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Summary� Let A � �A� F�R� be an algebraic structure of type � and 
 a set of open
formulas of the �rst order language L���� The set C��A � of all subsets of A closed under 

forms the so called lattice of 
�closed subsets of A � We prove various su�cient conditions
under which the lattice C��A � is modular or distributive�
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Modularity and distributivity of subalgebra lattices was investigated by T� Evans

and B� Ganter in ��� and by the �rst author in ���� However� we can study much

more general lattices of closed subsets of an algebra or a relational structure� For

convex sublattices of a given lattice this was done by V� I� Marmazajev �	�� for convex

subsets of monounary algebras or ordered sets see �
� or ���� respectively� A general

approach for these considerations was developed by the authors in ���� By using it�

we can state su
cient �and in some cases also necessary� conditions under which

a lattice of all Σ�closed subsets of a given algebraic structure is modular or even

distributive�

First we recall some concepts� By a type we mean a pair of sequences τ =

〈{ni; i ∈ I}, {mj ; j ∈ J}〉 where ni� mj are non�negative integers� An algebraic struc-

ture or brie�y a structure of type τ is a triplet A = (A,F,R)� where A �= ∅ is a

set and F = {fi; i ∈ I}� R = {�j ; j ∈ J} such that for each i ∈ I� fi is an ni�ary

operation on A and for each j ∈ J � �j is an mj�ary relation on A� Denote by L(τ)

the �rst order language containing operational and relational symbols of type τ � If

R = ∅� the structure (A,F, ∅) is denoted brie�y by (A,F ) and is called an algebra� If

F = ∅ then (A, ∅, R) is denoted by (A,R) and called a relational system� this system
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(A,R) is called binary if each �j ∈ R is binary� A binary relational system (A,R) is

said to be antisymmetrical if each �j ∈ R is an antisymmetrical relation� A binary

relational system (A,R) is called an ordered �or quasiordered� set if R = {��} where

�� is an order on A �or a re�exive and transitive relation� the so called quasiorder�

respectively��

Let Γ be an index set and for each γ ∈ Γ let G�(x�, . . . , xk� , y�, . . . , ys� , z, fi)

be an open formula of a language L(τ) containing individual variables x�, . . . , xk� �

y�, . . . , ys� � z and a symbol fi of ni�ary term operation� Analogously� let Λ be an

index set and for each λ ∈ Λ let G�(x�, . . . , xk� , y�, . . . , ys� , z, �j) be an open formula

of the language L(τ) containing individual variables x�, . . . , xk� � y�, . . . , ys� � z and a

symbol �j of mj�ary relation of type τ � Put Σ = {G� ;γ ∈ Γ} ∪ {G�;λ ∈ Λ}�

Definition 1. A subset B of an algebraic structure A = (A,F,R) is called Σ�

closed if for every γ ∈ Γ� λ ∈ Λ and a�, . . . , ak� � a
�

�, . . . , a
�

k�
∈ B and b�, . . . , bs� �

b��, . . . , b
�

s�
� c� c� ∈ A� we have c ∈ B or c� ∈ B provided G�(a�, . . . , ak� , b�, . . . ,

bs� , c, fi) or G�(a
�

�, . . . , a
�

k�
, b��, . . . , b

�

s�
, c�, �j) are satis�ed in A � Denote by C�(A )

the set of all Σ�closed subsets of A �

As was proved in ���� the set C�(A ) of all Σ�closed subsets of a structure A =

(A,F,R) is a complete lattice with respect to set inclusion with the greatest element

A� In what follows we will study modularity and distributivity of C�(A ) depending

on the properties of A � For any given structure A we will suppose that the set of

formulas Σ is determined� For a given subset M ⊆ A we denote by CA (M) the least

Σ�closed subset of A containing M � we say that CA (M) is generated by M � If M

is a �nite subset� say M = {a�, . . . , ak}� we will write CA (a�, . . . , ak) for CA (M)�

If the set Σ is implicitly known� we will use on the lattice C�(A ) to specify the

closure system� In some more familiar examples of C�(A ) we will use the common

name and notation�

��� If A = (A,F ) is an algebra� F = {fi : i ∈ I} and Σ = {Gi : i ∈ I} where

Gi(x�, . . . , xni , z, fi) is the formula
�
fi(xi, . . . , xni) = z

�
� then Σ�closed subsets of A

are subalgebras of A and ∅� and C�(A ) = SubA �

��� IfL = (L, {∨,∧}) is a lattice� Σ = {G�, G�} where G� is the formula (x�∨x� =

z) and G� is the formula (x�∧y�, z)� then the Σ�closed subsets of L are lattice ideals�

i�e� C�(L ) = IdL �

��� If R = (A,R) is a binary relational system with R = {�j ; j ∈ J} and Σ = {Gj :

j ∈ J} where for each j ∈ J we have

Gj is the formula (x��jz and z�jx�),

then the Σ�closed subsets of R are the so called convex subsets and C�(R) will be

denoted by ConvR�
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In particular� if S = (S,�) is an ordered set then Σ = {G} where G is the formula

(x� � z � x�)� Thus Σ�closed subsets of S are exactly the convex subsets of S in

the usual sense�

��� If G = (G, .,�� , e) is a group and Σ = {G�,G�, G�, G�}� where G�(x�, x�, z, .)

is the formula (x� · x� = z)� G�(x�, z,
�� ) is the formula (x��� = z)� G�(z, e) is the

formula (e = z) and G�(x�, y�, z, p) is the formula
�
p(x�, y�) = z

�
where p(x�, y�) is

the term operation y�x�y
��
� � then C�(G ) is the lattice of all normal subgroups of G �

It will be denoted simply by N(G )�

In what follows we denote join in C�(A ) by ∨� meet evidently coincides with set

intersection�

Theorem 1. Let A = (A,F,R) be an algebraic structure with the system C�(A )

of Σ-closed subsets satisfying

�i� for each X, Y ∈ C�(A ), ∅ �= X �= Y �= ∅ we have a ∈ X ∨ Y if and only if

there exist x ∈ X, y ∈ Y with a ∈ CA (x, y);

�ii� for each x, y ∈ A, if a ∈ CA (x, y) and CA (a) �= CA (x) then y ∈ CA (x, a).

Then the lattice
�
C�(A ),⊆

�
is modular.

Proof� Suppose X� Y � Z ∈ C�(A ) and X ⊆ Z� If either X = ∅ or Y = ∅

the proof is trivial� Also for X = Y we easily obtain the modularity law� Hence�

consider ∅ �= X �= Y �= ∅� Suppose a ∈ (X ∨ Y ) ∩ Z� Then a ∈ Z and a ∈ X ∨ Y �

By �i�� there exist x ∈ X � y ∈ Y such that a ∈ CA (x, y)�

If CA (a) = CA (x) then a ∈ CA (a) = CA (x) ⊆ X ∨ (Y ∩ Z).

If CA (a) �= CA (x), then we have y ∈ CA (x, a) by �ii�.

However� x ∈ X ⊆ Z� a ∈ Z thus also y ∈ CA (x, a) ⊆ Z� Hence y ∈ Y ∩ Z and

a ∈ CA (x, y) ⊆ X ∨ (Y ∩ Z)� which proves modularity of C�(A )� �

Lemma 1. Let A = (A, {�}) be a binary relational system with only one transi-

tive binary relation and C�(A ) = ConvA . Then C�(A ) satisfies �i� of Theorem 1.

Proof� The condition �i� of Theorem � is equivalent to the following one�

CA (X) =
�
{CA (x�, x�);x�, x� ∈ X} for each X ⊆ A.

For X� Y ⊆ A put C�(X,Y ) = X ∪ Y � C(X,Y ) = C�(X,Y ) = {a ∈ A;u�a�v

for some u, v ∈ X ∪ Y } and Cn��(X,Y ) = C
�
Cn(X,Y )

�
� where n ∈ N� �non�

negative integer�� Evidently� CA (X,Y ) =
S�
Cn(X,Y );n ∈ N�

�
� Now� we can

prove the following statement by induction on n� �If a ∈ Cn(X,Y )� then there exist

u� v ∈ X ∪ Y such that u�a�v��

���



�� For n = 1 it is a trivial�

�� Suppose that it is valid for all k � n and we prove it for n + 1� Let a ∈

Cn��(X,Y )� i�e� α�a�β for some α� β ∈ Cn(X,Y )� Clearly� we have the following

possibilities�

a� α ∈ [x�, y�]� β ∈ [x�, y�]�

b� α ∈ [x�, y�]� β ∈ [y�, x�]�

c� α ∈ [y�, x�]� β ∈ [x�, y�]�

d� α ∈ [y�, x�]� β ∈ [y�, x�]� etc�� where x�� x� ∈ X and y�� y� ∈ Y �

ad a� If α ∈ [x�, y�]� β ∈ [x�, y�]� then x��αa�β�y� and a ∈ [x�, y�] by transitivity�

i�e� the statement is valid�

ad b� α ∈ [x�, y�]� β ∈ [y�, x�] imply x��αa�β�x�� i�e� a ∈ [x�, x�] and a ∈ X�

Similarly we can easily check the other possibilities� �

Example �� Let A = ({a, b, c}, {�}) be a binary relational system with the

following diagram of ��

a b

c

and C�(A ) = ConvA � We can easily check �i� and �ii� of Theorem �� thus C�(A )

is modular� We can vizualize the diagram of C�(A ) in Fig� � below�

{a}

∅

{c}

{a, b, c}

{b}

We can see that it is isomorphic to M�� hence C�(A ) is not distributive�

Example �� Let A = ({a, b, c},�) be an ordered set which is a chain� a <

b < c� and let C�(A ) = ConvA � Then it does not satisfy �ii� of Theorem � since

b ∈ CA (a, c)� CA (b) �= CA (a) but c /∈ CA (a, b) = {a, b}� The diagram of C�(A ) is
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shown in Fig� ��

{a, b}

{b}

{b, c}

{a, b, c}

{a}

∅

{c}

We can see that C�(A ) is not modular� We are going to show that for some algebraic

structures the condition �ii� is really equivalent to modularity of C�(A )�

Recall from ��� that an algebraic system A = (A,F,R) is Σ�separable if we have

CA (x) = {x} for any x ∈ A�

Theorem 2. Let A = (A,F,R) be a Σ-separable algebraic structure satisfying

�i� of Theorem 1. The following conditions are equivalent:

�a� the lattice C�(A ) is modular;

�b� for each x, y ∈ A, if a ∈ CA (x, y) for a �= x then y ∈ CA (x, a).

Proof� Since A is Σ�separable and A satis�es �i�� we obtain �b�⇒ �a� directly

by Theorem �� Prove �a� ⇒ �b�� Let C�(A ) be modular and a� x� y ∈ A� a �= x�

Since {x, y} ⊆ CA (x) ∨ CA (y)� we have

�∗� CA (x, y) ⊆ CA (x) ∨ CA (y).

Suppose a ∈ CA (x, y)� Then a ∈ CA (x, y) ∩ CA (a, x) and� by (∗)� also

a ∈
�
CA (x) ∨ CA (y)

�
∩ CA (a, x).

Clearly CA (x) ⊆ CA (a, x) and� by modularity of C�(A )� we conclude

a ∈ CA (x) ∨
�
CA (y) ∩ CA (a, x)

�
.

However� A is Σ�separable� thus also a ∈ {x} ∨
�
{y} ∩ CA (a, x)

�
� Since a �= x� this

yields {y} ∩CA (a, x) �= ∅� thus y ∈ CA (a, x) which proves �b�� �
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Definition 2. Let � be a binary relation on A� We say that � is weakly transitive

if for each pairwise di�erent elements a� b� c ∈ A� 〈a, b〉 ∈ � and 〈b, c〉 ∈ � imply

〈c, a〉 /∈ ��

Corollary 1. Let A = (A, {�}) be an antisymmetrical binary relational system

with one weakly transitive relation � and C�(A ) = ConvA . The following condi-

tions are equivalent:

(1) Convα is modular;

(2) ConvA is distributive;

(3) for any pairwise different elements a, b, c ∈ A we have 〈a, b〉 /∈ � or 〈b, c〉 /∈ �.

Proof� ��� ⇒ ���� If A satis�es ��� then every subset of A is a convex subset�

thus ConvA = ExpA� i�e� ConvA is distributive� ��� ⇒ ��� is trivial�

��� ⇒ ���� Let ConvA be modular and let a� x� y be pairwise di�erent elements

of A� Suppose x�a and a�y� Then a ∈ CA (x, y)� a /∈ x and y /∈ CA (x, a) with

respect to antisymmetry and weak transitivity of �� Hence �b� of Theorem � is not

valid� Moreover� A is Σ�separable by Theorem � in ��� and� by Lemma �� C�(A )

satis�es �i� of Theorem �� thus we have a contradiction� Hence also ��� is satis�ed�

�

Corollary 2. Let S = (S,�) be an ordered set and C�(S ) = ConvS . The

following conditions are equivalent:

(1) ConvS is modular;

(2) ConvS is distributive;

(3) S does not contain a chain of length greater than two.

Proof� Clearly� any order is weakly transitive� and it is almost trivial to show

that ��� of Corollary � is equivalent to ��� of Corollary � for � =�� �

For any group G � the lattice N(G ) of all its normal subgroups is modular and it

clearly satis�es �i� of Theorem � since G� ∨ G� = G� · G� for each G�� G� ∈ N(G )�

However� it does not satisfy �ii� of Theorem �� e�g� for the group (Z,+) of all integers

we have 4 ∈ CG (2, 3) = Z� CG (4) �= CG (2) but 3 /∈ CG (2, 4)� This motivates our

e�ort to give another su
cient condition for modularity of C�(A )� �Remark that a

group G is not Σ�separable with respect to C�(G ) = N(G )��

Definition 3. Let A = (A,F,R) be an algebraic structure of type τ � By a

binary formula we mean any formula G(x�, x�, z, f) or G(x�, x�, z, �) of the language

L(τ) provided f is a binary term operation of A or � is a binary relation of R�

Theorem 3. Let A = (A,F,R) be an algebraic structure and let Σ contain a

binary formula G(x�, x�, z, f) or G(x�, x�, z, �) such that the following conditions are
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satisfied:

�i� if X, Y ∈ C�(A ), ∅ �= X �= Y �= ∅, then a ∈ X ∨ Y if and only if there exist

b ∈ X, c ∈ Y such that G(b, c, a, f) or G(b, c, a, �) is satisfied in A ;

�ii� for each a, b, c ∈ A, a �= b, if the formula G(b, c, a, f) or G(b, c, a, �) is satisfied

in A and CA (a) �= CA (b) then c ∈ CA (a, b). Then the lattice
�
C�(A ),⊆

�
is

modular.

Proof� Let X � Y � Z ∈ C�(A ) and X ⊆ Z� To check modularity of C�(A ) it

is enough to consider ∅ �= X �= Y �= ∅� Suppose a ∈ (X ∨ Y ) ∩ Z� By �i� there exist

b ∈ X� c ∈ Y such that some binary formula G(b, c, a, f) or G(b, c, a, �) is satis�ed in

A � If C�(a) = CA (b) then

a ∈ CA (b) ⊆ X ⊆ X ∨ (Y ∩ Z).

If CA (a) �= CA (b) then� by �ii�� c ∈ CA (a, b)� However� a ∈ Z and b ∈ X ⊆ Z� thus

also c ∈ CA (a, b) ⊆ Z� Hence� we conclude by �i�

a ∈ X ∨ (Y ∩ Z),

proving modularity of C�(A )� �

Example �� If G = (A, .,�� , e) is a group and C�(G ) = N(G )� take a binary

formula (x� · x� = z)� Evidently� for A�� A� ∈ N(G )� a ∈ A� ∨A� = A� ·A� if and

only if there exist a� ∈ A�� a� ∈ A� with a = a� ·a� and� if a = b · c �i�e� G(b, c, a, .) is

satis�ed in G � then c = b�� ·a� thus c ∈ CA (a, b)� Hence� both �i�� �ii� of Theorem �

are satis�ed�

Example �� It is an easy exercise to verify that the quasiordered set of

Example � also satis�es the assumptions of Theorem � for the binary formula

G(x�, x�, z, �) = (x��z and z�x�)�

Now� we turn our attention to distributivity of C�(A )�

Theorem 4. Let A = (A,F,R) be an algebraic structure with the lattice C�(A )

of Σ-closed subsets. If there exists a binary term operation p(x, y) of A such that

�i� for B, C ∈ C�(A ) we have a ∈ B ∨C if and only if a = p(b, c) for some b ∈ B,

c ∈ C;

�ii� if D ∈ C�(A ) and p(b, c) ∈ D for some b, c ∈ A, then b, c ∈ D, then the

lattice
�
C�(A ),⊆

�
is distributive.

Proof� Suppose B� C� D ∈ C�(A ) and a ∈ D ∩ (B ∨C)� Then a ∈ D and� by

�i�� there exist b ∈ B� c ∈ C with a = p(b, c)� Hence also p(b, c) ∈ D and� by �ii��

we have b ∈ D� c ∈ D� Thus b ∈ D ∩ B� c ∈ D ∩ C and by �i� again� we conclude

a = p(b, c) ∈ (D ∩B) ∨ (D ∩ C)� �
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Example 
� If L is a distributive lattice and C�(L ) = IdL � we can put

p(x, y) = x ∨ y� It is well�known that for I�� I� ∈ IdL � y ∈ I� ∨ I� if and only if

y = i� ∨ i� for some i� ∈ I�� i� ∈ I�� Moreover� if J ∈ IdL and j� ∨ j� ∈ J for j��

j� ∈ L then j� � j� ∨ j�� j� � j� ∨ j� imply also j�� j� ∈ J �

Thus both assumptions of Theorem � are satis�ed�

Now� let A = (A,F,R) be an algebraic structure and let B ∈ C�(A ) for some

given set Σ of open formulas� If there exists an element b ∈ A such that B = CA (b)�

we say that b is a generator of B�

In the remaining part of the paper� denote by Z the set of all integers and suppose

F �= ∅ for any algebraic structure A = (A,F,R) under consideration�

Definition 4. An algebraic structure A = (A,F,R) is called Σ�cyclic if there

exist an element d ∈ A� a subset K ⊆ Z and binary integral operations ϕ� ψ :

K ×K → K and unary terms wk(x) for k ∈ K of A such that

�a� for each B ∈ C�(A ) there exists k ∈ K such that wk(d) is a generator of B�

�b� if wm(d) or wn(d) are generators of B or D� respectively� for B� D ∈ C�(A )�

then w��m�n�(d) or w��m�n�(d) are generators of B ∨D or B ∩D� respectively�

�c� ψ
�
k, ϕ(m,n)

�
= ϕ

�
ψ(k,m), ψ(k, n)

�
for every k� m� n ∈ K�

The terms wk(x) are called characteristic terms of C�(A )�

Theorem 5. If A = (A,F,R) is a Σ-cyclic algebraic structure then the lattice�
C�(A ),⊆

�
is distributive.

Proof� Let A be a Σ�cyclic algebraic structure and let wk(x) be its character�

istic terms for k ∈ K ⊆ Z� Suppose that ϕ and ψ satisfy �b� and �c� of De�nition ��

Let B� C� D ∈ C�(A )� Suppose that d ∈ A and wm(d) or wn(d) or wk(d) are

generators of B or C or D� respectively� By �a�� �b�� �c� of De�nition �� we can

easily derive

D ∩ (B ∨ C) = CA
�
wk(d)

�
∩
�
CA

�
wn(d)

�
∨ CA

�
wm(d)

��

= CA
�
w��k���m�n��(d)

�
= CA

�
w����k�m����k�n��(d)

�

=
�
CA

�
wk(d)

�
∩ CA

�
wm(d)

��
∨
�
CA

�
wk(d)

�
∩CA

�
wn(d)

��

= (D ∩B) ∨ (D ∩ C),

i�e� the lattice
�
C�(A ),⊆

�
is distributive� �

Example 	� If G = (G, .) is a cyclic group and C�(G ) = SubG � put K = Z�

wk = x
k and ϕ(m,n) = GCD(m,n)� ψ(m,n) = LCM(m,n)� As an element d ∈ G

we pick up the generator of G � Evidently� G is Σ�cyclic�
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Example �� If A = (A, f) is a monounary algebra and C�(A ) = SubA �

we can put K = N ∪ {0} �non�negative integers�� wk(x) = f
k(x) where f�(x) = x

and fk��(x) = f
�
fk(x)

�
for each k ∈ K� Moreover� put ϕ(m,n) = min(m,n)�

ψ(m,n) = max(m,n)� If A has a unique generator d then A is Σ�cyclic�

Example �� Suppose A = (A,F,R) is an algebraic structure with at least

two elements such that F contains a nullary operation c and f(c, . . . , c) = c for each

f ∈ F � Further� suppose C�(A ) =
�
{c}, A

�
�trivially� C�(A ) is distributive�� Put

K = {0, 1}� If A �= {c}� choose d �= c� d ∈ A and put w�(x) = c� w�(x) = d� Further�

let ϕ and ψ be de�ned in the same manner as in the foregoing Example �� Evidently�

A is Σ�cyclic�
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