
125 (2000) MATHEMATICA BOHEMICA No. 4, 481–484

LOCALLY REGULAR GRAPHS

Bohdan Zelinka, Liberec

(Received November 11, 1998)

Abstract. A graph G is called locally s-regular if the neighbourhood of each vertex of G
induces a subgraph of G which is regular of degree s. We study graphs which are locally
s-regular and simultaneously regular of degree r.
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At the Czechoslovak Symposium on Graph Theory in Smolenice in 1963 [1]
A. A. Zykov suggested the problem to characterize graphs H with the property that
there exists a graph G in which the neighbourhood of any vertex induces a subgraph
isomorphic to H . This problem inspired many mathematical works and led also to a
certain generalization, namely the study of local properties of graphs. A graph G is
said to have locally a property P , if the neighbourhood of each vertex of G induces
a subgraph having the property P . For locally connected graphs let us mention e.g.
[2] and [4], for locally linear graphs e.g. [3]. A survey paper on local properties of
graphs was written by J. Sedláček [5].
Here we will study locally s-regular graphs. A graph G is called locally s-regular,

where s is a non-negative integer, if the neighbourhoods of all vertices of G induce
subgraphs which are regular of degree s, shortly s-regular. We consider finite undi-
rected graphs without loops and multiple edges. The vertex set of a graph G is
denoted by V (G), the complement of G by G. If A ⊆ V (G), then G〈A〉 is the sub-
graph of G induced by A. The symbol G1 + G2 denotes the disjoint union of two
graphs G1, G2; the symbol G1 ⊕ G2 denotes the Zykov sum of G1 and G2, i.e. the
graph obtained from G1 + G2 by joining each vertex of G1 with each vertex of G2
by an edge. By G1 × G2 the Cartesian product of G1 and G2 is denoted; its vertex
set is V (G1)×V (G2) and two vertices (u1, u2), (v1, v2) are adjacent in it if and only
if either u1 = v1 and u2, v2 are adjacent in G2, or u1, v1 are adjacent in G1 and
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u2 = v2. The symbol NG(v) denotes the (open) neighbourhood of a vertex v in a
graph G, i.e. the set of all vertices which are adjacent to v in G. By Cn we denote
the circuit of length n.
By Locreg(r, s), where r is a positive integer and s a non-negative integer, we

denote the class of graphs which are simultaneously r-regular and locally s-regular.

Proposition 1. If Locreg(r, s) �= ∅, then r � s+1 and at least one of the numbers
r, s is even.
This assertion is evident, because the conditions mentioned are the well-known

necessary conditions for the existence of an s-regular graph with r vertices.

Proposition 2. Let s, k be positive integers, let k be a divisor of s. Then
Locreg(s+ k, s) �= ∅.
�����. Let G be the complement of the disjoint union of s + 2 copies of the

complete graph Kk with k vertices. Then G ∈ Locreg(s+ k, s). �

Corollary 1. Locreg(s+ 1, s) �= ∅ for each integer s � 0.

Corollary 2. Locreg(s+ 2, s) �= ∅ for each even integer s � 0.

Proposition 3. If Locreg(r1, s) �= ∅ and Locreg(r2, s) �= ∅, then also Locreg(r1+
r2, s) �= ∅.
�����. If G1 ∈ Locreg(r1, s) and G2 ∈ Locreg(r2, s), then the Cartesian

product G1 × G2 ∈ Locreg(r1 + r2, s). �

Now we state two lemmas.

Lemma 1. Let p, q be positive integers such that q � p2 − 1. Then there exist
non-negative integers a, b such that

q = ap+ b(p+ 1).

�����. Let b be an integer such that 0 � b � p − 1 and b ≡ q(mod p). Let
a = (q − b)/p − b. We have ap+ b(p+ 1) = q. The number a is an integer, because
q ≡ b(mod p). Further we have q � p2 − 1 = (p + 1)(p − 1) � b(p + 1) and thus
a = (q − b)/p − b � (b(p+ 1)− b)/p − b = 0. This proves the assertion. �

Lemma 2. Let p, q be positive integers such that q � (2p− 1)(p− 1). Then there
exist non-negative integers a, b such that

q = ap+ b(2p − 1).
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�����. Let b be an integer such that 0 � b � p − 1 and b+ q ≡ 0(mod p). Let
a = (q + b)/p − 2b. The proof that a is a non-negative integer is analogous to the
proof of Lemma 1. �

Now we prove some theorems.

Theorem 1. Let r, s be positive integers such that s is even and r � s(s + 2).
Then Locreg(r, s) �= ∅.
�����. According to Lemma 1 there exist non-negative integers a, b such that

r = a(s+ 1) + b(s+ 2). Then the assertion follows from the Corollaries 1 and 2 and
from Proposition 3. �

Theorem 2. Let r, s be positive integers such that r is even, s is odd and r �
s(s − 1). Then Locreg(r, s) �= ∅.
�����. Put p = 1

2 (s = 1); then
1
2r � (2p − 1)(p − 1) and, as r is even,

according to Lemma 2 there exist non-negative integers a, b such that 12r = ap +
b(2p − 1) = 1

2a(s+ 1) + bs and thus r = a(s+ 1) + 2bs. According to Proposition 2
we have Locreg(s+ 1, s) �= ∅ and Locreg(2s, s) �= 0 and thus, by Proposition 3, also
Locreg(r, s) �= ∅. �

Now we turn our attention to small values of s.

Proposition 4. Let 0 � s � 2 and r � s + 1 and in the case of s = 1 let r be
even. Then Locreg(r, s) �= ∅.
�����. A graph from Locreg(r, 0) is an arbitrary r-regular graph without tri-

angles, e.g. the complete bipartite graph Kr,r. A graph from Locreg(2, 1) is C3 and
Locreg(n, 1) �= ∅ follows from Theorem 1. Examples of graphs from Locreg(3, 2),
Locreg(4, 2) and Locreg(5, 2) are successively the graphs of regular polyhedra tetra-
hedron, octahedron, icosahedron. Every s � 6 is a sum of numbers from {3, 4, 5}
and thus Proposition 3 implies Locreg(r, 2) for every r � 6. �

From these results it may seem that Locreg(r, s) �= ∅ for any r, s which satisfy the
condition of Proposition 1. We will show an example for which this is not true.

Theorem 3. The class Locreg(7, 4) = ∅.
�����. Suppose the contrary and let G ∈ Locreg(7, 4). Let u be a vertex

of G. The graph G〈NG(u)〉 is a 4-regular graph with seven vertices. Its com-
plement is a 2-regular graph and therefore it is isomorphic either to C3 + C4,
or to C1. Hence G〈Ng(u)〉 ∼= C3 ⊕ C4 or G〈NG(u)〉 ∼= C1. Suppose the first
case occurs. Denote the vertices of G〈NG(u)〉 by v1, v2, v3, w1, w2, w3, w4 so that
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v1v2, v2v3, v3v1, w1w2, w2w3, w3w4, w4w1 are edges of the complement of G〈Na(u)〉.
Consider the graph G〈NG(v1)〉. It contains the graph 〈{w1, w2, w3, w4}〉 ∼= C4
as an induced subgraph and therefore it cannot be isomorphic to C7. We have
G〈NG(v1)〉 ∼= C3 ⊕ C4 and there exist vertices x1, x2, x3 outside NG(u) which are
pairwise non-adjacent and each of them is adjacent to v1, w1, w2, w3, w4. (One of
them is u.) But nowG〈NG(w1)〉 contains two disjoint independent triples {v1, v2, v3},
{x1, x2, x3} and hence it is isomorphic neither to C3⊕C4 nor to C7, which is a con-
tradiction. As u was chosen arbitrarily, we have proved that the neighbourhood of
any vertex of G cannot induce C3 ⊕ C4 and thus it must induce C7.
Thus let G〈NG(u)〉 ∼= C7. The vertices of G〈NG(u)〉 will be denoted by

v1, v2, v3, v4, v5, v6, v7 in such a way that vivi+1 for i = 1, . . . , 7 are edges of the
complement of G〈NG(u)〉; here and everywhere in the sequel the subscripts are
taken modulo 7. Consider the graph G〈NG(vi)〉 for an arbitrary i ∈ {1, . . . , 7}. It
contains the vertices u, vi+2, vi+3, vi+4, vi+5 and does not contain vi+1 and vi+6.
As G〈NG(vi)〉 ∼= C7, it contains vertices wi, xi outside N6(u) such that wi is ad-
jacent to vi, vi+3, vi+4, vi+5, xi and non-adjacent to u, vi+2 while xi is adjacent
to vi, vi+2, vi+3, vi+4, wi and non-adjacent to u, vi+5. Consider the vertices wi for
i = 1, . . . , 7. Suppose that wi = wj for some i and j. This vertex is non-adjacent
to vj+2 and adjacent to vi, vi+3, vi+4, vi+5 and thus j + 2 /∈ {i, i + 3, i + 4, i + 5},
which implies j /∈ {i + 1, i + 2, i + 3, i + 5}. Further, this vertex is non-adjacent
to vi+2 and adjacent to vj , vj+3, vj+4, vj+5; we have i /∈ {j + 1, j + 2, j + 3, j + 5},
which implies j /∈ {i + 2, i + 4, i + 5, i + 6}. Therefore wi = wj implies i = j and
the vertices w1, . . . , w7 are pairwise distinct. As wi is adjacent to vi, vi+3, vi+4, vi+5

for i = 1, . . . , 7, the vertex vi is adjacent to wi, wi+2, wi+3, wi+4 for i = 1, . . . , 7.
Further, it is adjacent to u, vi+2, vi+3, vi+4, vi+5 and thus its degree in G is at least
9, which is a contradiction. This proves the assertion. �
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