively. In particular, if X = {a} we shall write F (a) instead of F ({a}).

(LM7) Let L be an LMn×m-algebra with more than one element and let Con(L) be

the lattice of all congruences on L. Then Con(L) = {R(F ) : F ∈ Fs(L)},

where R(F ) = {(x, y) ∈ L × L: there exists f ∈ F such that x ∧ f =

y ∧ f}. Besides, the lattices Con(L) and Fs(L) are isomorphic considering

the mappings θ 7→ [1]θ and F 7→ R(F ) which are mutually inverse, where [x]θ
stands for the equivalence class of x modulo θ [21, Theorem 3.6].

(LM8) An n × m-valued  Lukasiewicz-Moisil space (or lmn×m-space) is a triple

(X, g, {fij}(i,j)∈(n×m)) which verifies the following conditions:

(E1) (X, g) is a De Morgan space (or m-space) [6],

(E2) fij : X → X is an increasing and continuous function,

(E3) fij(x) 6 f(i+1)j(x),

(E4) fij(x) 6 fi(j+1)(x),

(E5) fij ◦ frs = fij ,

(E6) fij ◦ g = fij ,

(E7) g ◦ fij = f(n−i)(m−j),

(E8) if for every U, V ∈ IC(X) it is verified that f−1
ij (U) = f−1

ij (V ) for all

(i, j) ∈ (n × m), then U = V , where IC(X) denotes the lattice of all

increasing clopen subsets of X .
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Besides, if (X, g, {fij}(i,j)∈(n×m)) and (X ′, g′, {f ′
ij}(i,j)∈(n×m)) are lmn×m-

spaces, an lmn×m-function is an isotone continuous function f : X → X ′

such that f ◦ g = g′ ◦ f and f ′
ij ◦ f = f ◦ fij for all (i, j) ∈ (n × m).

Then, taking into account the topological duality given by W. Cornish

and P. Fowler for De Morgan algebras [6], we proved that the category of

lmn×m-spaces and lmn×m-functions is naturally equivalent to the dual of the

category of LMn×m-algebras and their corresponding homomorphisms [25,

Theorem 2.1].

(LM9) Let X be a nonempty set and let LX be the set of all functions from X

into L. Then LX is an LMn×m-algebra where the operations are defined

componentwise.

(LM10) Let B(L)↑(n×m) = {f : (n × m) → B(L) such that for arbitrary i, j if r 6 s,

then f(r, j) 6 f(s, j) and f(i, r) 6 f(i, s)}. Then

〈B(L)↑(n×m),∧,∨,∼, {σij}(i,j)∈(n×m), 0, 1〉

is an LMn×m-algebra where for all f ∈ B(L)↑(n×m) and (i, j) ∈ (n × m) the

operations ∼ and σij are defined as follows: (∼f)(i, j) = (f(n − i, m − j))′,

where x′ denotes the Boolean complement of x, (σijf)(r, s) = f(i, j) for all

(r, s) ∈ (n × m), and the remaining operations are defined componentwise

[24, Proposition 3.2]. It is worth noting that this result can be generalized

by replacing B(L) by any Boolean algebra B. Furthermore, if B is a com-

plete Boolean algebra, it is simple to check that B↑(n×m) is also a complete

LMn×m-algebra.

(LM11) Every LMn×m-algebra L can be embedded into B(L)↑(n×m) [24, Theo-

rem 3.1]. Besides, L is isomorphic to B(L)↑(n×m) if and only if L is centred

[24, Corollary 3.1] where L is centred if for each (i, j) ∈ (n × m) there exists

cij ∈ L such that

σrscij =

{

0 if i > r or j > s,

1 if i 6 r and j 6 s.

2. Monadic n × m-valued  Lukasiewicz-Moisil algebras

The class of algebras which is of our concern now, arises from n × m-valued

 Lukasiewicz-Moisil algebras endowed with a unary operation.
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Definition 2.1. Let L ∈ LMn×m. An existential quantifier on L is a mapping

∃ : L → L which verifies the identities

(e1) ∃0 = 0,

(e2) x ∧ ∃x = x,

(e3) ∃(x ∧ ∃y) = ∃x ∧ ∃y,

(e4) ∃σijx = σij∃x for all (i, j) ∈ (n × m).

Definition 2.2. Let L ∈ LMn×m. A universal quantifier on L is a mapping

∀ : L → L verifying the conditions

(u1) ∀1 = 1,

(u2) x ∧ ∀x = ∀x,

(u3) ∀(x ∨ ∀y) = ∀x ∨ ∀y,

(u4) ∀σijx = σij∀x for all (i, j) ∈ (n × m).

R e m a r k 2.1. Let ∃ be an existential quantifier on L. By defining ∀x = ∼∃∼x

for all x ∈ L, we have that ∀ is a universal quantifier on L. Conversely, let ∀ be a

universal quantifier on L. Then the operator ∃ defined by ∃x = ∼∀∼x for all x ∈ L

is an existential quantifier on L.

Definition 2.3. Let L ∈ LMn×m. A monadic n×m-valued  Lukasiewicz-Moisil

algebra (or mLMn×m-algebra) is a pair (L, ∃), where ∃ is an existential quantifier

on L or equivalently, it is a pair (L, ∀), where ∀ is a universal quantifier on L.

In what follows we will denote by mLMn×m the class of mLMn×m-algebras.

Some of the results on mLMn×m-algebras given in this paper were communicated

at the meetings indicated in [7], [20] and [23].

R e m a r k 2.2. (i) From Definition 2.3 and (LM4) we infer that mLMn×m is a

variety and two equational bases for it can be obtained.

(ii) If (L, ∃) ∈ mLMn×m, then from (e4) we have that (B(L), ∃) is a monadic

Boolean algebra.

(iii) Taking into account (LM2), we infer that every mLMn×2-algebra is isomorphic

to a monadic n-valued  Lukasiewicz-Moisil algebra.

The next Lemma 2.1 summarizes the most important properties of both the ex-

istential and universal quantifiers which are necessary for further development. Its

proof is an easy excercise.

Lemma 2.1. Let (L, ∃) ∈ mLMn×m. Then the following conditions are satis-

fied:

(e5) ∃1 = 1, (u5) ∀0 = 0,

(e6) ∃∃x = ∃x, (u6) ∀∀x = ∀x,
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(e7) x ∈ ∃L if and only if ∃x = x, (u7) x ∈ B(L) implies ∀x ∈ B(L),

(e8) x 6 y implies ∃x 6 ∃y, (u8) x 6 y implies ∀x 6 ∀y,

(e9) ∃(x ∨ y) = ∃x ∨ ∃y, (u9) ∀(x ∧ y) = ∀x ∧ ∀y,

(e10) ∃∼σij∃x = ∼σij∃x, (u10) ∀∼σij∀x = ∼σij∀x,

(e11) ∃∀x = ∀x, (u11) ∀∃x = ∃x,

(e12) ∃∼σij∀x = ∼σij∀x, (u12) ∀∼σij∃x = ∼σij∃x,

(e13) x = ∃x if and only if x = ∀x.

Propositions 2.1 and 2.2 determine the relationship between the existential quan-

tifier and special subalgebras of mLMn×m-algebras.

Proposition 2.1. Let (L, ∃) ∈ mLMn×m. Then

(i) ∃(L) is a Moore family of L and ∃x =
∧

{z ∈ ∃(L) : x 6 z}, where
∧

X denotes

the infimum of all elements of the set X ,

(ii) ∃(L) is a subalgebra of L,

(iii) for each x ∈ L, σij(
∧

{z ∈ ∃(L) : x 6 z}) =
∧

{z ∈ ∃(L) : σijx 6 z} for all

(i, j) ∈ (n × m),

(iv) if x, y ∈ ∃(L) and there exists x ⇒ y in L, then x ⇒ y ∈ ∃(L), where a ⇒ b

stands for the relative pseudocomplement of a with respect to b.

P r o o f. From (e2), (e6) and (e9) we have that ∃ is an additive closure operator

and taking into account the well-known relationship between closure operators and

Moore families [1] we conclude that (i) holds. On the other hand, it is straightforward

to prove that (ii) is verified. Besides, (iii) follows from (e4). In order to prove (iv),

suppose that x, y ∈ ∃(L). Then ∃((x ⇒ y)∧∃x) = ∃(x∧(x ⇒ y)) = ∃(x∧y) 6 ∃y = y.

This inequality and (e3) imply that x ∧ ∃(x ⇒ y) 6 y and so, ∃(x ⇒ y) 6 x ⇒ y.

Therefore, from (e2) we conclude that ∃(x ⇒ y) = x ⇒ y and the proof is complete.

�

The following is a partial converse of Proposition 2.1.

Proposition 2.2. Let L ∈ LMn×m and let M be a subset of L which verifies

the following conditions:

(i) M is a Moore family of L,

(ii) M is a subalgebra of L,

(iii) for each x ∈ L, σij(
∧

{z ∈ M : x 6 z}) =
∧

{z ∈ M : σijx 6 z} for all

(i, j) ∈ (n × m),

(iv) for each x, y ∈ M , there exists x ⇒ y in L and x ⇒ y ∈ M .

For each x ∈ L we define ∃x =
∧

{z ∈ M : x 6 z}. Then ∃ is an existential quantifier

on L and M = ∃(L).
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P r o o f. From the hypothesis, it is simple to verify that conditions (e1), (e2)

and (e4) hold and that M = ∃(L). Besides, from (e2) we have that x∧∃y 6 ∃x∧∃y.

By virtue of (ii), it results that ∃x ∧ ∃y ∈ M . Hence, ∃(x ∧ ∃y) 6 ∃x ∧ ∃y. On the

other hand, if k ∈ M verifies that x ∧ ∃y 6 k, then x 6 ∃y ⇒ k. Furthermore, from

(iv) we infer that ∃y ⇒ k ∈ M . Therefore, ∃x 6 ∃y ⇒ k and so, ∃x∧ ∃y 6 k. Thus,

∃x ∧ ∃y 6 ∃(x ∧ ∃y) and consequently, we conclude that (e3) holds. �

It is worth noting that the dual of Propositions 2.1 and 2.2 are also true.

3. Congruences and subdirectly irreducible mLMn×m-algebras

Now, we will describe the congruence lattices of mLMn×m-algebras.

Definition 3.1. Let (L, ∃) ∈ mLMn×m. A monadic congruence on (L, ∃) is

an LMn×m-congruence ε on L which for all x, y ∈ L verifies the additional condition

(x, y) ∈ ε implies (∃x, ∃y) ∈ ε.

From now on, we will denote by Conm(L) the congruence lattice of (L, ∃).

Definition 3.2. Let (L, ∀) be an mLMn×m-algebra. A Stone filter (deductive

system) F of L is monadic if it verifies the condition x ∈ F implies ∀x ∈ F .

We will denote by Fms(L) and Dm(L) the set of all monadic Stone filters and

monadic deductive systems of (L, ∀) respectively. Hence, we have that Fms(L) =

Dm(L).

Theorem 3.1. Let (L, ∃) be an mLMn×m-algebra with more than one element.

Then

(i) Conm(L) = {R(F ) : F ∈ Fms(L)}, where R(F ) is the relation defined in (LM7),

(ii) the lattices Conm(L) and Fms(L) are isomorphic considering the mappings

θ 7→ [1]θ and F 7→ R(F ), which are mutually inverse.

P r o o f. Taking into account (LM5) and (LM7), it remains to prove that if

(x, y) ∈ R(F ), then (∃x, ∃y) ∈ R(F ) which is a direct consequence of (u2), (e11),

(e3) and the fact that F is a monadic Stone filter. �

In what follows, for each F ∈ Fms(L) we will denote by L/F the quotient algebra

of (L, ∃) by R(F ).

R e m a r k 3.1. If ε ∈ Conm(L) and (x, y) ∈ ε, then it is simple to check that

(x + z, y + z) ∈ ε for all z ∈ L.

Next, our attention is focused on characterizing the subdirectly irreducible

mLMn×m-algebras. Lemma 3.1 will be fundamental for this purpose.
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Lemma 3.1. Let (L, ∃) ∈ mLMn×m and let H ⊆ L. If Dm(H) is the monadic

deductive system generated by H , then Dm(H) = F (σ11∀H) = D(∀H).

P r o o f. By (LM6), it only remains to prove that Dm(H) = F (σ11∀H). Tak-

ing into account that σ11x 6 x holds for every x ∈ L and (u2), we infer that

H ⊆ F (σ11∀H). Besides, it is simple to check that F (σ11∀H) is a Stone filter and

therefore, due to (LM5) it is a deductive system. Moreover, if x ∈ F (σ11∀H) then by

virtue of (u8), (u9), (u4) and (u6) we have that ∀x ∈ F (σ11∀H). On the other hand,

if T is a monadic deductive system of (L, ∃) such that H ⊆ T , then F (σ11∀H) ⊆ T .

Indeed, let x ∈ F (σ11∀H). Hence, there exist σ11∀h1, . . . , σ11∀hr ∈ σ11∀H such that

σ11∀h1 ∧ . . . ∧ σ11∀hr 6 x. So, we conclude that x ∈ T . �

On the other hand, for each (L, ∃) ∈ mLMn×m, let us consider the LMn×m-

algebra ∃(L), the monadic Boolean algebra (B(L), ∃) and the Boolean algebra

B(∃(L)). Then by defining mappings

γ1 : Dm(L) → D(∃(L)), γ1(D) = D ∩ ∃(L),

γ2 : Dm(L) → Fm(B(L)), γ2(D) = D ∩ B(L),

γ3 : D(∃(L)) → F(B(∃(L))), γ3(D
′) = D′ ∩ B(∃(L)),

γ4 : Fm(B(L)) → F(B(∃(L))), γ4(F ) = F ∩ B(∃(L)),

where Fm(B(L)) and F(B(∃(L))) are the set of monadic filters of (B(L), ∃) and the

set of filters of B(∃(L)) respectively, we infer

Theorem 3.2. Let (L, ∃) ∈ mLMn×m. Then the mappings γ1, γ2, γ3 and γ4 are

order isomorphisms where Dm(L), D(∃(L)), Fm(B(L)) and F(B(∃(L))) are ordered

by set inclusion. Besides, the following diagram commutes:

Dm(L)

γ2

��

γ1
// D(∃(L))

γ3

��

Fm(B(L))
γ4

// F(B(∃(L)))

P r o o f. Following a reasoning analogous to that given in [4] for n-valued

 Lukasiewicz-Moisil algebras and using well-known results of the theory of monadic

Boolean algebras we have that γ3 and γ4 are isomorphisms. On the other hand,

from Lemma 3.1 and by applying standard techniques we infer that γ1 and γ2 are

isomorphisms. Finally, it is straightforward to prove that γ3 ◦ γ1 = γ4 ◦ γ2. �

By virtue of Theorems 3.2 and 3.1 we are ready to characterize the subdirectly

irreducible mLMn×m-algebras.
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Theorem 3.3. Let (L, ∃) ∈ mLMn×m. Then the following conditions are

equivalent:

(i) (L, ∃) is simple,

(ii) ∃(L) is a simple LMn×m-algebra,

(iii) B(∃(L)) is a simple Boolean algebra,

(iv) (L, ∃) is subdirectly irreducible.

As a consequence of Theorem 3.3 and by well-known results of universal algebra

we conclude

Corollary 3.1. mLMn×m is semisimple.

4. The discriminator variety mLMn×m

In this section, we will apply the results we developed so far to show that

mLMn×m is a discriminator variety. Furthermore, we will determine the principal

congruences. In what follows, for each a, b ∈ L we will denote by θ(a, b) the principal

congruence generated by (a, b).

Recall that the ternary discriminator function t on a set A is defined by the

conditions

t(x, y, z) =

{

z if x = y,

x otherwise.

A variety V is a discriminator variety, if it has a polynomial p that coincides with

the ternary discriminator function on each subdirectly irreducible member of V ; such

a polynomial is called a ternary discriminator polynomial for V .

Theorem 4.1. The variety mLMn×m is a discriminator variety.

P r o o f. Let p(x, y, z) = (∀(x + y) ∧ z) ∨ (∼∀(x + y) ∧ x). In view of (T1) and

(u1) we have that p(x, x, z) = z. If x 6= y, then from (T1) and (u2) we infer that

∀(x+y) 6= 1. Moreover, from (T6), (u7) and (e11) it results that ∀(x+y) ∈ B(∃(L)).

So, by Theorem 3.3 we conclude that ∀(x + y) = 0. Hence, p(x, y, z) = x. �

Corollary 4.1. The variety of monadic n-valued  Lukasiewicz-Moisil algebras is

a discriminator variety.

P r o o f. This follows from Theorem 4.1 and (iii) in Remark 2.2. �
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Corollary 4.2.

(i) mLMn×m is arithmetic,

(ii) for each (L, ∃) ∈ mLMn×m and a, b, c, d ∈ L we have that (c, d) ∈ θ(a, b) if and

only if p(a, b, c) = p(a, b, d), i.e. mLMn×m has equationally definable principal

congruences,

(iii) every principal congruence on (L, ∃) ∈ mLMn×m is a factor congruence,

(iv) the principal congruences on (L, ∃) ∈ mLMn×m form a sublattice of the lattice

Conm(L),

(v) each compact congruence on (L, ∃) ∈ mLMn×m is a principal congruence,

(vi) the congruences on each (L, ∃) ∈ mLMn×m are regular, normal and filtral,

(vii) mLMn×m has the congruence extension property.

P r o o f. This is a direct consequence of Theorem 4.1 and the results established

in [27]. �

Lemma 4.1 will allow us to give a new description of the principal congruences on

mLMn×m-algebras simpler than the one obtained from (ii) in Corollary 4.2.

Lemma 4.1. Let (L, ∃) ∈ mLMn×m. Then

(i) θ(a, b) = θ(∀(a + b), 1),

(ii) [1]θ(a,b) = F (∀(a + b)).

P r o o f. From Remark 3.1 we can assert that (a + b, b + b) ∈ θ(a, b). Taking

into account (T1) and (u1) we infer that (∀(a + b), 1) ∈ θ(a, b). On the other

hand, from (u2) we have (a + b, 1) ∈ θ(∀(a + b), 1) and so, from (T3) it results that

(a, b) ∈ θ(∀(a + b), 1). Consequently, (i) holds. On the other hand, let x ∈ [1]θ(a,b).

By virtue of (i) and item (ii) in Corollary 4.2, we have that p(∀(a + b), 1, x) =

p(∀(a + b), 1, 1) and so, (∀(∀(a + b) + 1) ∧ x) ∨ (∼∀(∀(a + b) + 1) ∧ ∀(a + b)) =

∀(∀(a + b)+ 1)∨ (∼∀(∀(a + b)+ 1)∧∀(a + b)). Besides, from (T4), (T6), (LM1) and

(u6) we get that ∀(∀(a + b) + 1) = ∀(a + b). Hence, we infer that ∀(a + b) 6 x and

therefore, [1]θ(a,b) ⊆ F (∀(a + b)). The other inclusion is immediate. �

Theorem 4.2. Let (L, ∃) ∈ mLMn×m. Then

θ(a, b) = {(x, y) ∈ L × L : x ∧ ∀(a + b) = y ∧ ∀(a + b)}.

P r o o f. From Theorem 3.1 and (ii) in Lemma 4.1 we have that

θ(a, b) = R([1]θ(a,b)) = R(F (∀(a+b))) = {(x, y) ∈ L×L : x∧∀(a+b) = y∧∀(a+b)}.

�
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R e m a r k 4.1. Taking into account (iii) in Remark 2.2, the principal congruences

of monadic n-valued  Lukasiewicz-Moisil algebras can be characterized as in Theorem

4.2 by means of the + operation defined in (LM3). By identifying the set {1, . . . ,

n − 1} × {1} with {1, . . . , n − 1} and σi1 with σi, 1 6 i 6 n − 1, the + operation is

provided by the formula

a + b =
n−1
∧

i=1

((∼σia ∨ σib) ∧ (∼σib ∨ σia)).

The following lemmas will allow us to compute the number of congruences of a

finite mLMn×m-algebra.

Lemma 4.2. G is a principal monadic Stone filter of an mLMn×m-algebra (L, ∃)

if and only if G = F (∀(σ11a)) for some a ∈ L.

P r o o f. It is routine. �

Lemma 4.3. Let (L, ∃) ∈ mLMn×m and let ConP
m(L) be the lattice of all prin-

cipal monadic congruences on (L, ∃). Then ConP
m(L) is a Boolean lattice, where

idL = θ(1, 1), L × L = θ(0, 1), θ(a, b) ∧ θ(c, d) = θ((a + b) ∨ ∀(c + d), 1) and

θ(∼∀(a + b), 1) is the Boolean complement of θ(a, b).

P r o o f. Let FP
ms(L) be the set of all principal monadic Stone filters of (L, ∃).

Taking into account (ii) in Theorem 3.1, Lemma 4.1 and (T4) we obtain an iso-

morphism between FP
ms(L) and ConP

m(L) by means of the correspondences θ(a, b) 7→

F (∀(a+b)) and F (∀σ11(a)) 7→ θ(a, 1), which are mutually inverse. On the other hand,

it is simple to verify that {1} = F (∀σ11(1)), L = F (∀σ110), F (∀σ11a) ∧ F (∀σ11b) =

F (∀σ11(a∨∀b)) and F (∀σ11∼∀σ11a) is the Boolean complement of F (∀σ11a). Hence,

the above correspondences allow us to complete the proof. �

Lemma 4.4. Let (L, ∃) be a finite mLMn×m-algebra and let a ∈ L. Then the

following conditions are equivalent:

(i) F (∀σ11(a)) is a maximal monadic Stone filter of (L, ∃),

(ii) ∀σ11(a) is an atom of B(∃(L)).

P r o o f. It is routine. �

Let |X | stand for the number of elements in a finite set X . As a direct consequence

of Lemmas 4.3 and 4.4 we obtain
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Proposition 4.1. Let (L, ∃) be a finite mLMn×m-algebra and let Π(B(∃(L))) be

the set of all atoms of B(∃(L)). Then |Conm(L)| = 2|Π(B(∃(L)))|.

5. A topological duality for mLMn×m-algebras

Next, we will show a topological duality for mLMn×m-algebras taking into account

both, the one indicated in (LM8) and the one given in [5] for Q-distributive lattices.

Definition 5.1. (X, g, {fij}(i,j)∈(n×m), E) is a monadic n × m-valued  Lukasie-

wicz space (or mlmn×m-space) if (X, g, {fij}(i,j)∈(n×m)) is an lmn×m-space and E

is an equivalence relation on X which verifies the following conditions:

(ml1) ∇EU ∈ IC(X) for each U ∈ IC(X), where ∇EU stands for the union of all

the equivalence classes that contain an element of U ,

(ml2) the equivalence classes modulo E are closed in X ,

(ml3) for each U ∈ IC(X), f−1
ij (∇EU) = ∇Ef−1

ij (U) for all (i, j) ∈ (n × m).

Let (X, g, {fij}(i,j)∈(n×m), E) and (X ′, g′, {f ′
ij}(i,j)∈(n×m), E

′) be mlmn×m-spaces.

An mlmn×m-function is an lmn×m-function f : X → X ′ satisfying ∇E(f−1(U)) =

f−1(∇′
E(U)) for each U ∈ IC(X).

Proposition 5.1. Let (X, g, {fij}(i,j)∈(n×m), E) be an mlmn×m-space. Then

mLMn×m(X) = 〈IC(X), ∩, ∪, ∼, {σX
ij }(i,j)∈(n×m), ∃E , ∅, X〉 is an mLMn×m-

algebra, where for each U ∈ IC(X), ∼U = X \ g−1(U), σX
ij (U) = f−1

ij (U) and ∃EU

is the union of all equivalence classes that contain an element of U .

P r o o f. By virtue of [25, Proposition 2.1] and the results obtained in [5], it only

remains to prove (e4), which is a direct consequence of (ml3). �

Proposition 5.2. Let 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), ∃, 0, 1〉 be an mLMn×m-

algebra and let X(L) be the Priestley space associated with L. Then mlmn×m(L) =

(X(L), gL, {fL
ij}(i,j)∈(n×m), E∃) is an mlmn×m-space, where for each P ∈ X(L),

gL(P ) = L \ {∼x : x ∈ P}, fL
ij(P ) = σ−1

ij (P ) and E∃ = {(P, Q) ∈ X(L) × X(L) :

P ∩ ∃(L) = Q ∩ ∃(L)}. Moreover, σL : L → IC(X(L)) defined by σL(a) = {P ∈

X(L) : a ∈ P} is an mLMn×m-isomorphism.

P r o o f. Conditions (ml1) and (ml2) are direct consequences of [5]. Besides,

from [25, Proposition 2.2] we have that (X(L), gL, {fL
ij}(i,j)∈(n×m)) is an lmn×m-

space. On the other hand, let U ∈ IC(X(L)). Then there exists a ∈ L such that

U = σL(a). Therefore, in order to prove (ml3), we must show that ∃E∃
fL

ij

−1
σL(a) =

fL
ij

−1
∃E∃

σL(a) for all (i, j) ∈ (n × m). Indeed, using the hypothesis (e4) and taking
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into account that σL is an isomorphism in LMn×m and belongs to the variety of

all Q-distributive lattices [5], we infer that

∃E∃
fL

ij

−1
σL(a) = ∃E∃

σLσij(a) = σL∃σij(a) = σ
X(L)
ij σL∃(a)

= ∃E∃
fL

ij

−1
σL(a) = fL

ij

−1
∃E∃

σL(a).

�

Let mlmn×m be the category of mlmn×m-spaces and mlmn×m-functions, and

mLMn×m the category of mLMn×m-algebras and their corresponding homomor-

phisms. Then, applying Propositions 5.1, 5.2 and following standard techniques we

conclude

Theorem 5.1. The category mLMn×m is naturally equivalent to the dual of

the category mlmn×m.

Now, taking into account the topological duality described above, we will charac-

terize the lattice of all mLMn×m-congruences. In order to do this, we introduce

Definition 5.2. Let (X, g, {fij}(i,j)∈(n×m), E) be an mlmn×m-space. A subset

Y of X is semimodal if Y ⊆ f−1
ij (Y ) for every (i, j) ∈ (n × m).

On the other hand, recall that a subset Y of a De Morgan space (X, g) is involutive

if g(Y ) = Y .

From now on, for each (L, ∃) ∈ mLMn×m, we will denote by CS(mlmn×m(L))

the set of all closed, involutive and semimodal subsets Y of mlmn×m(L) such that

∃E(Y ) = Y .

Proposition 5.3. Let (L, ∃) ∈ mLMn×m and Y ∈ CS(mlmn×m(L)). Then

Θ(Y ) = {(x, y) ∈ L×L : σL(x)∩Y = σL(y)∩Y } is a monadic congruence on (L, ∃).

P r o o f. It is a consequence of [25, Proposition 2.3] and the results established

in [6] and [5]. �

Proposition 5.4. Let (L, ∃) ∈ mLMn×m, δ ∈ Conm(L) and Y = {P ∈ X(L) :

[1]δ ⊆ P}. Then Y ∈ CS(mlmn×m(L)) and Θ(Y ) = δ.

P r o o f. Taking into account [25, Proposition 2.4] we will only prove that

∃E(Y ) = Y . Let P ∈ Y , then [1]δ ⊆ P . Besides, let Q ∈ [P ]E∃
and t ∈ [1]δ.

Then ∀t ∈ [1]δ and therefore, ∀t ∈ P ∩ ∀(L) = Q ∩ ∀(L), from which we infer that

t ∈ Q. Hence, [1]δ ⊆ Q which implies that Q ∈ Y . So, ∃E(Y ) ⊆ Y . The other

inclusion is immediate. �
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Theorem 5.2. Let (L, ∃) ∈ mLMn×m. Then the lattice CS(mlmn×m(L)) is iso-

morphic to the dual lattice Conm(L) and the isomorphism is γ : CS(mlmn×m(L)) →

Conm(L) defined by γ(Y ) = Θ(Y ).

P r o o f. It follows from Propositions 5.3 and 5.4 and the results established

in [6]. �

Now, we will determine the elements of CS(mlmn×m(L)) which correspond to prin-

cipal congruences on L. Since θ(a, b) = θ(a∧ b, a∨ b) there is no loss of generality in

assuming a 6 b.

Lemma 5.1. Let (L, ∃) ∈ mLMn×m and let (X(L), gL, {fL
ij}(i,j)∈(n×m), E∃) be

its associated space. Then for all a, b ∈ L such that a 6 b the following identity

holds:

σL(∀(a + b)) = X(L) \
⋃

(i,j)∈(n×m)

f−1
ij (∃E∃

(σL(b) \ σL(a))).

P r o o f. Taking into account [25, Lemma 2.2] we have that σL(a + b) = X(L) \
⋃

(i,j)∈(n×m)

f−1
ij (σL(b) \ σL(a)). Then (E6) and (e9) yield

σL(∀(a + b)) = ∼∃E∃
∼

(

X(L) \
⋃

(i,j)∈(n×m)

f−1
ij (σL(b) \ σL(a))

)

= ∼∃E∃
g−1

L

(

⋃

(i,j)∈(n×m)

f−1
ij (σL(b) \ σL(a))

)

= ∼∃E∃

⋃

(i,j)∈(n×m)

f−1
ij (σL(b) \ σL(a))

= ∼
⋃

(i,j)∈(n×m)

∃E∃
f−1

ij (σL(b) \ σL(a))

= X(L) \ g−1
L

(

⋃

(i,j)∈(n×m)

∃E∃
f−1

ij (σL(b) \ σL(a))
)

= X(L) \
⋃

(i,j)∈(n×m)

g−1
L (∃E∃

f−1
ij (σL(b) \ σL(a)))

= X(L) \
⋃

(i,j)∈(n×m)

(g−1
L ◦ f−1

ij )(∃E∃
(σL(b) \ σL(a)))

= X(L) \
⋃

(i,j)∈(n×m)

f−1
ij (∃E∃

(σL(b) \ σL(a))).

�
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Theorem 5.3. Let (L, ∃) ∈ mLMn×m and let (X(L), gL, {fL
ij}(i,j)∈(n×m), E∃)

be its associated space. Then the following conditions are equivalent for all a, b ∈ L,

a 6 b:

(i) Y = σL(∀(a + b)),

(ii) Y ∈ CS(mlmn×m(L)) and Θ(Y ) = θ(a, b).

P r o o f. Let P ∈ σL(∀(a + b)). Then from Lemma 5.1 we have that fij(P ) /∈

∃E∃
(σL(b) \ σL(a)) for all (i, j) ∈ (n × m) and so, taking into account (E5) we infer

that frs(P ) /∈
⋃

(i,j)∈(n×m)

f−1
ij (∃E∃

(σL(b) \ σL(a)) for all (r, s) ∈ (n × m). Hence,

P ∈ f−1
rs (Y ) for all (r, s) ∈ (n × m). Therefore, Y is semimodal. On the other

hand, let P ∈ gL(σL(∀(a + b))). Then there exists Q ∈ σL(∀(a + b)) such that P =

gL(Q). From this last assertion and (E6) we get that fij(P ) = fij(Q) for all (i, j) ∈

(n × m). Furthermore, from Lemma 5.1 we infer that fij(Q) /∈ ∃E∃
(σL(b) \ σL(a))

for all (i, j) ∈ (n × m). Hence, we obtain that P ∈ σL(∀(a + b)). Consequently,

gL(σL(∀(a + b))) ⊆ σL(∀(a + b)). The other inclusion follows if we bear in mind

that gL is involutive. So, Y is involutive. Besides, taking into account that σL is

an isomorphism and (e11) it results that ∃E∃
(Y ) = Y . Since Y is a closed subset

of X(L) we conclude that Y ∈ CS(mlmn×m(L)). From Theorem 4.2 and the fact

that σL is one-to-one we conclude that Θ(σL(∀(a + b))) = θ(a, b). The converse is

immediate. �

R e m a r k 5.1. In the particular case of monadic n-valued  Lukasiewicz-Moisil

algebras, Theorem 5.3 and (iii) in Remark 2.2 allow us to determine the semimodal,

involutive and closed subsets of the space associated with them which correspond to

principal congruences.

6. Functional representation theorems for mLMn×m-algebras

In the present section, we will generalize the results obtained in [9] for monadic n-

valued  Lukasiewicz-Moisil algebras. More precisely, we will describe three functional

representation theorems for mLMn×m-algebras pointing out the relationship between

them. To this end, the following assertions on monadic Boolean algebras will be

necessary.

(H1) A constant of a monadic Boolean algebra (A, ∃) is a Boolean endomorphism c

on A such that (c1) c ◦ ∃ = ∃ and (c2) ∃ ◦ c = c.

This mapping has the following properties: (c3) c ◦ c = c and (c4) c(x) 6 ∃x

for all x ∈ A.
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In particular, a constant c is a witness to an element z of (A, ∃) if ∃z = c(z),

and we will denote it by cz. Furthermore, a monadic Boolean algebra (A, ∃) is

rich if for any x ∈ A there exists a witness to x.

(H2) Every monadic Boolean algebra is a subalgebra of a rich one [12, Theorem 11].

(H3) If (A, ∃) is a monadic Boolean algebra, then there exists a set X and a Boolean

algebra B such that

(i) A is isomorphic to a subalgebra S of the functional Boolean algebra BX ,

(ii) for each f ∈ S there exists x ∈ X such that ∃f(x) = f(x) [12, Theo-

rem 12].

Proposition 6.1. Let (L, ∃) ∈ mLMn×m. Then 〈B(L)↑(n×m), ∧, ∨, ∼,

{σij}(i,j)∈(n×m), ∃, 0, 1〉 is an mLMn×m-algebra where ∃ is defined componentwise

and the remaining operations are the ones defined in (LM10).

P r o o f. The statement follows from (LM10) and the definition of ∃. �

Theorem 6.1. Every mLMn×m-algebra (L, ∃) can be embedded into the algbra

(B(L)↑(n×m), ∃).

P r o o f. Taking into account [24, Theorem 3.1], the mapping τ : L →

B(L)↑(n×m) defined by the prescription τ(x)(i, j) = σijx for each x ∈ L and

(i, j) ∈ (n × m) is a one-to-one LMn×m-homomorphism. Besides, due to (e4) it is

simple to check that τ(∃x) = ∃τ(x) for all x ∈ L. �

Corollary 6.1. Every mLMn×m-algebra can be embedded into a complete one.

P r o o f. This assertion follows from a well-known result on Boolean algebras,

(LM10) and Theorem 6.1. �

By defining the notion of centred mLMn×m-algebras in a similar way to the one

given for LMn×m-algebras and as a direct consequence of (LM11), we conclude

Corollary 6.2. Let (L, ∃) ∈ mLMn×m. Then the following conditions are

equivalent:

(i) (L, ∃) is centred,

(ii) (L, ∃) is isomorphic to (B(L)↑(n×m), ∃).

441



Proposition 6.2. Let B be a complete Boolean algebra and let X be a nonempty

set. Then 〈B↑(n×m)X
,∧,∨,∼, {σij}(i,j)∈(n×m), ∃, 0, 1〉 is a complete mLMn×m-

algebra where for all x ∈ X , (∃f)(x) =
∨

f(X) for each f ∈ B↑(n×m) with
∨

f(X)

being the supremum of f(X) = {f(y) : y ∈ X} and the remaining operations are

defined componentwise.

P r o o f. From (LM9) and (LM10) we have that B↑(n×m)X
is a complete LMn×m-

algebra and that ∃ is well defined on B↑(n×m)X
. Besides, it is simple to check that

identities (e1), (e2), (e3) and (e4) hold. �

For the proof of the next functional representation theorem we will apply the

results given by P. Halmos for monadic Boolean algebras mentioned at the beginning

of this section.

Theorem 6.2. Let (L, ∃) be an mLMn×m-algebra. Then there exists a non-

empty set X and a Boolean algebra B such that (L, ∃) can be embedded into

((∃(B))↑(n×m)X
, ∃) and B(L) is a subalgebra of B.

P r o o f. From (ii) in Remark 2.2 we have that (B(L), ∃) is a monadic Boolean

algebra and so, by (H2) we can assert that (B(L), ∃) is a subalgebra of a rich monadic

Boolean algebra B. Let X be a set of constants of B containing at least one witness

to x for each x ∈ B. Let Φ: B → (∃(B))X be the mapping defined by Φ(z)(c) = c(z)

for all c ∈ X . Then Φ is a one-to-one monadic Boolean homomorphism [12, Theo-

rem 12]. On the other hand, from (LM10) and (LM9) it results that (∃(B))↑(n×m)X

is an LMn×m-algebra. Let us consider now the mapping Ψ: L → (∃(B))↑(n×m)X

defined by (Ψ(x)(c))(i, j) = Φ(σijx)(c) for each x ∈ L, c ∈ X and (i, j) ∈ (n × m).

Taking into account the definition of Φ, (C1), (C2), (C3) and (C5) it is simple to

verify that Ψ is a one-to-one homomorphism of bounded lattices.

On the other hand, since Φ is a Boolean homomorphism, from (C7) we have that

((Ψ(∼x))(c))(i, j) = (Φ(σij(∼x)))(c) = (Φ(∼σ(n−i)(m−j)(x)))(c)

= (Φ((σ(n−i)(m−j)(x))′))(c) = (Φ(σ(n−i)(m−j)(x)))′(c)

= ((Φ(σ(n−i)(m−j)(x)))(c))′ = ((Ψ(x)(c))(n − i, m− j))′

= (∼(Ψ(x)(c)))(i, j) = ((∼Ψ(x))(c))(i, j)

for all c ∈ X and (i, j) ∈ (n × m) and therefore, Ψ(∼x) = ∼Ψ(x). Furthermore,

taking into account (C4), we get that

((Ψ(σrsx))(c))(i, j) = (Φ(σijσrsx))(c) = (Φ(σrsx))(c) = ((Ψ(x))(c))(r, s)

= (σrs((Ψ(x))(c)))(i, j) = ((σrs(Ψ(x)))(c))(i, j)

for all c ∈ X and (i, j) ∈ (n × m). Hence, Ψ(σrsx) = σrsΨ(x).
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If f belongs to the image of Ψ, then Ψ(l) = f for some l ∈ L. Let gl be the

mapping defined by gl(i, j) = ∃σij l for all (i, j) ∈ (n × m). It is simple to verify

that gl ∈ (∃(B))↑(n×m). Besides, from (c4) we have that f(c)(i, j) = Φ(σij l)(c) =

c(σij l) 6 ∃σij l = gl(i, j) for all (i, j) ∈ (n × m) and so, f(c) 6 gl for all c ∈ X . On

the other hand, let h ∈ (∃(B))↑(n×m) be such that f(c) 6 h for all c ∈ X . Therefore,

f(c)(i, j) 6 h(i, j) for each (i, j) ∈ (n × m). In particular, f(cσij l)(i, j) 6 h(i, j)

and so, gl 6 h. From this last assertion and the fact that gl is an upper bound of

{f(c) : c ∈ X}, we infer that gl =
∨

{f(c) : c ∈ X}. Hence, for each f ∈ Ψ(L) we

define (∃f)(c) =
∨

{f(c) : c ∈ X} for all c ∈ X . Moreover, from (c1) and (e4) we

have that

((∃(Ψ(x)))(c))(i, j) = ∃σijx = c(σij∃x) = Φ(σij∃x)(c)

= ((Ψ(∃x))(c))(i, j)

for all x ∈ L, c ∈ X and (i, j) ∈ (n × m). So, Ψ conmmutes with ∃. �

R e m a r k 6.1. (i) Let (L, ∃) be an mLMn×m-algebra and let X be a nonempty

set. There is no loss of generality in asuming that the Boolean algebra ∃(B(L))

is complete. Then from Proposition 6.2 we have that ((∃(B(L)))↑(n×m)X
, ∃) is a

complete mLMn×m-algebra. Hence, from Theorem 6.2, (L, ∃) can be embedded into

a complete mLMn×m-algebra. It is worth noting that the latter is different from

that obtained in Corollary 6.1. (ii) If all elements of an mLMn×m-algebra (L, ∃) are

Boolean ones, that is to say if L = B(L), then Theorem 6.2 coincides with Halmos’s

functional representation theorem indicated in (H3).

With the purpose of obtaining the third functional representation theorem, we

extend the notion of constant indicated in (H1) to mLMn×m-algebras as follows:

A constant of an mLMn×m-algebra (L, ∃) is an mLMn×m-endomorphism c on L

such that c ◦ ∃ = ∃ and ∃ ◦ c = c.

From this definition, it results that c(L) = ∃(L) and therefore, c : L → ∃(L) is

an LMn×m-epimorphism such that c is the identity on ∃(L). The notions of witness

and rich mLMn×m-algebras are similar to those given for monadic Boolean algebras.

Lemma 6.1. Let (L, ∃) be a rich mLMn×m-algebra and let X be a set of constants

of L containing at least one witness to x for each x ∈ L. Then the following conditions

are equivalent:

(i) c(x) = 1 for all c ∈ X ,

(ii) x = 1.

P r o o f. It is routine. �
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Theorem 6.3. Let (L, ∃) be a rich mLMn×m-algebra. Then there exists a non-

empty set X such that (L, ∃) can be embedded into ((∃(L))X , ∃).

P r o o f. Let X be a set of constants of L containing at least one witness to x for

each x ∈ L. Then X is a nonempty set and from (LM9) we have that (∃(L))X is an

LMn×m-algebra. Let Ω: L → (∃(L))X be the mapping defined by Ω(x)(c) = c(x)

for all c ∈ X . It is straightforward to prove that Ω is an LMn×m-homomorphism.

Furthermore, Ω is one-to-one. Indeed, let x, y ∈ L be such that Ω(x) = Ω(y). Then

c(x) = c(y) for each c ∈ X . Thus, c(x + y) = 1 for each c ∈ X and so, from

Lemma 6.1 and (T1) we infer that x = y. On the other hand, let f = Ω(x) for some

x ∈ L. Hence, f(c) = c(x) 6 ∃x for each c ∈ X . Besides, if k ∈ ∃(L) verifies that

f(c) 6 k for all c ∈ X , then f(cx) 6 k. From this assertion we have that ∃x 6 k and

so,
∨

{f(c) : c ∈ X} = ∃x. For each f ∈ Ω(L), we define (∃f)(c) = ∃x for all c ∈ X ,

where f = Ω(x). It is simple to check that Ω(∃y) = ∃(Ωy) for all y ∈ L. Therefore,

(L, ∃) is isomorphic to the mLMn×m-algebra (Ω(L), ∃). �

Since every mLMn×m-algebra is a monadic Boolean algebra whenever σijx = x

for all (i, j) ∈ (n×m), then bearing in mind well-known results on monadic Boolean

algebras we can assert that there exist mLMn×m-algebras which are not rich. The

next theorem will characterize rich algebras in mLMn×m.

Theorem 6.4. Let (L, ∃) ∈ mLMn×m. Then the following conditions are

equivalent:

(i) (L, ∃) is rich,

(ii) for each x ∈ L there exists a Stone filter Fx such that the natural map qx : L →

L/Fx restricted to ∃(L) is an LMn×m-isomorphism and qx(∃x) = qx(x).

P r o o f. (i) ⇒ (ii): Let x ∈ L and let cx be a witness to x. Then Fx = c−1
x (1)

is a Stone filter of L. Hence, the natural map qx restricted to ∃(L), which we will

denote by qx|∃(L), is bijective. Indeed, let a ∈ L, then cx(a) = y for some y ∈ ∃(L)

and so, cx(a) = cx(y). Therefore, [a]R(Fx) = [y]R(Fx). Furthermore, if z ∈ ∃(L)

verifies that [y]R(Fx) = [z]R(Fx), then cx(y) = cx(z) from which we infer that y = z.

Thus, each equivalence class has only one element belonging to ∃(L). This assertion

allows us to infer that qx|∃(L) is an LMn×m-isomorphism. On the other hand, since

cx(∃x) = cx(x), we conclude that qx(∃x) = qx(x).

(ii) ⇒ (i): Let x ∈ L. Then there is a Stone filter Fx of L such that qx|∃(L), is

an LMn×m-isomorphism and qx(∃x) = qx(x). Let c = qx|
−1
∃(L) ◦ qx. Then c(∃a) =

qx|
−1
∃(L)(qx(∃a)) = ∃a for all a ∈ L. Besides, c is an LMn×m-epimorphism from

L onto ∃(L), from which we have that ∃c(a) = c(a) for all a ∈ L. Finally, since

c(x) = qx|
−1
∃(L)(qx(x)) = qx|

−1
∃(L)(qx(∃x)) = ∃x, we conclude that c is a witness to x.

�

444



R e m a r k 6.2. Let L be an LMn×m-algebra and let [0, b] = {x ∈ L : x 6 b},

where b ∈ B(L). Then it is easy to verify that 〈[0, b],∧,∨,−, {σij}(i,j)∈(n×m), 0, b〉 is

an LMn×m-algebra, where −x = ∼x ∧ b for each x ∈ [0, b]. Moreover, the mapping

hb : L → [0, b] defined by hb(x) = x ∧ b is an LMn×m-epimorphism whose kernel is

F (b).

Corollary 6.3. Let (L, ∃) be a finite mLMn×m-algebra. Then the following

conditions are equivalent:

(i) (L, ∃) is rich,

(ii) for each x ∈ L there exists bx ∈ B(L) such that hbx
restricted to ∃(L) is an

LMn×m-isomorphism and hbx
(∃x) = hbx

(x).

P r o o f. (i) ⇒ (ii): Let x ∈ L. By Theorem 6.4 there exists a Stone filter Fx such

that qx : ∃(L) → L/Fx is an LMn×m-isomorphism and qx(∃x) = qx(x). Since L is a

finite algebra, Fx = F (bx) for some bx ∈ B(L). Then by Remark 6.2, the mapping

γ : L/F (bx) → [0, bx] defined by γ([y]R(F (bx))) = y ∧ bx is an LMn×m-isomorphism

and hbx
= γ ◦ qx, which allows us to conclude (ii).

(ii) ⇒ (i): Let x ∈ L. Then due to the hypothesis there exists bx ∈ B(L) from

which by Remark 6.2, the mapping β : L/F (bx) → [0, bx] such that β ◦ qbx
= hbx

is

an LMn×m-isomorphism, where qbx
is the natural LMn×m-homomorphism. Hence,

qbx
= β−1 ◦ hbx

. From this assertion and (ii), it is straightforward to prove that

qbx
|∃(L) is one-to-one and so, it is an LMn×m-isomorphism. Besides, from (ii) we

infer that qbx
(∃x) = qbx

(x). Therefore, Theorem 6.4 allows us to conclude that L is

rich. �

Finally, we will show the relationship between the functional representations ob-

tained in Theorems 6.1, 6.2 and 6.3 in the particular case of rich mLMn×m-algebras.

Let XL be a set of constants of a rich mLMn×m-algebra (L, ∃) containing at least

one witness to x for each x ∈ L and let XB(L) = {c∗ = c|B(L) : c ∈ XL and c is a

witness to at least one b for each b ∈ B(L)}. From Theorem 6.3 we have that Ω(x) =

(c(x))c∈XL
for each x ∈ L. On the other hand, let τ∗ : LXL → (B(L)↑(n×m))XL

and ε : ((∃B(L))↑(n×m))XL → ((∃(B(L)))↑(n×m))XB(L) be the mappings defined by

τ∗((ac)c∈XL
) = (τ(ac))c∈XL

and ε((f(c))c∈XL
) = (f(c∗))c∗∈XB(L)

, where τ is the

mapping introduced in Theorem 6.1. Then for each x ∈ L we have that

(ε ◦ τ∗ ◦ Ω)(x) = (ε ◦ τ∗)((c(x))c∈XL
) = ε((τ(c(x)))c∈XL

)

= ε(((σij(c(x)))(i,j)∈(n×m))c∈XL

= ε(((c(σij(x)))(i,j)∈(n×m))c∈XL

= ((c∗(σij(x)))(i,j)∈(n×m))c∗∈XB(L)
= Ψ(x),
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where Ψ is the mapping given in Theorem 6.2. Then the following diagram commutes:

L
Ω

//

Ψ

��
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(∃(L))XL

τ∗|∃(L)

��

((∃(B(L)))↑(n×m))XL

ε

��

((∃(B(L)))↑(n×m))XB(L)
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