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LOCATION-DOMATIC NUMBER OF A GRAPH
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Abstract. A subset D of the vertex set V (G) of a graph G is called locating-dominating,
if for each x ∈ V (G)−D there exists a vertex y → D adjacent to x and for any two distinct
vertices x1, x2 of V (G)−D the intersections of D with the neighbourhoods of x1 and x2 are
distinct. The maximum number of classes of a partition of V (G) whose classes are locating-
dominating sets in G is called the location-domatic number of G. Its basic properties are
studied.
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In this paper we will introduce the location-domatic number of a graph. All graphs

considered will be finite undirected graphs without loops and multiple edges.

The location-domatic number of a graph is a variant of the domatic number,
introduced by E. J.Cockayne and S.T.Hedetniemi. A dominating set in a graph G

is a subset D of the vertex set V (G) of G with the property that for each vertex
x ∈ V (G) − D there exists a vertex y ∈ D adjacent to x. A partition of V (G), all

of whose classes are dominating sets in G, is called a domatic partition of G. The
maximum number of classes of a domatic partition of G is called the domatic number
of G and denoted by d(G).

A special case of a dominating set is a locating-dominating set. It was defined

by D. F.Rall and P. J. Slater in [2]. Let NG(x) denote the open neighborhood of a
vertex x in a graph G, i.e. the set of all vertices which are adjacent to x in G. A

dominating set D in a graph G is called locating-dominating in G, if for any two
distinct vertices x1, x2 of V (G) − D the intersections D ∩ NG(x1), D ∩ NG(x2) are

distinct. In [2] also the location-domination number of G is defined as the minimum
number of vertices of a locating-dominating set in G.
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Now we can define the location-domatic number of G analogously to the domatic

number. A partition of V (G), all of whose classes are locating-dominating set in
G, is called a location-domatic partition of G. The maximum number of classes of
a location-domatic partition of G is called the location-domatic number of G and is

denoted by dloc(G).

Note that dloc(G) is well-defined, because the whole set V (G) is a locating-

dominating set in G and therefore there exists at least one location-domatic partition
of G, namely

{
V (G)

}
.

Theorem 1. Let there exist three pairwise distinct vertices x1, x2, x3 of G such

that NG(x1) = NG(x2) = NG(x3). Then

dloc(G) = 1.

�����. Suppose that dloc(G) � 2. Then there exist two disjoint locating-
dominating sets D1, D2 in G. At least one of the sets V (G)−D1, V (G)−D2 contains

at least two of the vertices x1, x2, x3.Without loss of generality let V (G)−D1 contain
x1 and x2. As NG(x1) = NG(x2), we have also D1 ∩NG(x1) = D1 ∩NG(x2) and D1

is not locating-dominating, which is a contradiction. This yields the result. �

Theorem 2. Let there exists two distinct vertices x1, x2, ofG such thatNG(x1) =

NG(x2). Then

dloc(G) � 2.

�����. Suppose that dloc(G) � 3. Then there exist three pairwise disjoint
locating-dominating sets D1, D2, D3 in G. At least one of the sets V (G) − D1,

V (G) − D2, V (G) − D3 contains both the vertices x1, x2. The rest of the proof is
analogous to the proof of Theorem 1. �

The symbol ∆ will denote the symmetric difference of sets. Then for any two
vertices x, y of G the symbol ε(x, y) will be defined as the number of elements of

NG(x)∆NG(y) while ε(G) will denote the minimum of ε(x, y) over all pairs of distinct
vertices x, y of G.

Theorem 3. For every graph G the inequality

dloc(G) � ε(G) + 2

holds.
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�����. Let d = dloc(G) and let {D1, . . . , Dd} be a location-domatic partition
of G. Let x, y be vertices for which ε(x, y) = ε(G) holds. First suppose that x, y

are in distinct classes of the partition; without loss of generality let x ∈ D1, y ∈ D2.

Then for i = 3, . . . , d we have Di ∩ NG(x) �= Di ∩ NG(y). This is possible only if

Di contains a vertex of NG(x)∆NG(y). As D3, . . . , Dd are pairwise disjoint, we have
d− 2 � ε(x, y), which implies the assertion. If both x, y are in the same class of the

partition, we have even d − 1 � ε(x, y). �

Theorem 4. Let a graph G contain two vertices x1, x2 of degree 1 which are

both adjacent to a vertex y. Then

dloc(G) = 1.

�����. Suppose dloc(G) � 2. As G contains vertices of degree 1, according to

[1] its domatic number is at most 2 and hence also dloc(G) � 2. Suppose dloc(G) = 2
and let {D1, D2} be a location-domatic partition of G. Without loss of generality

let y ∈ D1. The vertices x1, x2 are adjacent to no vertex of D2 and hence x1 ∈ D2,
x2 ∈ D2. Obviously D2 = V (G)−D1 and D1 ∩NG(x1) = D1∩NG(x2) = {y}, which
is a contradiction. Hence dloc(G) = 1. �

Now we can determine the location-domatic numbers of some well-known types of
graphs.

Corollary 1. For the complete graph Kn we have

dloc(K2) = 2,

dloc(Kn) = 1 for n � 2.

Corollary 2. For the complete bipartite graph Km,n we have

dloc(K1,1) = dloc(K2,2) = 2,

dloc(Km,n) = 1 in the other cases.

Corollary 3. For the circuit Cn we have

dloc(C3) = 1,

dloc(Cn) = 2 for n � 4.
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�����. Let the vertices of Cn be u1, . . . , un and the edges uiui+1 for i = 1, . . . , n,

the subscript i + 1 being taken modulo n. The circuit C3 is the complete graph
K3 and thus dloc(C3) = 1 by Corollary 1. For C4 we have a location-domatic
partition

{{u1, u2}, {u3, u4}
}
and thus dloc(C4) � 2. For n � 5 we have a location-

domatic partition {D1, D2}, where D1 (or D2) is the set of all ui with i odd (or
even, respectively); hence also dloc(Cn) � 2. If n is not divisible by 3 then dloc(Cn) �
d(Cn) = 2 and thus dloc(Cn) = 2. If n is divisible by 3, then d(Cn) = 3 and the unique
domatic partition with three classes is {D1, D2, D3}, where Di for i ∈ {1, 2, 3} is the
set of all uj with j ≡ i (mod 3). Each vertex is adjacent to no vertex of its own
class and to one vertex from each of the other classes. Thus u1 ∈ D1 ⊆ V (Cn)−D2,

u2 ∈ D2, u3 ∈ D3 ⊆ V (Cn)− D2 and D2 ∩ NCn(u1) = D2 ∩ NCn(u2) = {u2}, which
implies that {D1, D2, D3} is not location-domatic partition. Therefore dloc(Cn) = 2

in this case, too. �

By Pn we denote the path of length n, i.e. with n edges and n+ 1 vertices.

Corollary 4. For the path Pn we have

dloc(P2) = 1,

dloc(Pn) = 2 for n �= 2.

Theorem 5. Let p, q be integers, q � 2, 1 � p � q. Then there exists a graph G

with dloc(G) = p, d(G) = q.

�����. We start with the case p = q. Let r be an integer, r � 4q. LetD1, . . . , Dq

be pairwise disjoint sets of vertices, let |D1| = r + 1, |Di| = r for i = 2, . . . , q. Let
the vertices of D1 be u, v(1, 1), . . . , v(1, r), let the vertices of Di for 2 � i � q

be v(i, 1), . . . , v(i, r). Consider an auxiliary graph H ; it is the complete graph whose
vertex set is {D1, . . . , Dq}. If q is even, then H may be decomposed into q−1 pairwise
edge-disjoint linear factors F1, . . . , Fq−1. If q is odd, then H may be decomposed into
q pairwise edge-disjoint graphs F1, . . . , Fq, each of which is a linear factor of a graph

obtained from H by deleting one vertex. In any of these cases consider two sets
Di, Dj . Let h be the number such that the edge joining Di and Dj in H belongs

to Fh. Each vertex v(i, k) for k = 1, . . . , q will be joined by edges with the vertices
v(j, k−h), . . . , v(j, k+h), the numbers in brackets being taken modulo q. Moreover,

the vertex u ∈ D1 will be joined by edges with all vertices v(i, 1) for i = 2, . . . , q.
The resulting graph will be Gq. From the construction it is clear that {D1, . . . , Dq}
is a location-domatic partition of Gq and thus dloc(Gq) � q. On the other hand, the
vertex u has degree q−1. Hence the minimum degree δ(Gq) � q−1 and by [1] we have
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dloc(Gq) � d(Gq) � δ(Gq) + 1 � q, which implies dloc(Gq) = d(Gq) = p = q. Now let

3 � p � q − 1. Take the graph Gq constructed above, add a new vertex w to it and
join it by edges with all vertices v(i, 1) for 2 � i � q and with all vertices v(i, 2) for
2 � i � p−1. The resulting graph will be denoted by Gp.We have ε(u, w) = p−2 and
dloc(Gp) � p by Theorem 3. If we denote D̃ = {w}∪

q⋃
i=p

Di, then {D1, . . . , Dp−1, D̃}
is a location-domatic partition of Gp and thus dloc(Gp) = p. Now let p = 2. We
take again the graph Gq. To it we add a new vertex w and join it by edges with the

same vertices with which u was joined. The resulting graph will be G2. We have

ε(u, w) = 0 and thus dloc(G2) � 2. If we denote D̃ = {w} ∪
q⋃

i=2
Di, then {D1, D̃} is

a location-domatic partition of G2 and dloc(G2) = 2. Finally let p = 1. To Gq we

add two new vertices w1, w2 and join them with the same vertices with which u was
joined. The resulting graph will be G1.We have NG1(w1) = NG1(w2) = NG1(u) and

by Theorem 1 then dloc(G) = 1. Evidently d(Gp) = q for each p = 1, . . . , q − 1. �

Theorem 6. Let G be a graph with n vertices, let y = Φ(x) be the inverse
function to the function y = 2x + x. Then

dloc(G) � n

Φ(n+ 1)
.

�����. The function y = 2x+x is a monotone increasing function mapping the

set R of real numbers bijectively onto itself. Therefore the inverse function y = Φ(x)
to this function exists, it is again a monotone increasing function which maps R onto

itself.
Now consider the graph G. For the sake of simplicity we denote dloc(G) = d.

Consider a location-domatic partition D with d classes. As G has n vertices, there

exists at least one class D ∈ D such that |D| � n/d. The sets D ∩ NG(x) for
x ∈ V (G)−D are pairwise distinct non-empty subsets ofD; their number is less than

or equal to 2n/d−1 and, asD is a locating-dominating set, so is the number of vertices
of V (G) − D. Hence n � n/d+ 2n/d − 1, which is n − 1 � 2n/d + n/d = Φ−1(n/d).

As y = Φ(x) is a monotone increasing function, we have Φ(n + 1) � n/d and this
yields d � n/Φ(n+ 1). �
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