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��� � � ��� �
	 � ��
 ���
, � � � � � � � � � , Kalamazoo

(Received July 25, 2005)

Abstract. Let G be a connected graph of order n > 3 and let c : E(G) → {1, 2, . . . , k}
be a coloring of the edges of G (where adjacent edges may be colored the same). For each
vertex v of G, the color code of v with respect to c is the k-tuple c(v) = (a1, a2, . . . , ak),
where ai is the number of edges incident with v that are colored i (1 6 i 6 k). The coloring
c is detectable if distinct vertices have distinct color codes. The detection number det(G) of
G is the minimum positive integer k for which G has a detectable k-coloring. We establish
a formula for the detection number of a path in terms of its order. For each integer n > 3,
let Du(n) be the maximum detection number among all unicyclic graphs of order n and
du(n) the minimum detection number among all unicyclic graphs of order n. The numbers
Du(n) and du(n) are determined for all integers n > 3. Furthermore, it is shown that for
integers k > 2 and n > 3, there exists a unicyclic graph G of order n having det(G) = k if
and only if du(n) 6 k 6 Du(n).
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1. Introduction

Let G be a connected graph of order n > 3 and let c : E(G) → {1, 2, . . . , k} be
a coloring of the edges of G for some positive integer k (where adjacent edges may

be colored the same). The color code of a vertex v of G (with respect to c) is the

ordered k-tuple

c(v) = (a1, a2, . . . , ak) (or simply, c(v) = a1a2 . . . ak),

where ai is the number of edges incident with v that are colored i for 1 6 i 6 k.

Therefore,
k
∑

i=1

ai = degG v. The coloring c is called detectable if distinct vertices have

distinct color codes; that is, for every two vertices of G, there exists a color such
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that the number of incident edges with that color is different for these two vertices.

The detection number det(G) of G is the minimum positive integer k for which G

has a detectable k-coloring. Such a coloring is called a minimum detectable coloring.

Since every nontrivial graph contains at least two vertices having the same degree,

the vertices of a nontrivial connected graph cannot be distinguished by their degrees

alone. Therefore, every connected graph of order 3 or more has detection number at

least 2.

To illustrate these concepts, consider the graph G shown in Figure 1(a). A coloring

of the edges of G is shown in Figure 1(b). For this 3-coloring c, the color codes of

its vertices are

c(u) = 110, c(v) = 021, c(w) = 210,

c(x) = 201, c(y) = 101, c(z) = 001.

Since the vertices ofG have distinct color codes, c is a detectable coloring. Figure 1(c)

shows yet another detectable coloring c′ of the graph G of Figure 1(a). For this

coloring,

c′(u) = 20, c′(v) = 30, c′(w) = 21, c′(x) = 12, c′(y) = 02, c′(z) = 01.

The coloring c′ uses only two colors. Once a detectable 2-coloring for the graph G

of Figure 1(c) was obtained, we can immediately conclude that det(G) = 2 as every

connected graph of order 3 or more has detection number at least 2.
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Figure 1. A detectable coloring of a graph

The concept of detectable coloring was studied in [1], [2], [3], [4], [5], inspired by

the basic problem in graph theory that concerns finding means to distinguish the

vertices of a connected graph. The following results were stated in [2], [5].
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Theorem A. Let c be a k-coloring of the edges of a graph G. The maximum

number of different color codes of the vertices of degree r in G is
(

r+k−1
r

)

.

Theorem B. If c is a detectable k-coloring of a connected graph G of order at

least 3, then G contains at most
(

r+k−1
r

)

vertices of degree r.

Since vertices with distinct degrees in a connected graph always have distinct

color codes, it is most challenging to find minimum detectable colorings of graphs

having many vertices of the same degree. The detection numbers of complete graphs

and complete bipartite graphs have been determined and detectable colorings of

connected r-regular graphs and trees have been studied as well (see [2], [3], [4], [5]).

The detection number of the cycle Cn of order n was established in [5].

Theorem C. Let n > 3 be an integer and let l = d
√

n/2 e. Then

det(Cn) =

{

2l if 2l2 − l + 1 6 n 6 2l2,

2l − 1 if 2(l − 1)2 + 1 6 n 6 2l2 − l.

In this work, we first establish a formula for the detection number of paths in

Section 2 and then study some extremal problems concerning detection numbers of

unicyclic graphs in Section 3. We refer to the book [6] for graph theory notation and

terminology not described in this paper.

2. Detectable coloring of paths

In this section, we determine the detection numbers of all paths. In order to do

this, we first present four results, the first of which is a consequence of Theorem B, the

next two are well-known results in graph theory, and the fourth has a straightforward

proof.

Corollary 2.1. Let k > 2 be an integer. If n >
(

k
2

)

+ 2, then det(Pn) > k.

Theorem D. For each positive integer k, the complete graphK2k can be factored

into k − 1 Hamiltonian cycles and a 1-factor.

Theorem E. For each positive integer k, the complete graph K2k+1 is Hamilto-

nian factorable (into k Hamiltonian cycles).
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Lemma 2.2. For each integer n > 3, there exists a unique positive integer l such

that
(

2l

2

)

+ 2 = 2l2 − l + 2 6 n 6 2l2 + 3l + 2 =

(

2l + 2

2

)

+ 1.

Furthermore, l = d 1
4 (−3 +

√
8n− 7)e.

Theorem 2.3. Let n > 3 and let l = d 1
4 (−3 +

√
8n − 7)e. Then

det(Pn) =

{

2l if 2l2 − l + 2 6 n 6 2l2 + 3,

2l + 1 if 2l2 + 4 6 n 6 2l2 + 3l + 2.

���������
. Observe that 2l2 − l + 2 6 n 6 2l2 + 3l + 2 by Lemma 2.2. It is easy to

see that det(Pn) = 2 for 3 6 n 6 5 and so the result holds for 3 6 n 6 5. Hence, we

may restrict our attention to n > 6. We consider two cases, according to whether

2l2 − l + 2 6 n 6 2l2 + 3 or 2l2 + 4 6 n 6 2l2 + 3l + 2.���! �"
1: 2l2 − l + 2 6 n 6 2l2 + 3. By Corollary 2.1, if n >

(

2l
2

)

+ 3 = 2l2 − l + 3,

then det(Pn) > 2l. We now show that if n = 2l2 − l + 2, then det(Pn) > 2l. Since

n >
(

2l−1
2

)

+ 2 = 2l2 − 3l + 3 for every l > 1, it follows that det(Pn) > 2l − 1.

Suppose that there exist a detectable (2l− 1)-coloring c of Pn where n = 2l2 − l + 2.

Since the maximum number of vertices in a path with detection number 2l − 1

is
(

(2l−1)+1
2

)

+ 2 =
(

2l
2

)

+ 2 = 2l2 − l + 2, it follows that all possible color codes

for the vertices of degree 2 are used in the coloring c. Observe that among the

possible color codes for vertices of degree 2, there is a total of 2l − 2 codes starting

with 1. Indeed, among the codes containing exactly two 1’s, there is a total of 2l− 2

codes having 1 in the jth position for every j = 1, 2, . . . , 2l − 1. Since the code

of each end-vertex of Pn = P2l2−l+2 contains exactly one 1, it follows that in the

corresponding detectable (2l − 1)-tuple factorization of Pn = P2l2−l+2, two of the

factors have an odd number of vertices of degree 1, which is not possible. Hence,

det(Pn) = det(P2l2−l+2) 6= 2l− 1. Consequently, det(Pn) = det(P2l2−l+2) > 2l. This

shows that det(Pn) > 2l if 2l2 − l + 2 6 n 6 2l2 + 3.

We now show that det(Pn) 6 2l if 2l2 − l + 2 6 n 6 2l2 + 3 by considering two

subcases, depending on whether n = 2l2 + 3 or 2l2 − l + 2 6 n 6 l2 + 2.# $ %'&(�� �"
1.1: n = 2l2 + 3. Let V (K2l) = {1, 2, . . . , 2l}. We now describe a

method to assign a detectable coloring of the edges of P2l2+3 with the elements of

V (K2l) = {1, 2, . . . , 2l}. By Theorem D, there exists a factorization of K2l into l− 1

Hamiltonian cycles

H1, H2, . . . , Hl−1

and a 1-factor F . For each integer i with 1 6 i 6 l − 1, suppose that

Hi : 1 = ai,1, ai,2, . . . , ai,2l, 1,
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where ai,j (1 6 j 6 2l) is the jth vertex of Hi. We may assume, without loss of

generality, that

H1 : 1, 2, . . . , 2l, 1.

Therefore, a1,j = j for 1 6 j 6 2l. Also, let b1 be the neighbor of 1 in the 1-factor

F of K2l. Note that b1 6= ai,2 and b1 6= ai,2l for every i with 1 6 i 6 l − 1. Suppose

that the edges of P2l2+3 are encountered in the order

e1, e2, . . . , e2l2+2

as we proceed along the path. For each integer k with 1 6 k 6 2l2, either 1 6 k 6 4l

or k = i(2l) + j for some integers i and j with 2 6 i 6 l− 1 and 1 6 j 6 2l. We now

define a coloring c : E(P2l2+3) → V (K2l) of the edges of P2l2+3 by

c(ek) =























a1,dk/2e = dk/2e if 1 6 k 6 4l,

ai,j if k = i(2l) + j, 2 6 i 6 l − 1, 1 6 j 6 2l,

1 if k = 2l2 + 1,

b1 if k = 2l2 + 2.

In other words, we assign the color dk/2e to the edge ek for 1 6 k 6 4l, color the

next 2l edges e2(2l)+j (1 6 j 6 2l) of P2l2+3 by a2,j , color the next 2l edges e3(2l)+j

(1 6 j 6 2l) by a3,j and so on. We continue this process until we have gone through

all the Hamiltonian cycles H1, H2, . . . , Hl−1. We have now assigned colors to the

first 2l2 edges of P2l2+3. We assign the colors 1 and b1 to the last two edges in that

order. (Figure 2 illustrates a detectable 2l-coloring for P2l2+3 = P21 for l = 3.) Since

every vertex of degree 2 of P2l2+3 is incident with two edges having a unique pair of

colors and the edges incident with the end-vertices are colored 1 and b1(6= 1), c is a

detectable 2l-coloring of P2l2+3 and so det(P2l2+3) 6 2l.

1

6

5

4

3

2

K6

1

6

5

4

3

2

H1

1

6

5

4

3

2

H2

1

6

5

4

3

2

F

1 1 2 2 3 3 4 4 5 5 6 6
1

3526415
P21 :

Figure 2. The detectable coloring of P21 in Subcase 1.1.
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# $ %'&(�� �"
1.2: n = 2l2 + 3 − p, for some integer p with 1 6 p 6 l + 1. For each

integer q with 1 6 q 6 p, let vq be the vertex incident with e2q−1 and e2q on P2l2+3.

Suppressing the vertex vq (1 6 q 6 p) so that e2q−1 and e2q become the single edge

fq, we obtain a path P2l2+3−p of order 2l2 +3−p. Let c be the detectable 2l-coloring

of P2l2+3 defined in Subcase 1.1. Define an edge coloring c∗ : E(P2l2+3−p) → V (K2l)

of P2l2+3−p by

c∗(e) =

{

c(e2q−1) if e = fq for some q with 1 6 q 6 p,

c(e) otherwise.

The codes of the vertices of P2l2+3−p are all those of P2l2+3 except those p 2l-tuples

for which 2 occurs in the qth coordinate for 1 6 q 6 p. This is a detectable 2l-coloring

of P2l2+3−p and so det(P2l2+3−p) 6 2l. Figure 3 illustrates a detectable 2l-coloring

of P2l2+3−p = P17 for l = 3 and p = 4 = l + 1.

1 2 3 4 5 5 6 6
1

3526415
P17 :

Figure 3. The detectable coloring of P17 in Subcase 1.2.

���! �"
2: 2l2+4 6 n 6 2l2+3l+2. By Corollary 2.1, if n >

(

2l+1
2

)

+2 = 2l2+l+2,

then det(Pn) > 2l + 1. Thus, if n > 2l2 + l + 3, then det(Pn) > 2l + 1. Now, let

n = 2l2+ l+2. Since n >
(

2l
2

)

= 2l2− l+2, it follows that det(Pn) = det(P2l2+l+2) >

2l. Suppose now that there exists a detectable 2l-coloring c of Pn = P2l2+l+2.

Because the largest possible number of vertices in a path with detection number 2l

is
(

2l+1
2

)

+ 2 = 2l2 + l + 2, all possible color codes for the vertices of degree 2 are

used in the coloring c. Observe that among the codes containing exactly two 1’s,

there is a total of 2l − 1 codes having 1 in the jth position for every j = 1, 2, . . . , 2l.

The code of each end-vertex of Pn = P2l2+l+2 contains exactly one 1. This implies

that in the corresponding detectable 2l-tuple factorization of Pn = P2l2+l+2, all but

two of the factors have an odd number of vertices of degree 1, which is not possible.

Hence, det(Pn) = det(P2l2+l+2) > 2l + 1. Suppose now that 1 6 p 6 l − 2. Then

2l2 + l + 2− p > 2l2 + l + 2 − (l − 2) = 2l2 + 4. But 2l2 + 4 > 2l2 − l + 2. It follows

that det(P2l2+l+2−p) > 2l for every p = 1, 2, . . . , l− 2. If c is a detectable 2l-coloring

of P2l2+l+2−p, then in the corresponding 2l-tuple factorization of P2l2+l+2−p, there

would be at least 2l − (2 + 2(l − 2)) = 2 factors having an odd number of vertices of

degree 1 which is not possible. It follows then that det(Pn) > 2l + 1 if n > 2l2 + 4.

Since 2l2 + 3l + 2 > 2l2 + 4 for all l > 1, we have det(Pn) > 2l + 1 if 2l2 + 4 6 n 6

2l2 + 3l + 2.
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It remains to show that det(Pn) 6 2l + 1 whenever 2l2 + 4 6 n 6 2l2 + 3l + 2.

This is accomplished by finding a detectable (2l + 1)-coloring of Pn. We consider

two subcases.# $ %'&(�� �"
2.1. n = 2l2 + 3l + 2. Let V (K2l+1) = {1, 2, . . . , 2l, 2l + 1}. We now

describe a method to assign a detectable coloring of P2l2+3l+2 with the elements of

V (K2l+1). By Theorem E, K2l+1 can be factored into l Hamiltonian cycles

H1, H2, . . . , Hl.

For each integer i with 1 6 i 6 l, suppose that

Hi : 1 = ai,1, ai,2, . . . , ai,2l+1, 1,

where ai,j (1 6 j 6 2l + 1) is the jth vertex of Hi. We may assume, without loss of

generality, that

H1 : 1, 2, . . . , 2l + 1, 1.

Therefore, a1,j = j for 1 6 j 6 2l + 1. Suppose that the edges of P2l2+3l+2 are

encountered in the order

e1, e2, . . . , e2l2+3l+1

as we proceed along the path. We now define a coloring c : E(P2l2+3l+2) → V (K2l+1)

of the edges of P2l2+l+2 by

c(ek) =

{

a1,dk/2e = dk/2e if 1 6 k 6 4l + 2,

ai,j if k = i(2l + 1) + j, 2 6 i 6 l, 1 6 j 6 2l + 1.

That is, we color the first 4l + 2 edges ek (1 6 k 6 4l + 2) of P2l2+3l+2 by dk/2e,
color the next 2l + 1 edges e2(2l+1)+j (1 6 j 6 2l + 1) of P2l2+3l+2 by a2,j , color the

next 2l + 1 edges e3(2l+1)+j (1 6 j 6 2l + 1) by a3,j and so on. (Figure 4 illustrates

the detectable (2l + 1)-coloring of P2l2+3l+2 = P29 for l = 3.) The last 2l + 1 edges

el(2l+1)+j (1 6 j 6 2l + 1) are then colored by al,j . Since every vertex of degree 2

of P2l2+3l+2 is incident with two edges having a unique pair of colors and the edges

incident with the two end-vertices are assigned 1 and al,2l+1 6= 1, it follows that c

is a detectable (2l + 1)-coloring of P2l2+3l+2 and so det(P2l2+3l+2) 6 2l + 1. Hence,

det(P2l2+3l+2) = 2l + 1.# $ %'&(�� �"
2.2: 2l2 + 4 6 n 6 2l2 + 3l + 1. Let n = (2l2 + 3l + 2) − p, where

1 6 p 6 3l − 2. We consider two subcases, according to whether 1 6 p 6 2l + 1 or

2l + 2 6 p 6 3l − 2.# $ %'&(�� �"
2.2.1: 1 6 p 6 2l + 1. For each integer q with 1 6 q 6 p, let vq be the

vertex incident with e2q−1 and e2q on P2l2+3l+2. Suppressing the vertex vq (1 6 q 6
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P29 :

Figure 4. The detectable coloring of P29 in Subcase 2.1.

p) so that e2q−1 and e2q become the single edge fq, we obtain a path P2l2+3l+2−p of

order 2l2 +3l+2−p. Let c be the detectable (2l+1)-coloring of P2l2+3l+2 defined in

Subcase 2.1. Define an edge coloring c∗ : E(P2l2+3l+2−p) → V (K2l+1) of P2l2+3l+2−p

by

c∗(e) =

{

c(e2q−1) if e = fq for some q with 1 6 q 6 p,

c(e) otherwise.

The codes of the vertices of P2l2+3l+2−p are all those of P2l2+3l+2 except those (2l+1)-

tuples for which 2 occurs in the qth coordinate for 1 6 q 6 p. Since this is a detectable

(2l + 1)-coloring of P2l2+3l+2−p, it follows that det(P2l2+3l+2−p) 6 2l + 1. Figure 5

illustrates the detectable (2l+1)-coloring of P2l2+3l+2−p = P25 when l = 3 and p = 4.

1 2 3 4 5 5 6 6 7 7
1

3572461473625

P25 :

Figure 5. The detectable coloring of P25 in Subcase 2.2.1.

# $ %'&(�� �"
2.2.2: 2l +2 6 p 6 3l−2. Note that this subcase can only occur when

l > 4. Let p = (2l + 1) + h where 1 6 h 6 l − 3. Observe that l − 3 < 2l + 1 for all

positive integers l. Recall that the edges of P2l2+3l+2 are encountered in the order

e1, e2, . . . , e2l2+3l, e2l2+3l+1

as we proceed along the path. Let vi denote the vertex of P2l2+3l+2 incident with

ei and ei+1 for 1 6 i 6 6l + 3. First, we construct a path P(2l2+3l+2)−(2l+1) from

P2l2+3l+2 by
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(1) deleting the vertices v4l+3, v4l+4, . . ., v6l+2 and therefore, deleting the 2l + 1

edges e4l+3, e4l+4, . . ., e6l+3 (which correspond to the Hamiltonian cycle H2),

and

(2) identifying the vertices v4l+2 and v6l+3.

This produces a path P(2l2+3l+2)−(2l+1) of order (2l2 + 3l + 2) − (2l + 1). Next,

we suppress the vertex v2j−1 for 1 6 j 6 h, where the two edges e2j−1 and e2j

become the single edge fj . This produces a path P(2l2+l+2)−(2l+1+h) = Pn. Let c be

the detectable (2l + 1)-coloring of P2l2+3l+2 defined in Subcase 2.1. Define an edge

coloring c′ : E(Cn) → V (K2l+1) by

c′(e) =

{

c(e2j−1) if e = fj for 1 6 j 6 h,

c(e) otherwise.

Figure 6 illustrates a detectable (2l + 1)-coloring of P2l2+3l+2 = P46 where l = 4 and

a detectable (2l + 1)-coloring of P(2l2+3l+2)−(2l+1+h) = P36 (for l = 4 and h = 1)

obtained from the coloring of P46.
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1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
1

57392846142638597

P36 :

Figure 6. Detectable colorings of P46 and P36 in Subcase 2.2.2 in the proof of Theorem 2.3.

The codes of the vertices of Pn are all these of P2l2+3l+2 except

(a) those (2l + 1)-tuples for which 2 occurs in the jth coordinate for 1 6 j 6 h

(there are h such (2l + 1)-tuples) and

(b) those (2l + 1)-tuples that are produced from the Hamiltonian cycle H2; that is,

the codes of the vertices v4l+3, v4l+4, . . . , v6l+3 in the path P2l2+3l+2 (there are

2l + 1 such (2l + 1)-tuples).

Since c′ is a detectable (2l+1)-coloring of Pn, it follows that det(Pn) 6 2l+1. �
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3. Extremal problems on unicyclic graphs

A connected graph with exactly one cycle is called a unicyclic graph. A graph G

of order n and size m is unicyclic if and only if G is connected and m = n. In this

section, we study some extremal problems concerning detection numbers of unicyclic

graphs, in particular, the problems of determining how large and how small the

detection number of a unicyclic graph of a fixed order can be.

Observe that if ni is the number of vertices of degree i in a unicyclic graph G with

maximum degree ∆, then

(1) n1 = n3 + 2n4 + 3n5 + . . . + (∆ − 2)n∆.

For each integer n > 3, let Du(n) denote the maximum detection number among

all unicyclic graphs of order n and du(n) the minimum detection number among all

unicyclic graphs of order n. That is, if Un is the set of all unicyclic graphs of order

n, then

Du(n) = max{det(G) : G ∈ Un}
du(n) = min{det(G) : G ∈ Un}.

Figure 7 shows all the unicyclic graphs of order n for 3 6 n 6 5 together with a

minimum detectable coloring for each. Hence Du(3) = du(3) = 3, and Du(n) = 3

and du(n) = 2 for n = 4, 5.

n = 3:

2

13 n = 4:
1
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1
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1
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1

2
21

2

F3

1
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F4

1

3

3

2

2

Figure 7. Minimum detectable colorings of unicyclic graphs of order n = 3, 4, 5.

In order to determine Du(n) for n > 6, we first present a lemma. For a graph F ,

let m(F ) denote the size of F .
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Lemma 3.1. Let G be connected graph of order n > 3. If H is a connected

subgraph of G, then

det(G) − det(H) 6 m(G) − m(H).

���������
. Color the m(H) edges of H using k = det(H) colors and color the

remainingm(G)−m(H) edges ofG using the colors k+1, k+2, . . . , k+(m(G)−m(H)).

This gives us a detectable (m(G)−m(H)+k)-coloring of G. It follows that det(G) 6

m(G) − m(H) + det(H). �

The following is an immediate consequence of Lemma 3.1

Corollary 3.2. Let G be a connected graph of order n > 3 and size m. If g is

the girth of G, then

det(G) 6 m − g + det(Cg).

Proposition 3.3. For n > 6, Du(n) = n − 3.

���������
. It is easy to verify that det(K1,n−1 + e) = n − 3 for n > 6 and so

Du(n) > n − 3 for n > 6. It remains to show that Du(n) 6 n − 3 for n > 6. Let G

be a unicyclic graph of order n > 6 and let g be the girth of G. If 3 6 g 6 5, then

G contains a subgraph F such that F ∈ {F1, F2, F3, F4, F5}, where Fi (1 6 i 6 4)

is shown in Figure 7 and F5 is the graph obtained from C5 : v1, v2, v3, v4, v5, v1 by

adding a pendant edge vv1. We have seen that det(Fi) = m(Fi) − 3 for 1 6 i 6 4.

For the graph F5, the 3-coloring c defined by c(v1v2) = 1, c(v2v3) = c(v3v4) =

2, and c(v4v5) = c(v1v5) = c(vv1) = 3 is a minimum detectable coloring of F5

and so det(F5) = 3 = m(F5) − 3. Therefore, det(F ) = m(F ) − 3 for each F ∈
{F1, F2, F3, F4, F5}. It then follows by Lemma 3.1 that det(G) 6 m(G) + det(F ) −
m(F ) = n+(m(F )−3)−m(F ) = n−3 for 3 6 g 6 5. If g > 6, then det(Cg) 6 g−3

by Theorem C. It then follows by Corollary 3.2 that det(G) 6 n − g + det(Cg) 6

n − g + (g − 3) = n − 3. Thus, Du(n) 6 n − 3 for all n > 6. �

Next, we determine the minimum detection number among all unicyclic graphs

of order n. According to Theorem B, every unicyclic graph of order n > 3 having

detection number k contains at most k end-vertices and at most 1
2k(k + 1) vertices

of degree 2. It then follows by (1) that

n 6 k +
k(k + 1)

2
+ k =

k2 + 5k

2
.

Furthermore, if G is a unicyclic graph of order n = 1
2 (k2 + 5k) with det(G) = k, then

G must contain exactly k end-vertices, exactly 1
2k(k + 1) vertices of degree 2, and
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exactly k vertices of degree 3. We first determine du(n) for the values of n mentioned

above.

Theorem 3.4. Let k > 2 be an integer. If n = 1
2 (k2 + 5k), then du(n) = k.

���������
. First, we show that if n = 1

2 (k2 + 5k), then du(n) > k. Assume, to

the contrary, that there exists a unicyclic graph G of order 1
2 (k2 + 5k) such that

det(G) 6 k − 1. By Theorem B, G has at most k − 1 end-vertices and at most
1
2k(k − 1) vertices of degree 2. Therefore, G contains at least

k2 + 5k

2
− (k − 1) − k(k − 1)

2
= 2k + 1

vertices of degree 3 or more. It then follows by (1) that G contains at least 2k + 1

end-vertices, which is impossible. Thus, du(n) > k.

To show that du(n) 6 k, we construct a unicyclic graphGk of order n = 1
2 (k2 + 5k)

having detection number k such that Gk has exactly k end-vertices, exactly 1
2 (k2 + k)

vertices of degree 2, and exactly k vertices of degree 3. We consider two cases,

according as to whether k is odd or even.���! �"
1. k is odd. Then k = 2l− 1 for some integer l > 2. We now construct Gk.

Let

C2l2−l : v1, v2, . . . , v2l2−l, v1

be a cycle of length 2l2 − l and for 1 6 i 6 k, let Qi be a copy of K2 with V (Qi) =

{ui,1, ui,2}. Then the graph Gk is obtained from C2l2−l and Qi (1 6 i 6 k) by

adding the edges v2iui,1 (1 6 i 6 k). Observe that Gk is a unicyclic graph of order

n = (2l2 − l) + 2(2l − 1) = 1
2 (k2 + 5k).

We now define a k-coloring c for the edges of Gk. First, we color the 2l2 − l

edges of C2l2−l with the elements of V (K2l−1) = {1, 2, . . . , 2l, 2l− 1} as follows. Let
H1, H2, . . . , Hl−1 be l−1 pairwise edge-disjoint Hamiltonian cycles ofK2l−1. For each

integer i with 1 6 i 6 l − 1, suppose that Hi : 1 = ai,1, ai,2, . . . , ai,2l−1, 1, where ai,j

(1 6 j 6 2l − 1) is the jth vertex of Hi and we assume that H1 : 1, 2, . . . , 2l − 1, 1.

Therefore, a1,j = j for 1 6 j 6 2l − 1. Suppose that the edges of C2l2−l are

encountered in the order

e1, e2, . . . , e2l2−l, e2l2−l+1 = e1

as we proceed about the cycle in some direction. Then we define

c(ek) =

{

a1,dk/2e = dk/2e if 1 6 k 6 4l − 2,

ai,j if k = i(2l − 1) + j, 2 6 i 6 l − 1, and 1 6 j 6 2l − 1.
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It was shown in the proof of Theorem C that this coloring of the cycle C2l2−l is

detectable. Furthermore, let c(v2iui,1) = c(ui,1ui,2) = i for 1 6 i 6 k. Thus c

uses k colors. It remains to show that c is detectable. Note that the color codes

of the vertices of Gk consist of all possible color codes for vertices of degrees 1 and

2 together with all the k-tuples whose only nonzero entry is 3 occurring in the ith

coordinate for 1 6 i 6 k. Since each of the color codes described above occurs exactly

once, c is a detectable k-coloring for Gk. Therefore, det(Gk) 6 k and consequently,

det(Gk) = k.���! �"
2. k is even. Then k = 2l for some positive integer l. If k = 2, then n = 7.

Since the unicyclic graph G2 of order 7 in Figure 8 has detection number 2 (as shown

in that figure), the result holds for k = 2. Thus we may assume that k > 4 and so

l > 2.

1

1

1 2

2

2

2

Figure 8. A detectable 2-coloring of G2 in Case 2.

Let C2l2 : v1, v2, . . . , v2l2 , v1 be a cycle of length of 2l2. For 1 6 i 6 l, let Qi be

a copy of K2 with V (Qi) = {ui,1, ui,2} and for l + 1 6 i 6 2l, let Qi : ui,1, ui,2, ui,3

be a copy of a path of length 2. Then the graph Gk is obtained from C2l2 and Qi

(1 6 i 6 k) by adding the edges v2iui,1 (1 6 i 6 k). Observe that Gk is a unicyclic

graph of order n = 2l2 + 2l + 3l = 1
2 (k2 + 5k).

We now define a k-coloring c for the edges of Gk. First, we color the 2l2 edges

of the cycle C2l2 with the elements of V (K2l) = {1, 2, . . . , 2l} as follows. Let
H1, H2, . . . , Hl−1 be l− 1 pairwise edge-disjoint Hamiltonian cycles of K2l and let F

be the 1-factor of K2l with E(F ) = {xiyi : 1 6 i 6 l}, where xl = 2l = k. For each

integer i with 1 6 i 6 l − 1, suppose that Hi : 1 = ai,1, ai,2, . . . , ai,2l, 1, where ai,j

(1 6 j 6 2l) is the jth vertex of Hi and H1 : 1, 2, . . . , 2l, 1, say. Therefore, a1,j = j

for 1 6 j 6 2l. Suppose that the edges of C2l2 are encountered in the order

e1, e2, . . . , e2l2 , e2l2+1 = e1,

as we proceed about the cycle in some direction. For each integer k with 1 6 k 6 2l2,

either 1 6 k 6 4l or k = i(2l) + j for some integers i and j with 2 6 i 6 l − 1 and

1 6 j 6 2l. We now define

c(ek) =

{

a1,dk/2e = dk/2e if 1 6 k 6 4l,

ai,j if k = i(2l) + j, 2 6 i 6 l − 1 and 1 6 j 6 2l.
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This coloring of C2l2 is detectable, which was shown in the proof of Theorem C.

Furthermore, for 1 6 i 6 l, let c(v2iui,1) = c(ui,1ui,2) = xi and for l + 1 6 i 6 2l,

let c(v2iui,1) = xi−l and let c(ui,1ui,2) = c(ui,2ui,3) = yi−l. Thus c uses k colors. It

remains to show that c is detectable. Note that in the coloring c all possible color

codes for vertices of degrees 1 and 2 are used exactly once. The vertices of degree 3,

namely v2i (i = 1, 2, . . . , l), also have distinct color codes since v2i is the only vertex

whose code has an entry that is at least 2 in the ith position. Therefore, det(Gk) 6 k

and consequently, det(Gk) = k. �

With the aid of Theorem 3.4, we are now able to establish the following.

Theorem 3.5. For each integer k > 2, if

(k − 1)2 + 5(k − 1)

2
+ 1 6 n 6

k2 + 5k

2

then du(n) = k.

���������
. First, we show that if 1

2 (k2 + 3k − 2) = 1
2 ((k − 1)2 + 5(k − 1))+1 6 n 6

1
2 (k2 + 5k), then du(n) > k. Assume, to the contrary, that there exists a unicyclic

graph G of order n > 1
2 (k2 + 3k − 2) such that det(G) 6 k − 1. By Theorem B, G

has at most k−1 end-vertices and at most 1
2 (k2 − k) vertices of degree 2. Therefore,

G contains at least n−(k−1)− 1
2 (k2 − k) > 1

2 (k2 + 3k − 2)−(k−1)− 1
2 (k2 − k) = k

vertices of degree 3 or more. It then follows by (1) that G has at least k end-vertices

which is impossible.

We next show that du(n) 6 k if 1
2 (k2 + 3k − 2) 6 n 6 1

2 (k2 + 5k). Theorem 3.4

shows that this is true when n = 1
2 (k2 + 5k). Assume therefore that n = 1

2 (k2 + 5k)−
p where 1 6 p 6 k + 1. We consider two cases, according to whether k is odd or

even.���! �"
1. k is odd. Then k = 2l−1 for some integer l > 2. There are two subcases,

depending on whether 1 6 p 6 k or p = k + 1.# $ %'&(�� �"
1.1. 1 6 p 6 k. Construct the unicyclic graphG of order 1

2 (k2 + 5k)−p

from the unicyclic graphGk described in Theorem 3.4 by suppressing the vertices ui,1

so that the edges v2iui,1 and ui,1ui,2 become the single edge v2iui,2 where 1 6 i 6 p.

Define a k-coloring c∗ of G by

c∗(e) =

{

c(v2iui,1) if e = v2iui,2 for some i with 1 6 i 6 p,

c(e) otherwise.

The color codes for the vertices of G are all those of Gk except those (2l − 1)-tuples

for which 2 occurs in the ith coordinate (and 0 occurs everywhere else) for 1 6 i 6 p.
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Thus c∗ is a detectable k-coloring of G. Since G has k end-vertices, it follows that

det(G) = k. Consequently, du(n) 6 k.# $ %'&(�� �"
1.2. p = k + 1 and so n = 1

2 (k2 + 3k − 2). Consider the unicyclic

graph G of order 1
2 (k2 + 3k − 2) + 1 = 1

2 (k2 + 3k) together with the edge coloring

described in Subcase 1.1 (that is, when p = k in Subcase 1.1.). We delete the edge

v2kv2k−1, identify the vertices v2k and v2k−1, and label this new vertex by v. This

gives us a unicyclic graph G′ of order n = 1
2 (k2 + 3k − 2). Observe that the color

codes of the vertices of G′ are those of G except for those of v2k and v2k−1, and that

v is the only vertex of G′ of degree 3 whose color code has 2 as the kth coordinate.

Hence, we have a detectable k-coloring of G′. Since G′ has k end-vertices, it follows

that det(G′) > k and consequently, det(G′) = k. Therefore, du(n) 6 k.���! �"
2. k is even. Then k = 2l for some positive integer l. The result holds for

k = 2 (that is, l = 1) as the graphs in Figure 9 show. For k > 4 (and so l > 2),

we consider three subcases, according to whether 1 6 p 6 k/2, k/2 + 1 6 p 6 k, or

p = k + 1.

1

1 2

2

2

2

1

1 2

22 1

2

2

1

Figure 9. Detectable colorings when k = 2 in Case 2.

# $ %'&(�� �"
2.1. 1 6 p 6 k/2. Construct the unicyclic graph G of order

1
2 (k2 + 5k) − p from the unicyclic graph Gk described in Theorem 3.4 by sup-

pressing the vertices ui,1 so that the edges v2iui,1 and ui,1ui,2 become the single edge

v2iui,2 where 1 6 i 6 p. Define a k-coloring c∗ of G by

c∗(e) =

{

c(v2iui,1) if e = v2iui,2 for some i with 1 6 i 6 p,

c(e) otherwise.

The color codes for the vertices of G are all those of Gk except those (2l)-tuples for

which 2 occurs in the xith coordinate (and 0 occurs everywhere else) for 1 6 i 6 p.

Thus c∗ is a detectable k-coloring of G. Since G has k end-vertices, it follows that

det(G) 6 k. Consequently, du(n) 6 k.# $ %'&(�� �"
2.2. k/2 + 1 6 p 6 k. Construct the unicyclic graph G′ of order

1
2 (k2 + 5k) − p from the unicyclic graph G of order 1

2 (k2 + 5k) − k/2 = 1
2 (k2 + 4k)

described in Subcase 2.1 (that is, when p = k/2 in Subcase 2.1) by suppressing the

vertices ui,2 so that the edges ui,1ui,2 and ui,2ui,3 become the single edge ui,1ui,3
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where k/2 + 1 6 i 6 p. Define a k-coloring c′ for G′ by

c′(e) =

{

c∗(ui,2ui,3) if e = ui,1ui,3 for some i with k/2 + 1 6 i 6 p,

c∗(e) otherwise.

The color codes for the vertices of G′ are all those of G except those (2l)-tuples

for which 2 occurs in the yi−k/2th coordinate (and 0 occurs everywhere else) for

k/2+1 6 i 6 p. Thus c′ is a detectable k-coloring of G′. Since G′ has k end-vertices,

it follows that det(G′) = k. Consequently, du(n) 6 k.# $ %'&(�� �"
2.3. p = k + 1. That is, n = 1

2 (k2 + 3k − 2). Consider the unicyclic

graph G′ of order 1
2 (k2 + 3k − 2) + 1 = 1

2 (k2 + 3k) together with the edge coloring

described in Subcase 2.2 (that is, when p = k in Subcase 2.2). We delete the edge

v2kv2k−1, identify the vertices v2k and v2k−1, and label this new vertex by v. This

gives us a unicyclic graph G′′ of order n = 1
2 (k2 + 3k − 2). Observe that the color

codes of the vertices of G′′ are those of G′ except for those of v2k and v2k−1, and that

v is the only vertex of G′′ of degree 3 whose color code has 2 as the kth coordinate.

Hence, we have a detectable k-coloring of G′′. Since G′′ has k end-vertices, it follows

that det(G′′) = k. Consequently, du(n) 6 k. �

Solving for the smallest integer k for which n 6 1
2 (k2 + 5k), we obtain the follow-

ing.

Theorem 3.6. For each integer n > 4,

du(n) =

⌈ −5 +
√

8n + 25

2

⌉

.

By Theorem 3.6, du(n) ≈
√

2n for large values of n. We now determine all pairs

k, n of integers for which there exists a unicyclic graph of order n having detection

number k.

Theorem 3.7. Let k > 2 and n > 3 be integers. There exists a unicyclic graph

G of order n such that det(G) = k if and only if du(n) 6 k 6 Du(n).

���������
. By definition, if G is a unicyclic graph of order n such that det(G) = k,

then du(n) 6 k 6 Du(n). It remains to verify the converse. The result holds for

3 6 n 6 5 as the graphs in Figure 7 show. Furthermore, the graphs in Figure 10

show that the result holds for n = 6, 7 as well.

We now assume that n > 8 and so k > 3. In this case, we show that if

du(n) =

⌈ −5 +
√

8n + 25

2

⌉

6 k 6 n − 3 = Du(n),
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Figure 10. Minimum detectable colorings for graphs of order n = 6, 7.

then there is a unicyclic graph G of order n such that det(G) = k. For each integer

i with i = 0, 1, . . . , n − du(n) − 3, we construct a unicyclic graph Hi such that Hi

has order n and det(Hi) = du(n) + i. Let H be the unicyclic graph of order n

described in the proof of Theorem 3.5 and c the du(n)-coloring described in the

proof of Theorem 3.5 as well. We first construct a unicyclic graph H0 from H as

follows.

(a) If vertex u1,1 ∈ V (H), then delete the vertex u1,2; while if u1,1 6∈ V (H), then

delete the vertex v3 and join the vertices v2 and v4.

(b) Delete the edge v1v2, add the vertex v, and join v to v1 and v2.

Then H0 has exactly du(n) end-vertices and so det(H0) > du(n). Define the coloring

c0 : E(H0) → {1, 2, . . . , du(n)} by

c0(e) =

{

c(e) if e ∈ E(H),

1 if e 6∈ E(H).

Then c0 is a detectable du(n)-coloring of H0. Thus det(H0) 6 du(n) and so

det(H0) = du(n).

Observe that if l = ddu(n)/2e, then the girth of H0 is 2l2 − l, 2l2, 2l2 − l + 1, or

2l2 + 1, depending on (1) the parity of du(n) and (2) whether the vertex u1,1 is in

H or not. In each case, if we denote the girth of H0 by g(l), then g(l) > 3 and so

H0 6= K1,n−1 + e. Note that the vertices v1, v and v2, in this order, are consecutive

vertices in the cycle of H0. For the purpose of notation, we relabel the vertex v2 as

w0. Since H0 6= K1,n−1 + e (as g(l) > 3), it follows that there exists a vertex x0 in

H0 adjacent to w0 such that degH0
x0 6= 1 and x0 /∈ {v, v1}.

We now construct a unicyclic graph H1 from H0 by deleting the edge w0x0, iden-

tifying the vertices w0 and x0, labeling the new vertex by w1, introducing a new

vertex y1, and joining y1 to w1. We note that H1 has order n and has du(n)+1 end-

vertices. Thus, det(H1) > du(n) + 1. To show that det(H1) 6 du(n) + 1, we provide

443



a detectable (du(n) + 1)-coloring of H1. Define c1 : E(H1) → {1, 2, . . . , du(n) + 1}
by

c1(e) =

{

c0(e) if e ∈ E(H0),

du(n) + 1 if e = w1y1.

Then c1 is detectable (du(n) + 1)-coloring of H1. This implies that det(H1) =

du(n) + 1.

In general, we construct Hi+1 from Hi and obtain the edge coloring ci+1 from ci,

where 0 6 i 6 n − du(n) − 4, as follows:

(1) Let xi be a vertex in Hi that is adjacent to wi such that degHi
xi 6= 1 and

xi /∈ {v, v1}.
(2) Construct Hi+1 by deleting the edge wixi, identifying the vertices wi and xi,

labeling the new vertex by wi+1, introducing a new vertex yi+1, and joining

yi+1 to wi+1.

(3) Define ci+1 : E(Hi+1) → {1, 2, . . . , du(n) + i + 1} by

ci+1(e) =

{

ci(e) if e ∈ E(Hi),

du(n) + i + 1 if e = wi+1yi+1.

Observe that for every integer i = 0, 1, . . . , n − du(n) − 3:

(i) Hi is a unicyclic graph of order n with du(n) + i end-vertices;

(ii) ci is a detectable (du(n) + i)-coloring of Hi;

(iii) Parts (i) and (ii) imply that det(Hi) = du(n) + i.

Figure 11 illustrates how to construct the unicyclic graphs Hi (0 6 i 6 6) for n = 12.

In this case, du(12) = 3, Du(12) = 9, and det(Hi) = du(n) + i = 3 + i for 0 6 i 6 6.

�
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Figure 11. Constructing unicyclic graphs in the proof of Theorem 3.7 for n = 12.
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