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Abstract. A subset D of the vertex set V(G) of a graph G is called locating-dominating,
if for each x € V(G) — D there exists a vertex y — D adjacent to x and for any two distinct
vertices x1, x2 of V(G)— D the intersections of D with the neighbourhoods of 21 and x5 are
distinct. The maximum number of classes of a partition of V(G) whose classes are locating-
dominating sets in G is called the location-domatic number of G. Its basic properties are
studied.
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In this paper we will introduce the location-domatic number of a graph. All graphs
considered will be finite undirected graphs without loops and multiple edges.

The location-domatic number of a graph is a variant of the domatic number,
introduced by E. J.Cockayne and S.T. Hedetniemi. A dominating set in a graph G
is a subset D of the vertex set V(G) of G with the property that for each vertex
x € V(G) — D there exists a vertex y € D adjacent to z. A partition of V(G), all
of whose classes are dominating sets in G, is called a domatic partition of G. The
maximum number of classes of a domatic partition of G is called the domatic number
of G and denoted by d(G).

A special case of a dominating set is a locating-dominating set. It was defined
by D.F.Rall and P.J.Slater in [2]. Let N¢g(z) denote the open neighborhood of a
vertex x in a graph G, i.e. the set of all vertices which are adjacent to x in G. A
dominating set D in a graph G is called locating-dominating in G, if for any two
distinct vertices 1, x2 of V(G) — D the intersections D N Ng(x1), D N Ng(x2) are
distinct. In [2] also the location-domination number of G is defined as the minimum
number of vertices of a locating-dominating set in G.
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Now we can define the location-domatic number of G analogously to the domatic
number. A partition of V(G), all of whose classes are locating-dominating set in
G, is called a location-domatic partition of G. The maximum number of classes of
a location-domatic partition of G is called the location-domatic number of G and is
denoted by djoc(G).

Note that djoc(G) is well-defined, because the whole set V(G) is a locating-
dominating set in G and therefore there exists at least one location-domatic partition
of G, namely {V(G)}.

Theorem 1. Let there exist three pairwise distinct vertices x1, x2, x3 of G such
that Ng(xl) = Ng(l‘g) = NG(J,‘g). Then

dioc(G) = 1.

Proof. Suppose that dioc(G) > 2. Then there exist two disjoint locating-
dominating sets D1, D2 in G. At least one of the sets V(G)— D1, V(G) — D4 contains
at least two of the vertices 1, z2, x3. Without loss of generality let V(G)— D1 contain
z1 and 3. As Ng(z1) = Ng(x2), we have also D1 N Ng(z1) = D1 N Ng(x2) and D,
is not locating-dominating, which is a contradiction. This yields the result. O

Theorem 2. Let there exists two distinct vertices x1, x2, of G such that Ng(z1) =
N¢g(z2). Then
leC(G) < 2.

Proof. Suppose that djoc(G) > 3. Then there exist three pairwise disjoint
locating-dominating sets D, D2, D3 in G. At least one of the sets V(G) — Dy,
V(G) — D2, V(G) — D3 contains both the vertices x1, x2. The rest of the proof is
analogous to the proof of Theorem 1. O

The symbol A will denote the symmetric difference of sets. Then for any two
vertices x, y of G the symbol (z,y) will be defined as the number of elements of
Ng(x)ANg(y) while £(G) will denote the minimum of e(z, y) over all pairs of distinct
vertices z, y of G.

Theorem 3. For every graph G the inequality
dioc(G) < e(G) + 2

holds.
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Proof. Let d= djo(G) and let {Dy,..., Dy} be a location-domatic partition
of G. Let x, y be vertices for which e(x,y) = £(G) holds. First suppose that z, y
are in distinct classes of the partition; without loss of generality let x € D1, y € Da.
Then for i = 3,...,d we have D; N Ng(z) # D; N Ng(y). This is possible only if
D; contains a vertex of Ng(z)ANg(y). As Ds, ..., Dy are pairwise disjoint, we have
d—2 < eg(z,y), which implies the assertion. If both x, y are in the same class of the
partition, we have even d — 1 < e(x, y). O

Theorem 4. Let a graph G contain two vertices x1, xo of degree 1 which are
both adjacent to a vertex y. Then

dioe(G) = 1.

Proof. Suppose dioc(G) > 2. As G contains vertices of degree 1, according to
[1] its domatic number is at most 2 and hence also dioc(G) < 2. Suppose dioo(G) = 2
and let {D1, D2} be a location-domatic partition of G. Without loss of generality
let y € D1. The vertices x1, x2 are adjacent to no vertex of Dy and hence x1 € Do,
22 € Da. Obviously D = V(G) — D; and D1 N Ng(x1) = D1 N Ng(x2) = {y}, which
is a contradiction. Hence djoc(G) = 1. O

Now we can determine the location-domatic numbers of some well-known types of
graphs.

Corollary 1. For the complete graph K, we have

Corollary 2. For the complete bipartite graph K,, ,, we have

dloc(Kl,l) = dloc(K2,2) = 27
dioc(Km,n) =1  in the other cases.

Corollary 3. For the circuit C,, we have

dloc(C?)) = 17
dioc(Cr) =2 forn > 4.
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Proof. Let the verticesof C, be us,...,u, and the edges u;u;41 fori =1,...,n,
the subscript 7 + 1 being taken modulo n. The circuit C5 is the complete graph
K3 and thus dioc(C3) = 1 by Corollary 1. For C, we have a location-domatic
partition {{ul,ug}, {ug,u4}} and thus djoc(Cy) > 2. For n > 5 we have a location-
domatic partition {D, Dy}, where Dy (or Ds) is the set of all u; with ¢ odd (or
even, respectively); hence also djo.(Cy) = 2. If n is not divisible by 3 then djo.(Cy) <
d(Cy,) = 2 and thus dioc(Cy,) = 2. If n is divisible by 3, then d(C,,) = 3 and the unique
domatic partition with three classes is { D1, D2, D3}, where D; for i € {1,2,3} is the
set of all u; with j = ¢ (mod 3). Each vertex is adjacent to no vertex of its own
class and to one vertex from each of the other classes. Thus u; € D1 C V(Cy,) — Da,
ug € Do, uz € D3 C V(C,) — Dy and D2 N N¢, (u1) = Do N Ne, (u2) = {uz}, which
implies that {D;, Dy, D3} is not location-domatic partition. Therefore djo.(Cy,) = 2
in this case, too. O

By P, we denote the path of length n, i.e. with n edges and n + 1 vertices.
Corollary 4. For the path P,, we have

dloc(PQ) = 1a
dioc(Py) = 2 for n # 2.

Theorem 5. Let p, g be integers, ¢ > 2, 1 < p < q. Then there exists a graph G
with djoc(G) = p, d(G) = q.

Proof. Westart with the case p = ¢g. Let r be an integer, r > 4q. Let D1, ..., D,
be pairwise disjoint sets of vertices, let |D1| =7+ 1, |D;| = r for i = 2,...,q. Let
the vertices of Dy be wu, v(1,1),...,v(1,r), let the vertices of D; for 2 < i < ¢
be v(i,1),...,v(%,r). Consider an auxiliary graph H; it is the complete graph whose
vertex set is { D1, ..., Dy}. If ¢ is even, then H may be decomposed into ¢—1 pairwise
edge-disjoint linear factors Fy, ..., Fy_;. If ¢ is odd, then H may be decomposed into
g pairwise edge-disjoint graphs F1, ..., Fy, each of which is a linear factor of a graph
obtained from H by deleting one vertex. In any of these cases consider two sets
D;, Dj;. Let h be the number such that the edge joining D; and D; in H belongs
to Fy. Each vertex v(i, k) for k = 1,...,q will be joined by edges with the vertices
v(j,k—h),...,v(j, k+ h), the numbers in brackets being taken modulo g. Moreover,
the vertex w € D; will be joined by edges with all vertices v(¢,1) for i = 2,...,q.
The resulting graph will be G,. From the construction it is clear that {D1,..., D4}
is a location-domatic partition of G, and thus dioc(G4) > ¢. On the other hand, the
vertex u has degree g— 1. Hence the minimum degree 6(G,) < ¢—1 and by [1] we have
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dioc(Gq) < d(Gy) < 6(Gy) + 1 < g, which implies dioc(G4) = d(G4) = p = q. Now let
3 < p < g — 1. Take the graph G, constructed above, add a new vertex w to it and
join it by edges with all vertices v(i,1) for 2 < i < g and with all vertices v(i,2) for
2 < ¢ < p—1. The resulting graph will be denoted by G,. We have e(u, w) = p—2 and
~ q ~
dioc(Gp) < p by Theorem 3. If we denote D = {w}U |J D;, then {D1,...,Dp_1,D}
i=p

(2

is a location-domatic partition of G, and thus dioc(Gp) = p. Now let p = 2. We
take again the graph G,. To it we add a new vertex w and join it by edges with the
same vertices with which u was joined. The resulting graph will be Go. We have

~ q ~
g(u,w) = 0 and thus djoc(G2) < 2. If we denote D = {w} U |J D;, then {D;, D} is
i=2

a location-domatic partition of Gy and djoc(G2) = 2. Finalfy let p = 1. To G4 we
add two new vertices wi, we and join them with the same vertices with which u was
joined. The resulting graph will be G1. We have Ng, (w1) = Ng, (w2) = Ng, (u) and
by Theorem 1 then djoc(G) = 1. Evidently d(G,) = ¢ foreachp=1,...,¢q—1. O

Theorem 6. Let G be a graph with n vertices, let y = ®(x) be the inverse
function to the function y = 2* + x. Then
n

dloc(G) < m

Proof. The function y = 2% 4+ x is a monotone increasing function mapping the
set R of real numbers bijectively onto itself. Therefore the inverse function y = ®(x)
to this function exists, it is again a monotone increasing function which maps R onto
itself.

Now consider the graph G. For the sake of simplicity we denote djoc.(G) = d.
Consider a location-domatic partition D with d classes. As G has n vertices, there
exists at least one class D € D such that |D| < n/d. The sets D N Ng(z) for
x € V(G)— D are pairwise distinct non-empty subsets of D; their number is less than
or equal to 27/¢—1 and, as D is a locating-dominating set, so is the number of vertices
of V(G) — D. Hence n < n/d+ 2% — 1, which is n — 1 < 2"/ 4+ n/d = &~ (n/d).
As y = ®(z) is a monotone increasing function, we have ®(n + 1) < n/d and this
yields d < n/®(n +1). O
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