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MCSHANE EQUI-INTEGRABILITY AND
VITALI’'S CONVERGENCE THEOREM
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Abstract. The McShane integral of functions f: I — R defined on an m-dimensional
interval [ is considered in the paper. This integral is known to be equivalent to the Lebesgue
integral for which the Vitali convergence theorem holds.

For McShane integrable sequences of functions a convergence theorem based on the con-
cept of equi-integrability is proved and it is shown that this theorem is equivalent to the
Vitali convergence theorem.
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We consider functions f: I — R where I C R™ is a compact interval, m > 1.

A system (finite family) of point-interval pairs {(¢;,1;), i = 1,...,p} is called an
M -system in I if I; are non-overlapping (int I; Nint I; = @) for ¢ # j, int I; being the
interior of I;), ¢; are arbitrary points in I.

Denote by u the Lebesgue measure in R™.

P

An M-system in I is called an M -partition of I if |J I; = I.

i=1

Given A: I — (0,400), called a gauge, an M-system {(¢;,1;), i =1,...,p} in I
is called A-fine if

The set of A-fine partitions of I is nonempty for every gauge A (Cousin’s lemma,
see e.g. [1]).

The work was supported by the grant No.201/01/1199 of the GA of the Czech Republic.
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Definition 1. f+ I — R is McShane integrable and J € R is its McShane
integral if for every € > 0 there exists a gauge A: I — (0, +00) such that for every
A-fine M-partition {(¢;,1;), 7= 1,...,p} of I the inequality

holds. We denote J = [; f.

Notation. To simplify writing we will from now use the notation {(u;,U;)}
for M-systems instead of {(u;,U;); | = 1,...,r} which specifies the number r of
elements of the M-system. For a function f: I — R and an M-system {(u;,U;)} we

write S f(u)(U7) instead of 3 f(un)u(U7), ete.
l =1

Theorem 2. f: I — R is McShane integrable if and only if f is Lebesgue
integrable.

See [2] or [4].

Definition 3. A family M of functions f: I — R is called equi-integrable if
every f € M is McShane integrable and for every € > 0 there is a gauge A such that
for any f € M the inequality

S st - [ f] <e
Z I
holds provided {(¢;, I;)} is a A-fine M-partition of I.

Theorem 4. A family M of functions f: I — X is equi-integrable if and only
if for every e > 0 there exists a gauge A: I — (0,+00) such that

<e€

’ X

|3 steamtty = 5 st s

for every A-fine M-partitions {(t;,I;)} and {(sj, K;)} of I and any f € M.

Proof. If M is equi-integrable then the condition clearly holds for the gauge ¢
which corresponds to %5 > 0 in the definition of equi-integrability.

If the condition of the theorem is fulfilled, then every individual function f €
M is McShane integrable (see e.g.[5]) with the same gauge ¢ for a given ¢ > 0
independently of the choice of f € M and this proves the theorem. O
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Theorem 5. Assume that M = {fx: I — R; k € N} is an equi-integrable
sequence such that

lim fu(t) = (1), te 1.

Then the function f: I — R is McShane integrable and

hm fk—/f

Proof. If Aisthe gauge from the definition of equi-integrability of the sequence

holds.

fr corresponding to the value £ > 0 then for any k € N

M) \ka - [ #]<

for every A-fine M-partition {(¢;,1;)} of I.
If the partition {(¢;,I;)} is fixed then the pointwise convergence fi, — f yields

kh_{go XZ: fe(t)u(l;) = zz: J(t)u(li)

Choose kg € N such that for £ > k¢ the inequality

‘ Z fe(ti) (L) — Z Fltu(

holds. Then we have

‘Zf fk

’ Z fk(ti)u(fi)]’
‘ka /fk

< 2¢

for k > ko.
This gives for k,l > ko the inequality

/Ifk*/lfz

which shows that the sequence of real numbers |, 1 Jr, k €N, is Cauchy and therefore

< 4e,

(2) lim fk =J e R exists.

k—oo

143



Let € > 0. By hypothesis there is a gauge A such that (1) holds for all ¥ whenever
{(ti, I;)} is a A-fine M-partition of I.

By (2) choose an N € N such that | [, fy —J| < ¢ for all k > N. Suppose that
{(ti, I;)} is a A-fine M-partition of I. Since f; converges to f pointwise there is a
k1 > N such that

<e.

|5 et — 3 )

Therefore
et - I| € | T 0m) - 2 g eon
#| S et - [ 1

+‘/fk1—J‘<3€
I

and it follows that f is McShane integrable and klim i fe=Jd=[, 1 O

Remark 6. By a figure we mean a finite union of compact nondegenerate inter-
vals in R™.

Let us mention the fact that if for the notion of an M-system {(¢;,I;), i =1,...,p}
the intervals I; are replaced by figures, we can develop the same theory and M-
systems and M-partitions of this kind can be used everywhere in our considerations.

Definition 7. Let M be a family of Lebesgue integrable functions f: I — R.

If for every € > 0 there is a 6 > 0 such that for F C I measurable with u(E) < §
we have | [ » f| < eforevery f € M then the family M is called uniformly absolutely
continuous.

Theorem 8. Assume that a sequence of Lebesgue integrable functions fr: I —
R, n € N, is given such that fi converge to f in measure.

If the set {fi; k € N} is uniformly absolutely continuous then the function f is

lim | f, = / f.
k—oo Jr I

See [3, p.168] or [1, p. 203, Theorem 13.3].

We will consider Theorem 8 in a less general form:

Lebesgue integrable and
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Theorem 9. Assume that a sequence of Lebesgue integrable functions fr: I —
R, k € N, is given such that fj, converge to f pointwise in I.
If the set {fr; k € N} is uniformly absolutely continuous then the function f is

Jim fk—/f

Remark 10. It is possible to assume in Theorem 9 that fj, converge to f almost

Lebesgue integrable and

everywhere in I, but changing the values of f; and f to 0 on a set N of zero Lebesgue
measure (u(N) = 0) it can be seen easily that such a change has no effect on Lebesgue
integrability and on the corresponding indefinite Lebesgue integrals.

Our goal is to show that the relaxed Vitali convergence Theorem 9 is a consequence
of our convergence Theorem 4 for the McShane integral.

Lemma 11 (Saks-Henstock). Assume that a family M of functions f: I — R
is equi-integrable. Given € > 0 assume that the gauge A on I is such that

‘Zf f’<5

for every A-fine M-partition {(t;,I;)} of I and f € M.
Then if {(r;, K;)} is an arbitrary A-fine M-system we have

5 - [ <

for every f € M.
Proof. Since {(r;,K;)} is a A-fine M-system the complement I \ int (|J K)

can be expressed as a finite system M;, [ = 1,...,r of non-overlapping intervalé in I.
The functions f € M are equi-integrable and therefore they are equi-integrable over
each M; and by definition for any n > 0 there is a gauge §; on M; with §;(¢) < §(t)
for ¢t € M; such that for every = 1,...,r we have

l l n
. J) — dul < ———
St - [ s <
provided {(s!, J!)} is a &;-fine M-partition of the interval M; and f € M.

S Frpn(E) + Y f(s)
j 1

The sum
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represents an integral sum which corresponds to a certain J-fine M-partition of I,
1

79

S Fopn(s) + 30N Fshuh — / fdu‘ <
J l I3

namely {(r;, K;), (s}, J!)}, and consequently by the assumption we have

Hence

S [ty - [ sau)
3" Fr)ulE;) + ;;f@ﬁ)u(ﬁ) - /Ifdﬂ‘

J

l l U
+;’;f<si)u(Ji>—/ledu‘ <etr— g <e+n

<

Since this inequality holds for every n > 0 and f € M we obtain immediately the
statement of the lemma. |

Looking at Lemma 11 we can see immediately that if the equi-integrable family
M consists of a single McShane integrable function f, then the following standard
Saks-Henstock Lemma holds.

Assume that f: I — R is McShane integrable. Given ¢ > (0 assume that the gauge

A on I is such that
S st - [ 1] <e

for every A-fine M-partition {(t;,1;)} of I.
Then if {(r;, K;)} is an arbitrary A-fine M-system we have

> [~ [ ]| <

7 J

Proposition 12. Assume that fi: I — R, k € N, are McShane (=Lebesgue)
integrable functions such that

1. fult) — f(t) fort € I,

2. the set {fi; k € N} is uniformly absolutely continuous.

Then the set {fr; k € N} is equi-integrable.

Proof. Assuming 1 we will use Egoroff’s Theorem (see [3] or [1, Th. 2.13, p. 22])
in the following form:
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For every j € N there is a measurable set E; C I such that u(I\ E;) < 1/,
E; C Ej1 and fi(t) — f(t) uniformly for t € Ej, i.e.for every ¢ > 0 there is a
K; € N such that for k > K; we have

(3) |fe(t) — f(t)] <e for te€ Ej.

Let us mention that for N = I\ |J E; we have u(N) = 0 because pu(N) <
j=1

w(I'\ E;) < 1/j for every j € N.

By virtue of Remark 10 we may assume without any loss of generality that fi(t) =
f(t)=0for keNandte N.

Assume now that € > 0 is given. By the assumption 2 there is a j € N such that

(4) / |fx] <e forall keN.
\E;

J

Then (by (3) and (4))

/I|fk—fl|=/Ej|fk—fl|+/I\Ej|fk—fz|
</Ej|fkf|+/Ej|ffl|+/I\Ej|fk|+/I\Ej|fl|

< 2ep(Ej) 426 < 2e(u(l) + 1)

for all k,I > K;. This shows that the sequence fi, k € N, is Cauchy in the Banach
space L of Lebesgue integrable functions on I and implies that the function f: I — R
also belongs to L and

(5) lim/lfk*flz(),
k—oo I
i.e.there is a K € N such that

(6) /I|fkff|<5forallk>K.

By Theorem 2 we know that all the functions f, fi, £ € N, are also McShane
integrable and the values of their McShane and Lebesgue integrals are the same.
According to Definition 1 there exists a gauge Aq: I — (0, +00) such that

7 3 11 —
) S seon) - [ 1)<
for every A;-fine M-partition {(¢;,1;)} of I.
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Further, there exists a gauge Az: I — (0,400) such that

(8) ‘ka(ti)ﬂ(li) - /Ifk

for every As-fine M-partition {(¢;,;)} of I for all k < K, K given by (6). (A finite
set of integrable functions is evidently equi-integrable.)

<e

Similarly, for any j € N we have a gauge §;: I — (0,+00) such that

9) \;mmu(m - [

for every d,-fine M-partition {(¢;,;)} of I and all k < Kj.
Since pu(N) = 0, for every § > 0 there is an open set U C R™ such that N ¢ U
and u(U) < 4. By virtue of the assumption 2 the value of § can be chosen in such a

<€
27

way that

(10) ] [ a

cf. Definition 7.

For t € E1 \ N define A3(t) = §1(t), for t € (E2\ F1) \ N define As(t) = d2(¢), . . .,
for t € (E; \ Ej—1) \ N define A3(t) = 0;(t), etc.

If t € N then we define A3(t) > 0 such that for the ball B(¢, A3(t)) (centered at t
with the radius As(t)) we have B(t, As(t)) C U.

In this way the positive function As defined on I represents a gauge.

Let us put A(t) = min(Aq(t), A2(t), As(t)) for ¢t € I. The function A is evidently
a gauge on 1.

Assume that {(¢;,I;)} is an arbitrary A-fine M-partition of I.

If £k < K then
Dp(d;) —
Ei Fe(ti)pu(ls) /Ifk

<e forall keN,

<e€

by (8).
If k > K then

(1) \;mmu(m - [ 1

_ \Z [mmu(m -/ | fk}

< i tm%;ww [mmu(m -/ | fk}
+| 2 [ntnm /f]

1: t;EN
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For the second term on the right hand side of (11) we know that if ¢; € N then
fe(t;))=0and |J £E; CU and therefore by (10) we have

i: t;EN
(12) Z/fkg‘/ fkg‘/ fil <<
i t;eN VT Uli: tieN uni

Concerning the first term on the right hand side of (11) we have

i > [fk(ti)ﬂ(li) - /1 fk]

j=1i: t;€(EB;\Ej—1)\N
> [fk(ti)ﬂ(li)_/ fk] :

7 tiE(Ej\Ejfl)\N I

(13)

o0

<>

j=1

If k < K; the the Saks-Henstock Lemma 11 yields by (9) the inequality
3 [fm)u(fi) -/ fk]
7 tiG(Ej\Ejfl)\N Ii

If k > K; then (cf. (3))

3 [fkm)u(m -/ | fk]

i: ti€(Ej\Ej—1)\N

DS

R tiE(Ej\Ejfl)\N

S R - fek@ Y ’f(ti)u(li)— /f\

7 tiE(Ej\Ejfl)\N 1 tiE(Ej\Ejfl)\N Ii

+ > /I_|f—fk|

7 tiE(Ej\Ejfl)\N v

T SENN D SRR TR

i ti€(B;\E;j—1)\N it €(E;\Ej—1)\N

S
(14) <5

fk(ti),u(fi)—/ T

i

N

+/ |f = Jel-
Ui ti€(E;\Ej—1)\N

i

This together with (14) gives for k£ € N the estimate

> |weun - [ | 7

it €(E;\Ej—1)\N

3
<5 TE Z aen
i ti€(E;\Ej—1)\N

£ - [ o]+ Lo gl =5

i: ti€(Ej\Ej—1)\N

i
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Summing over j and using (7) and (6) together with the Saks-Henstock Lemma 11

we obtain

<e+teul)+te+e

-

> |weun - [ | 7

R tiE(Ej\Ejfl)\N

and taking into account (11) and (12) we conclude

‘ ka(ti),u(li) - /Ifk

< (4+p()e forall keN.

This inequality proves that the sequence fi, k € N, is equi-integrable. (]

Lemma 13. Assume that fr: I — R, k € N, are McShane (Lebesgue) integrable
functions such that
1. fr(t) — f(t) fort € I,
2. the set {fr; k € N} is equi-integrable.
Then for every € > 0 there is an > 0 such that for any finite family {J;: j =
1,...,p} of non-overlapping intervals in I with > u(J;) < n we have
J

<e, keN

;/]fk

Proof. Let e > 0 be given. Since fi are equi-integrable on I, there exists a
gauge 0 on I such that | Y fu(t:)u(L;) — [; fr] < e for k € N whenever {(t;,1;)} is a

d-fine M-partition of I. Fixing a é-fine M-partition {(¢;,I;)} of I let ko € N be such
that

|fe(ti) — f(t:)] < e for k> ko,

put C' = max{[f(t:)|,|fe(t:)]; i,k < ko} and set n=e(C +1)".
Suppose that {J;: j=1,...,p} is a finite family of non-overlapping intervals in [
such that Y~ pu(J;) < n. By subdividing these intervals if necessary, we may assume

J
that for each j, J; C I; for some i. For each i let M; = {j; J; C I;} and let

Note that D is a §-fine M-system in I.
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Using the Saks-Henstock Lemma 11 we get

Y R ol IS AREAI ES wITATAIER

<€+(C+5)ZM(J]-)<€+(C’+5)17<5(2+L)

<

C+1
and this proves the lemma. O

Lemma 14. Assume that fi: I — R, k € N, are McShane (Lebesgue) integrable
functions such that

1. fult) — f(t) fort € I,

2. the set {fi; k € N} forms an equi-integrable sequence.

Then for every € > 0 there exists an n > 0 such that

(a) if F is closed, G open, F C G C I, u(G\ F) < n then there is a gauge
&: I — (0,00) such that

B(t,&(t)) c G fort € G,
Bt,ét)NICI\NF fortelI\F

and
(b) for &-fine M-systems {(u, Up)}, {(vm, Vin)} satisfying

U, Vm € G, F C int U Uy, F C int U Vin

w EF vm EF
we have
(15) \ S feluu() — fk(vmmwm)\ <e
l m

for every k € N.

Proof. Denote ®;(J) = [, fx for an interval J C I (the indefinite integral or
primitive of fi) and put € = £/10.

Since f are equi-integrable we obtain by the Saks-Henstock Lemma 11 that there
is a gauge A on [ such that

(16) Z[fk(rj)M(Kj) - O(Kj)]| <

for every A-fine M-system {(r;, K;)} and k € N.
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Assume that
Wy, 1s a fixe -fine -partition of I.
(17) {(wp, Wp)} is a fixed A-fi M iti f I

Let kg € N be such that
| fe(wp) — flwp)| <1

for k > ko and all p. Put k = max {14+ |f(wp)|, | fu(wp)|}. Then
p,Rxko

(18) |fr(wp)] <k forall keN and p.

Assume that n > 0 satisfies

(19) N Kk <Eé
and take
(20) 0< &) <A®R), tel

Since the sets G and I\ F" are open, the gauge £ can be chosen such that B(t,£(¢t)) C G
fort € Gand B(t,{(t)) NI CI\Ffortel\F.
This shows part (a) of the lemma.
Since {(wp, W,)} is a partition of I, we have | JW, = I and therefore
P

(21) Dofw)u@) =" 3" > frlu)u(W, N UiN Vi)
l

p l:uwy€Fm: v, €F

+>yN fk(uz)u(WpﬂUl\ U Vm)

p l:uw€eF m: v, EF

+> Y flw)p(W, Ny

p Il ’U,LEI\F

and similarly

(22) Do Awnn(Vi) =" >0 D fewm)u(Wy N U0 Vi)

p l:uy€Fm: v, €F

+3 3 fk(vm)ﬂ<wpmvm\ U Ul)

P m:um€F l: weF

Y )W, N V).

P m: v, €I\F
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The M-systems

{(w, W NUiN V) pyu € Fupy, € F},
{(wp, Wp NU N V) pyu € Fovp, € F}

are A-fine and therefore, by (16), we have the inequalities

Z Z Z frluw)p(W, NU N V) — %(WPOU[OVW)‘gé,

p l:uwy€Fm: v, €F

Z Z Z Ffre(lwp) (W NUIN V) — <I>k(meUmvm)‘<é

p l:weFm: v, €F

Hence

Z Z Z fkul WﬂUlﬂV)
p lL:uy€Fm: v, €F
= > felwy)p WOUZOV)‘ 2

p l:uw€Fm: v, €F

and similarly also

ZZ Z Fr(Vm)p(W, N U N V)

p l:uwy€Fm: v, €F

Y fwp)p WﬂUlﬁV)‘ 2.

p l:w€Fm: v, €F

Therefore

Z Z Z fkul WﬂUlﬂV)

p lL:uweFm: v, €F

*ZZ Z fie(vm) WﬁUlﬂV)‘ 4¢.

p l:uw€Fm: vn,€F

Since {(u;, U;)} is a &-fine M-system with u; € G, we obtain by the properties of the

gauge £ given in (a) and from the assumption F' C int U U, FC int |J Vp
u €F v E€F

that

(24) ( U wenoi\ U Vm)u U wWenticG\F

p,u €EF vm€F p,u €I\NF
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Further, the M-systems

{(Ul,WpﬂUl\ U Vm); pszF}U{(w,WpﬂUz); p,u € I'\ F},

vm €F

{(wp,wmel\ U vm); X7 EF}U{(wP,WpﬁUl); pou €I\ F}

vmEF

are A-fine (note that W,NU;\ U Vi, and W,NU; are figures in general). Therefore

vm EF
by (16) we have

> [fk(ul)u<WpﬂUl\ U Vm)q>k<wpmm\ U vm)]

p,w €F vm €F Vi €F

+ Z fk Ul W n Ul) (I)k(Wp n Ul)] <é

pu €I\NF

) [fk<wp>u(wpﬁvz\ U Vm)@k(Wp“Ul\ U V’”H

p,w €F vm €EF vm €F

+ Y [felwp)u(W, N UL — @k(WpﬂUl)]‘gé

p,u€I\F
This yields

> fk(UZ)M<WpﬂUz\ U Vm) > felu)p(W, N )

puEF v EF pu €I\NF

> fk(wp)M<WpﬁUl\ U vm> Yo Srlwp)u(Wy ﬂUz)}

p,u€F Vm €F p,u €I\NF

By virtue of (24), (18), the assumption u(G \ F)) < n and (19) we have

> fk(wp)ﬂ<wmel\ U vm) > felwy)p(W, N1

puw EF vm €F p,u €EI\NF

<Kk-m<Eé

and therefore

Z fk(ul),u(WpﬂUl\ U Vm) Z fk ul W ﬂUl)

puEF vm EF pu €I\NF

(25)

S 3é

and similarly also

> fk(vm)u(wpmvm\ U Ul)+ S fewn)n(Wy N Vi )‘ 3¢,

P,Um EF w EF P, Uvm EINF
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From (21), (22), (23), (25) and (26) we get

S w)n0) = 3 o utvin)| < 106 < ¢

l

and (15) is satisfied. This proves part (b) of the lemma. O

Theorem 15. Assume that fr: I — R, k € N, are McShane integrable functions
such that

1. fx(t) — f(t) fort € I,

2. the set {fi; k € N} is equi-integrable.

Then fr-xE, k € N, is an equi-integrable sequence for every measurable set £ C I.

Proof. Let e > 0 be given and let n > 0 corresponds to ¢ by Lemma 14.
Assume that E C I is measurable. Then there exist F' C I closed and G C I open
such that FF C E C G where u(G \ F) < 1. Assume that the gauge £: I — (0, 00)
is given as in the Lemma 14 and that {(u;, U;)}, {(vm, Vin)} are &-fine M-partitions
of I.

By virtue of (a) in Lemma 14 we have

if weE thenU;CG,Fcint |J U,
w eF

and

if v, €E thenV,, C G,F C int U Vi
v €EF

Hence by (b) from Lemma 14 we have

Z Fe(uw)pu(Ur) — Z fk(vm)u(Vm)‘és

Ly eFE m,vm E€E

and therefore also

5w (U = 3 Al (Vi) < =
l

m

This is the Bolzano-Cauchy condition from Theorem 4 for equi-integrability of the
sequence fi - xg, kK € N, and the proof is complete. O
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Proposition 16. Assume that fr: I — R, k € N, are McShane integrable
functions such that

1. fx(t) — f(t) fort € I,

2. the set {fr; k € N} is equi-integrable.

Then for every € > 0 there is an n > 0 such that if E C I is measurable with

w(E) < n then
‘/Ifk'XE :’/Efk <2

< 2

Proof. Lete > 0 be given and let n > 0 correspond to € by Lemma 13 and
assume that p(F) < 7. Then there is an open set G C I such that F C G and
w(G) <.

The equi-integrability of fi implies the existence of a gauge A: I — (0, +00) such
that for every A-fine M-partition {(¢;,1;)} of I the inequality

/ £l <
holds.

By Theorem 15 the integrals f[ frx - xE, k €N exist and for every 6 > 0 there is
a gauge 0: I — (0,+o00) which satisfies B(¢,0(t)) CGift € G, 6(t) < A(t) fort € I

and
‘ka Um)  XE(Um )1t /fk XE

holds for any d-fine M-partition {(vy,, Vin)} of I.
Ifv, € ECGthenV,, CGand > u(Vy)<n.

m,vmeE

Since {(vm, Vin); vm € E} is a A-fine M-system, we have by the Saks-Henstock
Lemma 11 the inequality

for every k € N.

\

<Le€

) [fmm)u(vm) -/ m fk]

m, v, R

and by Lemma 13 we get

’ Z /mfk <e.

m,vm €E

Hence

/Ef<9+

‘ 2 fk(vm)u(Vm)‘ <O+ }

m,vm R

SR

m,vm €E

3 [fk@m)u(vm) -/ fk}

m,vm R m

0 + 2¢.
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This proves the statement because § > 0 can be chosen arbitrarily small. O

Using Proposition 12 and 16 and the concept of uniform absolute continuity of a
sequence of functions given in Definition 7 we obtain the following.

Theorem 17. Assume that fr: I — R, k € N, are McShane integrable functions
such that fi(t) — f(t) fort € I.

Then the set { f.; k € N} forms an equi-integrable sequence if and only if { fi.; k €
N} is uniformly absolutely continuous.

Concluding remarks 18. Theorem 17 shows that the relaxed Vitali conver-
gence Theorem 9 is equivalent to our convergence Theorem 4 which uses the concept
of equi-integrability.

Therefore Theorem 4 is in the sense of Gordon [1] also a sort of primary theo-
rem because the Lebesgue dominated convergence theorem and the Levi monotone
convergence theorem follow from Theorem 4 (see [1, p.203]).

Note also that if we are looking at the Vitali convergence Theorem 8 where the
sequence fi, k € N, is assumed to converge to f in measure then by the Riesz theorem
[3] there is a subsequence f, which converges to f for all t € I\ N where pu(N) = 0.
If we set fx, (t) = f(t) for t € N then Theorem 17 yields that the assumption of the
Vitali convergence Theorem implies that the original sequence fi, k € N, contains a
subsequence which is equi-integrable.
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