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LOCALLY REGULAR GRAPHS
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Abstract. A graph G is called locally s-regular if the neighbourhood of each vertex of G
induces a subgraph of G which is regular of degree s. We study graphs which are locally
s-regular and simultaneously regular of degree r.
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At the Czechoslovak Symposium on Graph Theory in Smolenice in 1963 [1]
A. A. Zykov suggested the problem to characterize graphs H with the property that
there exists a graph G in which the neighbourhood of any vertex induces a subgraph
isomorphic to H. This problem inspired many mathematical works and led also to a
certain generalization, namely the study of local properties of graphs. A graph G is
said to have locally a property P, if the neighbourhood of each vertex of G induces
a subgraph having the property P. For locally connected graphs let us mention e.g.
[2] and [4], for locally linear graphs e.g. [3]. A survey paper on local properties of
graphs was written by J. Sedlacek [5].

Here we will study locally s-regular graphs. A graph G is called locally s-regular,
where s is a non-negative integer, if the neighbourhoods of all vertices of G induce
subgraphs which are regular of degree s, shortly s-regular. We consider finite undi-
rected graphs without loops and multiple edges. The vertex set of a graph G is
denoted by V(G), the complement of G by G. If A C V(G), then G(A) is the sub-
graph of G induced by A. The symbol G; + G2 denotes the disjoint union of two
graphs G, Go; the symbol G & G5 denotes the Zykov sum of G; and G, i.e. the
graph obtained from G; + G2 by joining each vertex of GGy with each vertex of Go
by an edge. By G x G5 the Cartesian product of G; and G» is denoted; its vertex
set is V(G1) x V(G2) and two vertices (ug,uz), (v1,v2) are adjacent in it if and only
if either u; = w1 and wuo,vs are adjacent in Ga, or uy,v; are adjacent in G; and
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us = vg. The symbol Ng(v) denotes the (open) neighbourhood of a vertex v in a
graph G, i.e. the set of all vertices which are adjacent to v in G. By C),, we denote
the circuit of length n.

By Locreg(r,s), where r is a positive integer and s a non-negative integer, we
denote the class of graphs which are simultaneously r-regular and locally s-regular.

Proposition 1. IfLocreg(r,s) # (), thenr > s+1 and at least one of the numbers
r, s is even.

This assertion is evident, because the conditions mentioned are the well-known
necessary conditions for the existence of an s-regular graph with r vertices.

Proposition 2. Let s,k be positive integers, let k be a divisor of s. Then
Locreg(s + k, s) # 0.

Proof. Let G be the complement of the disjoint union of s + 2 copies of the
complete graph K}, with k vertices. Then G € Locreg(s + k, s). (]

Corollary 1. Locreg(s + 1,5s) # () for each integer s > 0.
Corollary 2. Locreg(s + 2, s) # () for each even integer s > 0.

Proposition 3. If Locreg(r1, s) # 0 and Locreg(ra, s) # 0, then also Locreg(ry +

T2, 8) 7& 0.
Proof. If G; € Locreg(ri,s) and Gy € Locreg(rz,s), then the Cartesian
product G x G5 € Locreg(ry + 72, 8). O

Now we state two lemmas.

Lemma 1. Let p,q be positive integers such that ¢ > p?> — 1. Then there exist
non-negative integers a,b such that

g=ap+blp+1).

Proof. Let b be an integer such that 0 < b < p — 1 and b = g(mod p). Let
a = (q—>b)/p—"b. We have ap + b(p + 1) = q. The number « is an integer, because
q = b(mod p). Further we have ¢ > p> —1 = (p+1)(p — 1) > b(p + 1) and thus
a=(q—0b)/p—b=(b(p+1)—0b)/p—b=0. This proves the assertion. O

Lemma 2. Let p,q be positive integers such that ¢ > (2p—1)(p—1). Then there
exist non-negative integers a, b such that

g=ap+b(2p—1).
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Proof. Let b be an integer such that 0 < b < p—1 and b+ ¢ = 0(mod p). Let
a = (¢ +b)/p — 2b. The proof that a is a non-negative integer is analogous to the
proof of Lemma 1. O

Now we prove some theorems.

Theorem 1. Let 7, s be positive integers such that s is even and r > s(s + 2).
Then Locreg(r, s) # 0.

Proof. According to Lemma 1 there exist non-negative integers a, b such that
r=a(s+1)+b(s+2). Then the assertion follows from the Corollaries 1 and 2 and
from Proposition 3. U

Theorem 2. Let r,s be positive integers such that r is even, s is odd and r >
s(s —1). Then Locreg(r,s) # 0.

Proof. Put p = (s = 1); then ir > (2p — 1)(p — 1) and, as r is even,
according to Lemma 2 there exist non-negative integers a,b such that %7‘ =ap+
b(2p — 1) = 3a(s + 1) + bs and thus r = a(s + 1) + 2bs. According to Proposition 2
we have Locreg(s + 1, s) # ) and Locreg(2s, s) # 0 and thus, by Proposition 3, also
Locreg(r, s) # 0. O

Now we turn our attention to small values of s.

Proposition 4. Let 0 < s < 2 and r > s+ 1 and in the case of s = 1 let r be
even. Then Locreg(r, s) # (.

Proof. A graph from Locreg(r,0) is an arbitrary r-regular graph without tri-
angles, e.g. the complete bipartite graph K, ,. A graph from Locreg(2,1) is C3 and
Locreg(n,1) # () follows from Theorem 1. Examples of graphs from Locreg(3,2),
Locreg(4,2) and Locreg(5,2) are successively the graphs of regular polyhedra tetra-
hedron, octahedron, icosahedron. Every s > 6 is a sum of numbers from {3,4,5}
and thus Proposition 3 implies Locreg(r, 2) for every r > 6. (]

From these results it may seem that Locreg(r, s) # @) for any r, s which satisfy the
condition of Proposition 1. We will show an example for which this is not true.

Theorem 3. The class Locreg(7,4) = 0.

Proof. Suppose the contrary and let G € Locreg(7,4). Let u be a vertex
of G. The graph G{(Ng(u)) is a 4-regular graph with seven vertices. Its com-
plement is a 2-regular graph and therefore it is isomorphic either to C3 + Cy,
or to C1. Hence G(Ny(u)) = C3 & C4 or G(Ng(u)) = C;. Suppose the first
case occurs. Denote the vertices of G(Ng(u)) by v1,va, v3, w1, w2, w3, ws so that
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V1V, UaV3, U301, W1Wa, Wals, W3y, waw; are edges of the complement of G(N,(u)).
Consider the graph G(Ng(v1)). It contains the graph ({wi,ws,ws,wy}) = C4
as an induced subgraph and therefore it cannot be isomorphic to C7. We have
G(Ng(v1)) = C3 @ Cy and there exist vertices 1, To, z3 outside Ng(u) which are
pairwise non-adjacent and each of them is adjacent to vq,ws,ws,ws,ws. (One of
them is u.) But now G(Ng(w;)) contains two disjoint independent triples {v1, ve, v3},
{1, 22,23} and hence it is isomorphic neither to C3@® C4 nor to C, which is a con-
tradiction. As u was chosen arbitrarily, we have proved that the neighbourhood of
any vertex of G cannot induce C3 @ C, and thus it must induce C7.

Thus let G(Ng(u)) = C;. The vertices of G(Ng(u)) will be denoted by
v1, Vg, U3, U4, Us, Vg, V7 in such a way that v;v;4q1 for ¢ = 1,...,7 are edges of the
complement of G(Ng(u)); here and everywhere in the sequel the subscripts are
taken modulo 7. Consider the graph G{(Ng(v;)) for an arbitrary ¢ € {1,...,7}. It
contains the vertices w, v;y2,vi+3,Vi+4,Vi+5 and does not contain v;1; and v;46.
As G(Ng(v;)) = C7, it contains vertices w;,z; outside Ng(u) such that w; is ad-
jacent to v;,vi+3,Vitq,Vits,x; and non-adjacent to w, v;1o while x; is adjacent
to i, Vit2, Vits, Vitqa, w; and non-adjacent to u,v;45. Consider the vertices w; for
i =1,...,7. Suppose that w; = w; for some ¢ and j. This vertex is non-adjacent
to vj+2 and adjacent to v;,viys, Vita,Vits and thus j +2 ¢ {i,i+ 3,1+ 4,7 + 5},
which implies j ¢ {i + 1,i + 2,7 + 3,7 + 5}. Further, this vertex is non-adjacent
to vi+2 and adjacent to v;,v;43,V,14,V45; we have i ¢ {j+ 1,5+ 2,5+ 3,5 + 5},
which implies j ¢ {i +2,i+ 4,7+ 5,4+ 6}. Therefore w; = w; implies ¢ = j and
the vertices wy, ..., wy are pairwise distinct. As w; is adjacent to v;, vi+3, Vita, Vits
for i = 1,...,7, the vertex v; is adjacent to w;, w;te2,w;ys,w;+q for i« = 1,...,7.
Further, it is adjacent to u, v;y2,vit3, Vita, virs and thus its degree in G is at least
9, which is a contradiction. This proves the assertion. O
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