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EXACT 2-STEP DOMINATION IN GRAPHS
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Summary. For a vertex v in a graph G, the set Na(v) consists of those vertices of G
whose distance from v is 2. If a graph GG contains a set S of vertices such that the sets
N3(v), v € S, form a partition of V(G), then G is called a 2-step domination graph. We
describe 2-step domination graphs possessing some prescribed property. In addition, all
2-step domination paths and cycles are determined.
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1. INTRODUCTION

Two vertices v and v in a graph G for which the distance d(u,v) = 2 are said to
2-step dominate each other. The set of vertices of G that are 2-step dominated by v
is denoted by Ny (v); that is,

Ny(v) = {u € V(G) | d(v,u) = 2}.

A set S of vertices of G is called a 2-step domination set if |J Na(v) = V(G). A 2-
veS
step domination set S such that the sets Na(v), v € S, are pairwise disjoint is called

an ezact 2-step domination set. If a graph G has an exact 2-step domination set,
then G is called an exact 2-step domination graph or, for brevity, a 2-step domination
graph. Each of the graphs G, G5, and G3 of Figure 1 is a 2-step domination graph
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with an exact 2-step domination set S; = {uy, us,ug,uq}, So = {v1,v2,v3,v4}, and
S3 = {w,wy, w3, wy}, respectively. We adopt the convention of drawing a vertex
with a solid circle if the vertex belongs to the exact 2-step domination set under
discussion. In general we follow the graph theoretic notation and terminology of the
books [1], [2].
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Figure 1. Three 2-step domination graphs.

2. CONSTRUCTION 2-STEP DOMINATION GRAPHS

Our primary problem is to determine which graphs are 2-step domination graphs.
If G is a graph of order p containing a vertex v of degree p — 1, then no vertex of G
2-step dominates v. This observation yields the next result. We denote the radius
and diameter of a graph G by rad G and diam G, and the maximum degree of G by
A(G).

Lemma 1. If G is a 2-step domination graph, then rad G > 2.

According to Lemma 1 then, A(G) < p — 2 for every 2-step domination graph G
of order p. No further reduction in the bound for A(G) is possible. For example,
if p = 2n, the graph nK, is a (p — 2)-regular 2-step domination graph in which the
only exact 2-step domination set consists of the entire vertex set. The path P, (the
graph G3 of Figure 1) also has the property that it is a 2-step domination graph
whose unique exact 2-step domination set is the vertex set of the graphs. In fact,
these are the only connected graphs with this property.

Theorem 2. A connected graph G is a 2-step domination graph with exact 2-step
domination set V(QG) if and only if G ~ P, or G ~ nK, for some n > 2.

Proof. First, the graphs nK,, n > 2, and P, have the desired property. Con-
versely, suppose that G is a connected 2-step domination graph with exact 2-step
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domination set V(G). Necessarily, every vertex v of G has a unique vertex at dis-
tance 2 from v. Hence, diam G > 2. If diam G > 4, then G contains an induced
subgraph isomorphic to Ps, the central vertex of which is at distance 2 from two
vertices; so this is impossible. There remain two cases.

Case 1. diam G = 2. Then, for every vertex v of G there is a unique vertex distinct
from v and not adjacent to v. Hence p is even, say p = 2n > 4, and G ~ nKs.

Case 2. diam G = 3. In this case, G contains an induced path Pj: vy, vs,v3,v4
and hence d(v1,v4) = 3. Thus each of v; and v3 is the unique vertex at distance 2
from the other, as is the case for v, and v4. We claim that v is an end-vertex of G.
If this is not the case, then G contains a vertex x distinct from v, adjacent to v;.
If zvy ¢ E(G), then d(vy, ) = 2, which is impossible; so zvs € E(G). Necessarily,
zvs € E(G) as well; for otherwise, d(vs,z) = 2. However, then, zvy € E(G); for
otherwise, d(vg, ) = 2. The existence of the path vy, x, v4, then contradicts the fact
that d(vy,v4) = 3. Thus, as claimed, v; is an end-vertex of G. Similarly, vs4 is an
end-vertex of G.

We now claim that each of vy and vg has degree 2. If this is not the case, then v,
say, is adjacent to a vertex x different from v; and wvs; but then d(vy,x) = 2, which
is impossible. Consequently, G ~ Py. g

The fact that the graphs nK, n > 2, are (2n — 2)-regular 2-step domination
graphs shows that r-regular 2-step domination graphs exist for every even integer
r > 2. We next show that such is the case for odd values of r as well.

Let S consist of 2n vertices of the graph nCy, n > 2, two adjacent vertices from
each component. Then S is an exact 2-step domination set in the complement nCj.
Since nCy is (4n — 3)-regular, r-regular 2 step domination graphs exist for r = 1
(mod 4). It remains to show the existence of r-regular 2-step domination graphs,
where 7 = 3 (mod 4).

For n > 0, define the vertex set of the graph G, (as shown in Figure 2) by

V(G,) = {u,v'} U{v,v'} U{w,w'}UuV UV,
where V' = {v1,v2,...,0nq2} and V' = {v],v5,...,v}, »} and the edge set of G,
by
EG) = {ud,vw,v"w'} U{uz,wz |z €e V} U {v'z,w'z |z € V'}.
Next let F ~ F' ~ K; U (2n 4+ 1)Ky, where V(F) = VU{v} and V(F") = V'U{v'},

such that degrv = degp v' = 4n + 2. Now define the graph G, by V(G,) = V(G.)
and

E(G,) = E(G,) U E(F) U E(F").
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Figure 2. The graph G!,.

The graph G, is a (4n + 3)-regular 2-step domination graph with exact 2-step dom-
ination set {u,u',w,w’'}. We now summarize these observations.

Theorem 3. For every integer r > 2, there exists an r-regular 2-step domination

graph.

The composition G[H| of graphs G and H is constructed by replacing each vertex of
G by a copy of H and each edge v;v; of G by the join H;+H; (H; ~ H; ~ H) of these
respective copies of H. This operation has been often extended to the generalized
composition G[Hy, H», ..., H,| of the labeled graph G with V(G) = {v1,v2,...,v,}
determined by any p graphs H;. Again, each vertex v; of G is replaced by H; and
each edge v;v; by the join H; + H;. This is illustrated in Figure 3.

With the aid of the generalized composition, we can construct new 2-step domi-
nation graphs from given 2-step domination graphs.

Theorem 4. Let G be a 2-step domination graph with V(G) = {v1,ve,...,vp}.
For positive integers ny,ns,...,n,, the generalized composition G[K,,,Kp,,...,
K., ] is a 2-step domination graph.

Proof. Since G is a 2-step domination graph, there exists an exact 2-step domi-
antion set S, say, without loss of generality, S = {vi,va,...,v5}. Fori =1,2,... k,
let H; be a graph such that H; ~ K, and let v} be a vertex of H;. Then §' =
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Figure 3. Construction of G[Hy, Hy, H3, Hy].

{vi,v5,...,v,} is an exact 2-step domination set of the graph G[Hi, Ho, ..., Hp].
O

Since the path Py is a 2-step domination graph (in which every vertex belongs to
a 2-step domination set), by varying the orders of four complete graphs, we have the
following.

Corollary 5. For every integer n > 4, there exists a 2-step domination graph of
order n.

Furthermore, the proof of Theorem 4 shows that the graph Py[K,, K,, K,, K,]
illustrates the fact that for every positive integer n, there exists a 2-step domination
graph whose vertex set can be partitioned into n subsets, each of which is an exact
2-step domination set.

We now describe some additional examples of 2-step domination graphs. First
we present some other terms, whose definitions are expected. A set S of vertices
of a graph G is an exact 1-step domination set if the union |JN(v) of the open
neighborhoods of the vertices v of S is V(G) and the sets N(v), v € S, are pairwise
disjoint. A graph then is a 1-step domination graph if it contains an exact 1-step
domination set. The graphs shown in Figure 4 are 1-step domination graphs. So the
complete bipartite graphs K,, ,, for any pair m, n of positive integers, are 1-step
domination graphs.

Our special interest is in disconnected 1-step domination graphs.

Theorem 6. A disconnected graph G is a 1-step domination graph if and only if
its complement G is a 2-step domination graph.
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Figure 4. Four 1-step domination graphs.

Proof. Let G be a disconnected graph. Suppose first that G is a 1-step dom-
ination graph. Then diam G = 2 and the vertices adjacent to a vertex v of G are
precisely the vertices at distance 2 from v in G. Thus if S is an exact 1-step domi-
nation set of G, then S is an exact 2-step domination set of G. Conversely, if G is a
2-step domination graph, then G is a 1-step domination graph. g

If G is a disconnected graph whose four components G;, 1 < i < 4, are given in
Figure 4, then by Theorem 6, G is a 2-step domination graph. We already observed
in Theorem 2 that nKs, n > 2, is a 2-step domination graph. We have now seen
several examples of 2-step domination graphs. If S is an exact 2-step domination set
of a 2-step domination graph G, then, of course, S C V(G), but there need not be
any relationship between the numbers |S| and |V (G)].

Theorem 7. For any rational number a/b, with 0 < a/b < 1, there exists a 2-step
domination graph G with an exact 2-step domination set S such that |S|/|V(G)| =
a/b.

Proof. Since we have already characterized those 2-step domination graphs G
with |S|/|[V(G)| = 1, we assume that 0 < a/b < 1. We have already noted that the
graph H ~ 2aK, is a 2-step domination graph. Let G be the generalized composition
obtained by replacing some vertex of H by the graph Ky, 4,41 (and replacing all
other vertices by Ki). By Theorem 4, G is a 2-step domination graph with |S| = 4a
and |[V(G)| = 4b. Consequently, |S|/|V(G)| = a/b. O
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3. 2-STEP DOMINATION PATHS AND CYCLES

We now determine all those paths and cycles that are 2-step domination graphs.
We begin by showing that if m = 1, 2, or 3 (mod 8), then P,, is not a 2-step
domination graph.

Theorem 8. For every nonnegative integer n, none of the paths Pg,y1, Pspio,
and P, 13 are 2-step domination graphs.

Proof. Suppose that the result is false. Since none of P;, P, and Ps are 2-step
domination graphs, there is a smallest positive integer m (of the form 8n+1, 8n+ 2,
or 8n + 3) such that P,, is a 2-step domination graph. Suppose that P,, is the path
V1, Vg, ..., Uym. Let S be an exact 2-step domination set of P,,. We consider three
cases.

Case 1. Suppose that m = 8n + 1. We now consider two subcases.

Subcase 1.1. Assume that four consecutive vertices among vy, ve, v3, V4, Us, Ug
belongs to S. If vy, vy, vs, vy € S, then the vertices vy, v, ..., vg of Pg,i1 are
2-step dominated by the vertices v1, va, vs, vs. Consequently, Ps,—5 = Pg(_1)43 is
a 2-step domination graph, contrary to assumption.

Suppose next that vs, vs, vq, v5 € S. Then the vertices vy, vs, ..., v7 of Ps, 11 are
2-step dominated by the vertices vz, vs, v4, vs. This implies that Ps,,—¢ = Pg(n—1)42
is a 2-step domination graph, which is impossible. Similarly, we cannot have vs, vy,
vs, vg € S.

Subcase 1.2. Assume that v; € S. Since v; and vy must be 2-step dominated by
elements of S, it follows that vz, v4 € S. We can assume that ve ¢ S; otherwise, the
situation is covered by Subcase 1.1. Since v, is 2-step dominated by some vertex,
vg € S. Because vs ¢ S and v; is 2-step dominated by some vertex, vg € S. If
n = 1, we have a contradiction; if n > 2, we are repeating this Subcase with the
path Pg(,,_1)41- Continuing in this manner, we see that vs,+1 € S but that vg,i1 is
2-step dominated by no vertex, producing a contradiction.

If neither v; € S nor four consecutive vertices among vy, vs, v3, V4, Vs, Ug belong
to S, then we must still have v3, v4 € S in order to have v; and vy 2-step dominated.
Now since vz must be 2-step dominated, vs € S. In order for vy, to be 2-step
dominated, either v, € S or vg € S, producing four consecutive vertices among vy,
Vg, V3, V4, Vs, Ug in S. That is, Subcases 1.1 and 1.2 are exhaustive.

The proofs of the cases where m = 8n + 2 and m = 8n + 3 are similar and are,
therefore, omitted. O
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We next complete the problem for paths by showing that all other paths are 2-step
domination graphs.

Theorem 9. For every positive integer n, Ps, is a 2-step domination graph,
and for every nonnegative integer n, Pgni4, Psnys, Psnte, and Pg,,7 are 2-step
domination graphs.

Proof. Consider the path P,,: v, va, ..., U, where m is of the form described
in the statement of the theorem. For m < 8, Figure 5 shows that each path P,
is a 2-step domination graph. For j = 4, 5, 6, 7, denote by S; the exact 2-step
domination set of the path P;.

Pi: o—e—eo— Ps: o—eo—@o—@o—

Ps: o—eo—0o —0o— Pr: o . . .

Figure 5.

We now make some observations that will be useful to us later. For the path Pg,,
n > 1, an exact 2-step domination set S; = {v; | i = 3,4,5,6 (mod 8)} is described
in Figure 6. The set So = {v; | i = 1,2,3,4 (mod 8)} is also shown in Figure 6. It
is not an exact 2-step domination set, but in this case, every vertex of Py, is 2-step
dominated except vg,_1 and vg,,.

Si: —————e oo o L e e o o

SR 27 Vgn

Sy: e—e o o — e o o o

2 vy 2 Vgn
Figure 6.

The set S; shows that Ps,, n > 1, is a 2-step domination graph. Now label
the vertices of the paths P; (j = 4,5,6,7) in Figure 5 from left to right as vg,41,
U8n42, - - -, Ugntj. The paths Pg,i; can be formed by taking the union of P, (see
Figure 6) and P; and joining vs, and vg,+1. The set S, U S; is an exact 2-step
domiantion set for P, ; for j =4,5,6; while S; US7 is an exact 2-step domination
set for Pg, 7. O

Corollary 10. The path P,, is a 2-step domiantion graph if an only if m =
0,4,5,6, or 7 (mod 8),

In order to characterize the 2-step domination cycles, we begin with a preliminary
result.

Lemma 11. Ifacycle Cy: vy, Vs, ..., Un, v1 (n > 4) is a 2-step domination graph
with exact 2-step domination set S, then there is an integer i (1 < ¢ < n) such that
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either (1) v;, Vi1, Vit2, Vits € S or (2) vy, Vits, virz € S and viyy ¢ S (where all
addition is performed modulo n).

Proof. If n =4, then S = {v1,vs,v3,v4} is the only exact 2-step domination
set, and the result follows. Thus we may assume that n > 5. Suppose that there are
no vertices vy, Viy1, Vit2, Vi+s for which (1) or (2) holds.

Every vertex v; € S (1 < j < n) is 2-step dominated by either v;_5 or v;;5. Hence,
without loss of generality, we may assume that vy, v3 € S. By our assumption, there
are now two possibilities for vy and vy.

Case 1. vy, v4 ¢ S. Hence v, € S and so v,,_5 € S. (See Figure 7a.) If v,_1 € S,
then (1) is satisfied; while if v,,—1 ¢ S, (2) is satisfied, producing a contradiction.

Case 2. vy € S and vy ¢ S. (See Figure 7b.) Since vy is not 2-step dominated by
vy, it follows that v, € S. Thus, v,, v1, vs, v3 € S, producing a contradiction. |

Un—2 Vn—2

Vn—1 Vn—1

Un Vg Un Vy

V3 9]

(a)
Figure 7.

We can now describe all 2-step domination cycles.

Theorem 12. A cycle C,, is a 2-step domination graph if and only if n = 4 or
n =0 (mod 8).

Proof. We have already seen that C4 is a 2-step domination graph. It is
straightforward to see that for other values of m < 8, the cycle C,, is not a 2-step
domination graph. Now let Cg,: v1,vs,...,08,,v1 (n = 1) be a cycle. The set
S={v;]i=1,2,3,4 (mod 8)} is an exact 2-step domination set.

For the converse, assume that C,,: vy, vs,...,vy,v; is a 2-step domination graph
with m > 8 and with exact 2-step domiantion set S. By Lemma 11, we can assume,
without loss of generality, that either (1) vy, vy,v3,v4 € S or (2) vy,v3,v4 € S and
vy ¢ S. If (1) occurs, then vs, ve,v7,v8 ¢ S. If m > 8, then the vertices of P, must
repeat in this manner in groups of 8, that is, v; € S'if i = 1, 2, 3, 4 (mod 8) and
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v; ¢ S otherwise. Thus m =0 (mod 8). If (2) occurs, then vs,v7,vs ¢ S and vg € S.
If m > 8, then the vertices of P,, must repeat in this manner as well. In any case,
m =0 (mod 8). O
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