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Summary. Let o = (A, F, R) be an algebraic structure of type 7 and X a set of open
formulas of the first order language L(7). The set Cs(2/) of all subsets of A closed under ¥
forms the so called lattice of ¥-closed subsets of .&/. We prove various sufficient conditions
under which the lattice Cx; (/) is modular or distributive.
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Modularity and distributivity of subalgebra lattices was investigated by T. Evans
and B. Ganter in [4] and by the first author in [1]. However, we can study much
more general lattices of closed subsets of an algebra or a relational structure. For
convex sublattices of a given lattice this was done by V.I. Marmazajev [6], for convex
subsets of monounary algebras or ordered sets see [5] or [3], respectively. A general
approach for these considerations was developed by the authors in [2]. By using it,
we can state sufficient (and in some cases also necessary) conditions under which
a lattice of all ¥-closed subsets of a given algebraic structure is modular or even
distributive.

First we recall some concepts. By a type we mean a pair of sequences 7 =
({n;;1 € I}, {m;;j € J}) where n;, m; are non-negative integers. An algebraic struc-
ture or briefly a structure of type 7 is a triplet & = (A, F, R), where A # 0 is a
set and F' = {f;;i € I}, R = {pj;j € J} such that for each i € I, f; is an n;-ary
operation on A and for each j € J, p; is an mj-ary relation on A. Denote by L(7)
the first order language containing operational and relational symbols of type 7. If
R =0, the structure (A, F,0) is denoted briefly by (A4, F') and is called an algebra. If
F = () then (A, (, R) is denoted by (A, R) and called a relational system; this system
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(A, R) is called binary if each p; € R is binary. A binary relational system (A, R) is
said to be antisymmetrical if each p; € R is an antisymmetrical relation. A binary
relational system (A, R) is called an ordered (or quasiordered) set if R = {1} where
01 is an order on A (or a reflexive and transitive relation, the so called quasiorder,
respectively).

Let T be an index set and for each v € T' let G (w1,..., %%, Y1,---,Ys,» 2 fi)
be an open formula of a language L(7) containing individual variables x1,...,zs_,
Y1, Ys,, 2 and a symbol f; of n;-ary term operation. Analogously, let A be an
index set and for each A € Alet Ga(z1,...,Tky,Y1,- -, Ysy, 2, 0j) be an open formula
of the language L(7) containing individual variables xi,...,Zx,, ¥1,--.,Us,, 2z and a
symbol p; of mj-ary relation of type 7. Put £ = {G,;v € T} U{Gx; X € A}

Definition 1. A subset B of an algebraic structure & = (A, F, R) is called X-
closed if for every v € T', A € A and ay,...,ax,, aj,...,a;, € B and by,...,b

» VS~

by,...,b.,, ¢, ¢ € A, we have ¢ € B or ¢ € B provided G, (a1,...,a,,bi,...,

b, ¢, fi) or Ga(al,...,ay, ,by,..., b5, ,c, 0;) are satisfied in /. Denote by Cs (/)
the set of all ¥-closed subsets of <.

As was proved in [2], the set Cx(27) of all X-closed subsets of a structure o/ =
(A, F, R) is a complete lattice with respect to set inclusion with the greatest element
A. In what follows we will study modularity and distributivity of Cs(</) depending
on the properties of /. For any given structure &/ we will suppose that the set of
formulas ¥ is determined. For a given subset M C A we denote by Co (M) the least
Y-closed subset of &/ containing M; we say that Co (M) is generated by M. If M
is a finite subset, say M = {a1,...,ar}, we will write C/(aq,...,ax) for Co (M).

If the set X is implicitly known, we will use on the lattice Cx (&) to specify the
closure system. In some more familiar examples of Cyx (/) we will use the common
name and notation:

(1) If o = (A, F) is an algebra, F = {f;: 4 € I} and ¥ = {G;: i € I} where
Gi(z1,...,Zn;, 2, fi) is the formula (fi(a:i, ceeyTp,) = z), then Y-closed subsets of &/
are subalgebras of &/ and (), and Cx (&) = Sub &

(2) If & = (L,{V, A}) is alattice, ¥ = {G1, G2} where G is the formula (x1 Vs =
z) and Gy is the formula (21 Ay, 2), then the 2-closed subsets of £ are lattice ideals,
ie. Cx(¥)=1d 2.

(3) It # = (A, R) is a binary relational system with R = {p;;j € J} and ¥ = {G};:
j € J} where for each j € J we have

Gj is the formula (z10;z and zp;x2),

then the X-closed subsets of Z are the so called conver subsets and Cx () will be
denoted by Conv Z.
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In particular, if .7 = (S, <) is an ordered set then ¥ = {G} where G is the formula
(1 € z < z2). Thus Y-closed subsets of . are exactly the convex subsets of . in
the usual sense.

(4) 9 = (G,., !,e) is a group and ¥ = {Gy, Gy, G3, Gy}, where Gy (z1,12,2,.)
is the formula (z; - o = 2), Go(21,2,” ") is the formula (z;* = 2), G3(z,e) is the
formula (e = z) and Ga(z1,y1, 2,p) is the formula (p(z1,y1) = z) where p(z1,y1) is
the term operation y;z1y; ! then Cx, (%) is the lattice of all normal subgroups of 4.
It will be denoted simply by N(¥).

In what follows we denote join in Cx(27) by V, meet evidently coincides with set
intersection.

Theorem 1. Let .o/ = (A, F, R) be an algebraic structure with the system Cx (<)
of ¥-closed subsets satisfying

(i) for each X, Y € Cs (&), 0 # X #Y # () we have a € X VY if and only if
there exist x € X, y € Y with a € Cy/(z,y);

(ii) for each z, y € A, if a € Cy(z,y) and Cy(a) # Cy(x) then y € Cy(x,a).
Then the lattice (CE(JZJ/), - ) is modular.

Proof. Suppose X,Y, Z € Cx(&) and X C Z. If either X =0 or Y = (
the proof is trivial. Also for X = Y we easily obtain the modularity law. Hence,
consider ) # X #Y # (). Supposea € (XVY)NZ. Thenae€ Z anda€ X VY.
By (i), there exist x € X, y € Y such that a € Co (z,y).

If Coy(a) =Cy(z) then a € Cy(a) =Cy(z) CX V(Y NZ).
If Cor(a) # Coy(x), then we have y € Cor(z,a) by (ii).

However, z € X C Z, a € Z thus also y € Cy/(x,a) C Z. Hence y € Y N Z and
a € Cy(z,y) CX V(Y NZ), which proves modularity of Cyx(<). O

Lemma 1. Let & = (A,{o}) be a binary relational system with only one transi-
tive binary relation and Cx (/) = Conv /. Then Cyx (%) satisfies (i) of Theorem 1.

Proof. The condition (i) of Theorem 1 is equivalent to the following one:
Cy(X) = U{C’d(xl,xg);xl,xg € X} foreach X C A.

For X, Y C Aput C°(X,Y) = XUY, C(X,Y) = CY(X,Y) = {a € A;upagv
for some u,v € X UY} and C"*H(X,Y) = C(C™(X,Y)), where n € Ny (non-
negative integer). Evidently, Co (X,Y) = |J (C™(X,Y);n € Np). Now, we can
prove the following statement by induction on n: “If a € C™(X,Y), then there exist
u, v € X UY such that ugapv.”
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1) For n =1 it is a trivial.

2) Suppose that it is valid for all k¥ < n and we prove it for n + 1. Let a €
C"H(X,Y), i.e. agagB for some a, B € C*(X,Y). Clearly, we have the following
possibilities:

a) a € [z1,y1], B € [z1,92];

b) a € [z1,y1], B € [y2, 22];

c) a € [y1, 1], B € [za,y2];

d) a € [y1,21], B € [y2,®2], etc., where x1, 5 € X and 41, y2 € Y.

ad a) If a € [z1,11], B € [a:l,yz]7 then 1 paapfBoy= and a € [z1,y2] by transitivity,
i.e. the statement is valid.

ad b) a € [z1,11], B € [y2, x2] imply z1 paapBoxs, ie. a € [r1,22] and a € X.

Similarly we can easily check the other possibilities. |

Example 1. Let & = ({a,b,c},{0}) be a binary relational system with the
following diagram of p:

and Cx (/) = Conv./. We can easily check (i) and (ii) of Theorem 1, thus Cx (%)
is modular. We can vizualize the diagram of Cx (/) in Fig. 2 below:

{a,b,c}

{a} {6} {c}

We can see that it is isomorphic to Mj, hence Cx (/) is not distributive.

Example 2. Let & = ({a,b,c},<) be an ordered set which is a chain: a <
b < ¢, and let Cx(«/) = Conv.«/. Then it does not satisfy (ii) of Theorem 1 since
be Cyla,c), Cor(b) # Co(a) but ¢ ¢ Co/(a,b) = {a,b}. The diagram of Cx(<7) is
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shown in Fig. 3:
{a,b,c}

{a,b} {b,c}
{a} {c}

0

We can see that Cy; (&) is not modular. We are going to show that for some algebraic
structures the condition (ii) is really equivalent to modularity of Cx ().

Recall from [2] that an algebraic system &/ = (A, F, R) is 3-separable if we have
Cu(z) = {x} for any z € A.

Theorem 2. Let o/ = (A, F,R) be a X-separable algebraic structure satisfying
(i) of Theorem 1. The following conditions are equivalent:

(a) the lattice Cx (&) is modular;

(b) for each z, y € A, if a € Cor(x,y) for a # x theny € Cy(x,a).

Proof. Since &/ is ¥-separable and &/ satisfies (i), we obtain (b) = (a) directly
by Theorem 1. Prove (a) = (b). Let Cx(«/) be modular and a, z, y € A, a # .
Since {z,y} C Cw(x) V Ce (y), we have
(%) Co(2,y) C Cor(x) V Cor (y).

Suppose a € Cy/(z,y). Then a € Co(x,y) N Cor(a,z) and, by (x), also
a€ (Co(z)V Cy(y) NCwla,x).
Clearly Co(z) C Co/(a,z) and, by modularity of Cx(<7), we conclude

acCy(x)V (Cu(y)NCuxla,x)).

However, &/ is S-separable, thus also a € {z} V ({y} N Cw(a,z)). Since a # x, this
yields {y} N Cw(a,z) # 0, thus y € Cy(a,x) which proves (b). O
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Definition 2. Let o be a binary relation on A. We say that o is weakly transitive
if for each pairwise different elements a, b, ¢ € A, (a,b) € p and (b,c) € o imply

(c,a) ¢ o.

Corollary 1. Let o/ = (A,{o}) be an antisymmetrical binary relational system
with one weakly transitive relation ¢ and Cx(%/) = Conv «/. The following condi-
tions are equivalent:

(1) Conv « is modular;

(2) Conv & is distributive;

(3) for any pairwise different elements a, b, ¢ € A we have {(a,b) ¢ o or (b,c) ¢ o.

Proof. (3) = (2): If & satisfies (3) then every subset of A is a convex subset,
thus Conv ./ = Exp A, i.e. Conv .7 is distributive. (2) = (1) is trivial.

(1) = (3). Let Conv & be modular and let a, z, y be pairwise different elements
of A. Suppose zga and apy. Then a € Cy(x,y), a ¢ = and y ¢ Cy(x,a) with
respect to antisymmetry and weak transitivity of ¢. Hence (b) of Theorem 2 is not
valid. Moreover, <7 is Y-separable by Theorem 3 in [2] and, by Lemma 1, Cx (<)
satisfies (i) of Theorem 1, thus we have a contradiction. Hence also (3) is satisfied.

g

Corollary 2. Let . = (S,<) be an ordered set and Cx () = Conv.”. The
following conditions are equivalent:

(1) Conv . is modular;

(2) Conv . is distributive;

(3) . does not contain a chain of length greater than two.

Proof. Clearly, any order is weakly transitive, and it is almost trivial to show
that (3) of Corollary 1 is equivalent to (3) of Corollary 2 for ¢ =<. O

For any group ¥, the lattice N(¥) of all its normal subgroups is modular and it
clearly satisfies (i) of Theorem 1 since % V % = % - % for each %, % € N(9).
However, it does not satisfy (ii) of Theorem 1: e.g. for the group (Z, +) of all integers
we have 4 € Cy(2,3) = Z, Cy(4) # Cy(2) but 3 ¢ Cg(2,4). This motivates our
effort to give another sufficient condition for modularity of Cx (). (Remark that a
group ¥ is not X-separable with respect to Cx(¥) = N(¥).)

Definition 3. Let & = (A, F,R) be an algebraic structure of type 7. By a
binary formula we mean any formula G(z1, 22, 2, f) or G(z1,x2, 2, 0) of the language
L(7) provided f is a binary term operation of & or g is a binary relation of R.

Theorem 3. Let o = (A, F,R) be an algebraic structure and let ¥ contain a
binary formula G(z1, 2, 2, f) or G(x1, x2, 2, 0) such that the following conditions are
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satisfied:

(i) if X, Y € Ce(), 0 # X #Y # 0, then a € X VY if and only if there exist
be X, ceY such that G(b,c,a, f) or G(b,c,a, o) is satisfied in <7/ ;

(ii) for each a, b, c € A, a # b, if the formula G(b, ¢, a, ) or G(b, ¢, a, o) is satisfied
in & and Cg(a) # Ce/(b) then ¢ € Cy(a,b). Then the lattice (Cx(e/),C ) is
modular.

Proof. Let X,Y, Z € Cx(&) and X C Z. To check modularity of Cx () it
is enough to consider ) # X #Y # (0. Suppose a € (X VY) N Z. By (i) there exist
b € X, ¢ € Y such that some binary formula G(b, ¢, a, f) or G(b, c,a, o) is satisfied in
. If Cxg(a) = Cor(b) then

ae€Cy()CXCXV(YN2Z).

If Co/(a) # Cor(b) then, by (ii), ¢ € Cg(a,b). However, a € Z and b € X C Z, thus
also ¢ € Cy7(a,b) C Z. Hence, we conclude by (i)

ac XV (Yn2Z),

proving modularity of Cs (/). O

Example 3. If4 = (A4,.,7!,e)is agroup and Cx(¥) = N(¥), take a binary
formula (z; - 2 = z). Evidently, for @4, o € N(9), a € & V o = o/ - o if and
only if there exist a; € A;, as € As with a = a1 -az and, if a =b-c (i.e. G(b,¢c,q,.) is
satisfied in &) then ¢ = b~! - a, thus ¢ € C/(a,b). Hence, both (i), (ii) of Theorem 3
are satisfied.

Example 4. It is an easy exercise to verify that the quasiordered set of
Example 1 also satisfies the assumptions of Theorem 3 for the binary formula
G(z1,72,2,0) = (z107 and zox>).

Now, we turn our attention to distributivity of Cx (7).

Theorem 4. Let &/ = (A, F, R) be an algebraic structure with the lattice Cx, (<)
of Yi-closed subsets. If there exists a binary term operation p(x,y) of o/ such that

(i) for B, C € Cx(4/) we have a € BV C if and only if a = p(b, ¢) for some b € B,
ceC;

(ii) if D € Cx (&) and p(b,c) € D for some b, ¢ € A, then b, ¢ € D, then the
lattice (Cx(«/),C ) is distributive.

Proof. Suppose B, C, D € Cx(«/) and a € DN (BVC). Then a € D and, by
(i), there exist b € B, ¢ € C with a = p(b,c). Hence also p(b,c) € D and, by (ii),
we have b€ D, c € D. Thusbe DN B, ce€ DNC and by (i) again, we conclude
a=p(b,c)e(DNB)V(DNC). |
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Example 5. If . is a distributive lattice and Cx(¥) = Id.Z, we can put
p(z,y) = z Vy. It is well-known that for I, I € Id.Z, y € I, V I, if and only if
y =11 V iy for some i1 € I, is € I,. Moreover, if J € Id.Z and j; V jo € J for ji,
Jjo € Z then j1 < j1 V jo, jo < 1V jo imply also ji, jo € J.

Thus both assumptions of Theorem 4 are satisfied.

Now, let &/ = (A, F, R) be an algebraic structure and let B € Cx(</) for some
given set 3 of open formulas. If there exists an element b € A such that B = C(b),
we say that b is a generator of B.

In the remaining part of the paper, denote by Z the set of all integers and suppose
F # @ for any algebraic structure &/ = (A, F, R) under consideration.

Definition 4. An algebraic structure o/ = (A, F, R) is called X-cyclic if there
exist an element d € A, a subset K C Z and binary integral operations ¢, :
K x K — K and unary terms wy(x) for k € K of & such that

(a) for each B € Cx (/) there exists k € K such that wy(d) is a generator of B;

(b) if wy,(d) or wy(d) are generators of B or D, respectively, for B, D € Cx(</),
then wy(m,n) (d) Or Wy (m,n)(d) are generators of BV D or BN D, respectively;

(c) w(k, cp(m,n)) = @(w(k,m),l/)(k,n)) for every k, m, n € K.

The terms wy(z) are called characteristic terms of Cx ().

Theorem 5. If o = (A, F,R) is a ¥-cyclic algebraic structure then the lattice
(Cs(#),C) is distributive.

Proof. Let o be a X-cyclic algebraic structure and let wy(z) be its character-
istic terms for k € K C Z. Suppose that ¢ and v satisfy (b) and (c) of Definition 4.
Let B, C, D € Cx(«). Suppose that d € A and w,,(d) or w,(d) or wy(d) are
generators of B or C' or D, respectively. By (a), (b), (¢) of Definition 4, we can
easily derive

DN (BVC) = Ceq(wi(d)) N (Cor (wn(d)) V Cos (wn(d)) )

= Cor (Wy (o (mm)) () = Cor (W, m) i (k,m)) (D))
= (Cor (wi(d)) N Cor (win(d))) V (Cor (wi(d)) N Coy (win(d)))
—(DNB)V(DNO),

i.e. the lattice (Cx(&/),C ) is distributive. O

Example 6. If ¥ = (G,.) is a cyclic group and Cx(¥¢) = Sub¥, put K = Z,
wy, = x* and p(m,n) = GCD(m,n), (m,n) = LCM(m,n). As an element d € G
we pick up the generator of ¢4. Evidently, ¢ is ¥-cyclic.
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Example 7. If & = (A, f) is a monounary algebra and Cx(&/) = Sub &,
we can put K = N U {0} (non-negative integers), wi(x) = f*(z) where f°(z) = z
and f**t(z) = f(f*(z)) for each k € K. Moreover, put ¢(m,n) = min(m,n),
¥(m,n) = max(m,n). If & has a unique generator d then & is Z-cyclic.

Example 8 Suppose & = (A, F,R) is an algebraic structure with at least
two elements such that F' contains a nullary operation ¢ and f(c,...,c) = ¢ for each
f € F. Further, suppose Cx(&) = {{c}, A} (trivially, Cs(&/) is distributive). Put
K ={0,1}. If A +# {c}, choose d # ¢, d € A and put wo(z) = ¢, w1 (z) = d. Further,
let ¢ and ¥ be defined in the same manner as in the foregoing Example 7. Evidently,
o/ is Y-cyclic.
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