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MCSHANE EQUI-INTEGRABILITY AND
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Abstract. The McShane integral of functions f : I → ! defined on an m-dimensional
interval I is considered in the paper. This integral is known to be equivalent to the Lebesgue
integral for which the Vitali convergence theorem holds.
For McShane integrable sequences of functions a convergence theorem based on the con-

cept of equi-integrability is proved and it is shown that this theorem is equivalent to the
Vitali convergence theorem.
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We consider functions f : I → " where I ⊂ " m is a compact interval, m > 1.

A system (finite family) of point-interval pairs {(ti, Ii), i = 1, . . . , p} is called an

M -system in I if Ii are non-overlapping (int Ii ∩ int Ij = ∅ for i 6= j, int Ii being the

interior of Ii), ti are arbitrary points in I .

Denote by µ the Lebesgue measure in " m .

An M -system in I is called an M -partition of I if
p
⋃

i=1

Ii = I .

Given ∆: I → (0, +∞), called a gauge, an M -system {(ti, Ii), i = 1, . . . , p} in I

is called ∆-fine if

Ii ⊂ B(ti, ∆(ti)), i = 1, . . . , p.

The set of ∆-fine partitions of I is nonempty for every gauge ∆ (Cousin’s lemma,

see e.g. [1]).

The work was supported by the grant No. 201/01/1199 of the GA of the Czech Republic.
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Definition 1. f : I → " is McShane integrable and J ∈ " is its McShane
integral if for every ε > 0 there exists a gauge ∆: I → (0, +∞) such that for every

∆-fine M -partition {(ti, Ii), i = 1, . . . , p} of I the inequality

∣

∣

∣

∣

p
∑

i=1

f(ti)µ(Ii) − J

∣

∣

∣

∣

< ε

holds. We denote J =
∫

I
f .

#%$�&(')&+*,$.-
. To simplify writing we will from now use the notation {(ul, Ul)}

for M -systems instead of {(ul, Ul) ; l = 1, . . . , r} which specifies the number r of

elements of the M -system. For a function f : I → " and an M -system {(ul, Ul)} we

write
∑

l

f(ul)µ(Ul) instead of
r

∑

l=1

f(ul)µ(Ul), etc.

Theorem 2. f : I → " is McShane integrable if and only if f is Lebesgue

integrable.

See [2] or [4].

Definition 3. A family M of functions f : I → " is called equi-integrable if
every f ∈ M is McShane integrable and for every ε > 0 there is a gauge ∆ such that

for any f ∈ M the inequality

∣

∣

∣

∣

∑

i

f(ti)µ(Ii) −

∫

I

f

∣

∣

∣

∣

< ε

holds provided {(ti, Ii)} is a ∆-fine M -partition of I .

Theorem 4. A familyM of functions f : I → X is equi-integrable if and only

if for every ε > 0 there exists a gauge ∆: I → (0, +∞) such that

∥

∥

∥

∥

∑

i

f(ti)µ(Ii) −
∑

j

f(sj)µ(Kj)

∥

∥

∥

∥

X

< ε

for every ∆-fine M -partitions {(ti, Ii)} and {(sj , Kj)} of I and any f ∈ M.

/10+$2$43
. IfM is equi-integrable then the condition clearly holds for the gauge δ

which corresponds to 1
2ε > 0 in the definition of equi-integrability.

If the condition of the theorem is fulfilled, then every individual function f ∈

M is McShane integrable (see e.g. [5]) with the same gauge δ for a given ε > 0

independently of the choice of f ∈ M and this proves the theorem. �
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Theorem 5. Assume that M = {fk : I → " ; k ∈ 5 } is an equi-integrable
sequence such that

lim
k→∞

fk(t) = f(t), t ∈ I.

Then the function f : I → " is McShane integrable and

lim
k→∞

∫

I

fk =

∫

I

f

holds.

/10+$2$43
. If ∆ is the gauge from the definition of equi-integrability of the sequence

fk corresponding to the value ε > 0 then for any k ∈ 5

(1)

∣

∣

∣

∣

∑

i

fk(ti)µ(Ii) −

∫

I

fk

∣

∣

∣

∣

< ε

for every ∆-fine M -partition {(ti, Ii)} of I .

If the partition {(ti, Ii)} is fixed then the pointwise convergence fk → f yields

lim
k→∞

∑

i

fk(ti)µ(Ii) =
∑

i

f(ti)µ(Ii).

Choose k0 ∈ 5 such that for k > k0 the inequality

∣

∣

∣

∣

∑

i

fk(ti)µ(Ii) −
∑

i

f(ti)µ(Ii)

∣

∣

∣

∣

< ε

holds. Then we have
∣

∣

∣

∣

∑

i

f(ti)µ(Ii) −

∫

I

fk

∣

∣

∣

∣

6

∣

∣

∣

∣

∑

i

[f(ti)µ(Ii) − fk(ti)µ(Ii)]

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

i

fk(ti)µ(Ii) −

∫

I

fk

∣

∣

∣

∣

< 2ε

for k > k0.

This gives for k, l > k0 the inequality

∣

∣

∣

∣

∫

I

fk −

∫

I

fl

∣

∣

∣

∣

< 4ε,

which shows that the sequence of real numbers
∫

I
fk, k ∈ 5 , is Cauchy and therefore

(2) lim
k→∞

∫

I

fk = J ∈ " exists.
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Let ε > 0. By hypothesis there is a gauge ∆ such that (1) holds for all k whenever

{(ti, Ii)} is a ∆-fine M -partition of I .

By (2) choose an N ∈ 5 such that | ∫
I
fk − J | < ε for all k > N . Suppose that

{(ti, Ii)} is a ∆-fine M -partition of I . Since fk converges to f pointwise there is a

k1 > N such that
∣

∣

∣

∣

∑

i

fk1
(ti)µ(Ii) −

∑

i

f(ti)µ(Ii)

∣

∣

∣

∣

< ε.

Therefore

∣

∣

∣

∣

∑

i

f(ti)µ(Ii) − J

∣

∣

∣

∣

6

∣

∣

∣

∣

∑

i

f(ti)µ(Ii) −
∑

i

fk1
(ti)µ(Ii)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

i

fk1
(ti)µ(Ii) −

∫

I

fk1

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

fk1
− J

∣

∣

∣

∣

< 3ε

and it follows that f is McShane integrable and lim
k→∞

∫

I
fk = J =

∫

I
f . �

687:9;'�0+<
6. By a figure we mean a finite union of compact nondegenerate inter-

vals in " m .

Let us mention the fact that if for the notion of anM -system {(ti, Ii), i = 1, . . . , p}

the intervals Ii are replaced by figures, we can develop the same theory and M -

systems andM -partitions of this kind can be used everywhere in our considerations.

Definition 7. LetM be a family of Lebesgue integrable functions f : I → " .
If for every ε > 0 there is a δ > 0 such that for E ⊂ I measurable with µ(E) < δ

we have |
∫

E
f | < ε for every f ∈ M then the familyM is called uniformly absolutely

continuous.

Theorem 8. Assume that a sequence of Lebesgue integrable functions fk : I →

" , n ∈ 5 , is given such that fk converge to f in measure.

If the set {fk ; k ∈ 5 } is uniformly absolutely continuous then the function f is

Lebesgue integrable and

lim
k→∞

∫

I

fk =

∫

I

f.

See [3, p. 168] or [1, p. 203, Theorem 13.3].

We will consider Theorem 8 in a less general form:
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Theorem 9. Assume that a sequence of Lebesgue integrable functions fk : I →

" , k ∈ 5 , is given such that fk converge to f pointwise in I .

If the set {fk ; k ∈ 5 } is uniformly absolutely continuous then the function f is

Lebesgue integrable and

lim
k→∞

∫

I

fk =

∫

I

f.

687:9;'�0+<
10. It is possible to assume in Theorem 9 that fk converge to f almost

everywhere in I , but changing the values of fk and f to 0 on a set N of zero Lebesgue

measure (µ(N) = 0) it can be seen easily that such a change has no effect on Lebesgue

integrability and on the corresponding indefinite Lebesgue integrals.

Our goal is to show that the relaxed Vitali convergence Theorem 9 is a consequence

of our convergence Theorem 4 for the McShane integral.

Lemma 11 (Saks-Henstock). Assume that a family M of functions f : I → "
is equi-integrable. Given ε > 0 assume that the gauge ∆ on I is such that

∣

∣

∣

∣

∑

i

f(ti)µ(Ii) −

∫

I

f

∣

∣

∣

∣

< ε

for every ∆-fine M -partition {(ti, Ii)} of I and f ∈ M.

Then if {(rj , Kj)} is an arbitrary ∆-fine M -system we have

∣

∣

∣

∣

∑

j

[

f(rj)µ(Kj) −

∫

Kj

f

]
∣

∣

∣

∣

6 ε

for every f ∈ M.

/10+$2$43
. Since {(rj , Kj)} is a ∆-fine M -system the complement I \ int

(
⋃

j

Kj

)

can be expressed as a finite systemMl, l = 1, . . . , r of non-overlapping intervals in I .

The functions f ∈ M are equi-integrable and therefore they are equi-integrable over

each Ml and by definition for any η > 0 there is a gauge δl on Ml with δl(t) < δ(t)

for t ∈ Ml such that for every l = 1, . . . , r we have

∣

∣

∣

∣

∑

i

f(sl
i)µ(J l

i ) −

∫

Ml

f dµ

∣

∣

∣

∣

<
η

r + 1

provided {(sl
i, J

l
i )} is a δl-fine M -partition of the interval Ml and f ∈ M.

The sum
∑

j

f(rj)µ(Kj) +
∑

l

∑

i

f(sl
i)µ(J l

i )
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represents an integral sum which corresponds to a certain δ-fine M -partition of I ,

namely {(rj , Kj), (s
l
i, J

l
i )}, and consequently by the assumption we have

∣

∣

∣

∣

∑

j

f(rj)µ(Kj) +
∑

l

∑

i

f(sl
i)µ(J l

i ) −

∫

I

f dµ

∣

∣

∣

∣

< ε.

Hence

∣

∣

∣

∣

∑

j

[

f(rj)µ(Kj) −

∫

Kj

f dµ

]∣

∣

∣

∣

6

∣

∣

∣

∣

∑

j

f(rj)µ(Kj) +
∑

l

∑

i

f(sl
i)µ(J l

i ) −

∫

I

f dµ

∣

∣

∣

∣

+
∑

l

∣

∣

∣

∣

∑

i

f(sl
i)µ(J l

i ) −

∫

Ml

f dµ

∣

∣

∣

∣

< ε + r
η

r + 1
< ε + η

Since this inequality holds for every η > 0 and f ∈ M we obtain immediately the

statement of the lemma. �

Looking at Lemma 11 we can see immediately that if the equi-integrable family

M consists of a single McShane integrable function f , then the following standard

Saks-Henstock Lemma holds.

Assume that f : I → " is McShane integrable. Given ε > 0 assume that the gauge

∆ on I is such that
∣

∣

∣

∣

∑

i

f(ti)µ(Ii) −

∫

I

f

∣

∣

∣

∣

< ε

for every ∆-fine M -partition {(ti, Ii)} of I .

Then if {(rj , Kj)} is an arbitrary ∆-fine M -system we have

∣

∣

∣

∣

∑

j

[

f(rj)µ(Kj) −

∫

Kj

f

]∣

∣

∣

∣

6 ε.

Proposition 12. Assume that fk : I → " , k ∈ 5 , are McShane (=Lebesgue)
integrable functions such that

1. fk(t) → f(t) for t ∈ I ,

2. the set {fk ; k ∈ 5 } is uniformly absolutely continuous.
Then the set {fk ; k ∈ 5 } is equi-integrable.
/10+$2$43

. Assuming 1 we will use Egoroff’s Theorem (see [3] or [1, Th. 2.13, p. 22])

in the following form:
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For every j ∈ 5 there is a measurable set Ej ⊂ I such that µ(I \ Ej) < 1/j,

Ej ⊂ Ej+1 and fk(t) → f(t) uniformly for t ∈ Ej , i.e. for every ε > 0 there is a

Kj ∈ 5 such that for k > Kj we have

(3) |fk(t) − f(t)| < ε for t ∈ Ej .

Let us mention that for N = I \
∞
⋃

j=1

Ej we have µ(N) = 0 because µ(N) 6

µ(I \ Ej) < 1/j for every j ∈ 5 .
By virtue of Remark 10 we may assume without any loss of generality that fk(t) =

f(t) = 0 for k ∈ 5 and t ∈ N .

Assume now that ε > 0 is given. By the assumption 2 there is a j ∈ 5 such that

(4)

∫

I\Ej

|fk| < ε for all k ∈ 5 .

Then (by (3) and (4))

∫

I

|fk − fl| =

∫

Ej

|fk − fl| +

∫

I\Ej

|fk − fl|

6

∫

Ej

|fk − f | +

∫

Ej

|f − fl| +

∫

I\Ej

|fk| +

∫

I\Ej

|fl|

< 2εµ(Ej) + 2ε 6 2ε(µ(I) + 1)

for all k, l > Kj . This shows that the sequence fk, k ∈ 5 , is Cauchy in the Banach
space L of Lebesgue integrable functions on I and implies that the function f : I → "
also belongs to L and

(5) lim
k→∞

∫

I

|fk − f | = 0,

i.e. there is a K ∈ 5 such that

(6)

∫

I

|fk − f | < ε for all k > K.

By Theorem 2 we know that all the functions f , fk, k ∈ 5 , are also McShane
integrable and the values of their McShane and Lebesgue integrals are the same.

According to Definition 1 there exists a gauge ∆1 : I → (0, +∞) such that

(7)

∣

∣

∣

∣

∑

i

f(ti)µ(Ii) −

∫

I

f

∣

∣

∣

∣

< ε

for every ∆1-fine M -partition {(ti, Ii)} of I .
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Further, there exists a gauge ∆2 : I → (0, +∞) such that

(8)

∣

∣

∣

∣

∑

i

fk(ti)µ(Ii) −

∫

I

fk

∣

∣

∣

∣

< ε

for every ∆2-fine M -partition {(ti, Ii)} of I for all k 6 K, K given by (6). (A finite

set of integrable functions is evidently equi-integrable.)

Similarly, for any j ∈ 5 we have a gauge δj : I → (0, +∞) such that

(9)

∣

∣

∣

∣

∑

i

fk(ti)µ(Ii) −

∫

I

fk

∣

∣

∣

∣

<
ε

2j

for every δj-fine M -partition {(ti, Ii)} of I and all k 6 Kj .

Since µ(N) = 0, for every δ > 0 there is an open set U ⊂ " m such that N ⊂ U

and µ(U) < δ. By virtue of the assumption 2 the value of δ can be chosen in such a

way that

(10)

∣

∣

∣

∣

∫

U∩I

fk

∣

∣

∣

∣

< ε for all k ∈ 5 ,

cf. Definition 7.

For t ∈ E1 \N define ∆3(t) = δ1(t), for t ∈ (E2 \E1) \N define ∆3(t) = δ2(t), . . .,

for t ∈ (Ej \Ej−1) \ N define ∆3(t) = δj(t), etc.

If t ∈ N then we define ∆3(t) > 0 such that for the ball B(t, ∆3(t)) (centered at t

with the radius ∆3(t)) we have B(t, ∆3(t)) ⊂ U .

In this way the positive function ∆3 defined on I represents a gauge.

Let us put ∆(t) = min(∆1(t), ∆2(t), ∆3(t)) for t ∈ I . The function ∆ is evidently

a gauge on I .

Assume that {(ti, Ii)} is an arbitrary ∆-fine M -partition of I .

If k 6 K then
∣

∣

∣

∣

∑

i

fk(ti)µ(Ii) −

∫

I

fk

∣

∣

∣

∣

< ε

by (8).

If k > K then
∣

∣

∣

∣

∑

i

fk(ti)µ(Ii) −

∫

I

fk

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

i

[

fk(ti)µ(Ii) −

∫

Ii

fk

]
∣

∣

∣

∣

(11)

6

∣

∣

∣

∣

∞
∑

j=1

∑

i : ti∈(Ej\Ej−1)\N

[

fk(ti)µ(Ii) −

∫

Ii

fk

]∣

∣

∣

∣

+

∣

∣

∣

∣

∑

i : ti∈N

[

fk(ti)µ(Ii) −

∫

Ii

fk

]
∣

∣

∣

∣

.
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For the second term on the right hand side of (11) we know that if ti ∈ N then

fk(ti) = 0 and
⋃

i : ti∈N

Ei ⊂ U and therefore by (10) we have

(12)

∣

∣

∣

∣

∑

i : ti∈N

∫

Ii

fk

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

=
i

Ii : ti∈N

fk

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

U∩I

fk

∣

∣

∣

∣

< ε.

Concerning the first term on the right hand side of (11) we have

(13)

∣

∣

∣

∣

∞
∑

j=1

∑

i : ti∈(Ej\Ej−1)\N

[

fk(ti)µ(Ii) −

∫

Ii

fk

]∣

∣

∣

∣

6

∞
∑

j=1

∣

∣

∣

∣

∑

i : ti∈(Ej\Ej−1)\N

[

fk(ti)µ(Ii) −

∫

Ii

fk

]∣

∣

∣

∣

.

If k 6 Kj the the Saks-Henstock Lemma 11 yields by (9) the inequality

(14)

∣

∣

∣

∣

∑

i : ti∈(Ej\Ej−1)\N

[

fk(ti)µ(Ii) −

∫

Ii

fk

]
∣

∣

∣

∣

<
ε

2j
.

If k > Kj then (cf. (3))
∣

∣

∣

∣

∑

i : ti∈(Ej\Ej−1)\N

[

fk(ti)µ(Ii) −

∫

Ii

fk

]
∣

∣

∣

∣

6
∑

i : ti∈(Ej\Ej−1)\N

∣

∣

∣

∣

fk(ti)µ(Ii) −

∫

Ii

fk

∣

∣

∣

∣

6
∑

i : ti∈(Ej\Ej−1)\N

|fk(ti) − f(ti)|µ(Ii) +
∑

i : ti∈(Ej\Ej−1)\N

∣

∣

∣

∣

f(ti)µ(Ii) −

∫

Ii

f

∣

∣

∣

∣

+
∑

i : ti∈(Ej\Ej−1)\N

∫

Ii

|f − fk|

< ε
∑

i : ti∈(Ej\Ej−1)\N

µ(Ii) +
∑

i : ti∈(Ej\Ej−1)\N

∣

∣

∣

∣

f(ti)µ(Ii) −

∫

Ii

f

∣

∣

∣

∣

+

∫

=
i

Ii : ti∈(Ej\Ej−1)\N

|f − fk|.

This together with (14) gives for k ∈ 5 the estimate
∣

∣

∣

∣

∑

i : ti∈(Ej\Ej−1)\N

[

fk(ti)µ(Ii) −

∫

Ii

fk

]∣

∣

∣

∣

<
ε

2j
+ ε

∑

i : ti∈(Ej\Ej−1)\N

µ(Ii)

+
∑

i : ti∈(Ej\Ej−1)\N

∣

∣

∣

∣

f(ti)µ(Ii) −

∫

Ii

f

∣

∣

∣

∣

+

∫

=
i

Ii : ti∈(Ej\Ej−1)\N

|f − fk|.
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Summing over j and using (7) and (6) together with the Saks-Henstock Lemma 11

we obtain

∞
∑

j

∣

∣

∣

∣

∑

i : ti∈(Ej\Ej−1)\N

[

fk(ti)µ(Ii) −

∫

Ii

fk

]∣

∣

∣

∣

< ε + εµ(I) + ε + ε

and taking into account (11) and (12) we conclude

∣

∣

∣

∣

∑

i

fk(ti)µ(Ii) −

∫

I

fk

∣

∣

∣

∣

< (4 + µ(I))ε for all k ∈ 5 .

This inequality proves that the sequence fk, k ∈ 5 , is equi-integrable. �

Lemma 13. Assume that fk : I → " , k ∈ 5 , are McShane (Lebesgue) integrable
functions such that

1. fk(t) → f(t) for t ∈ I ,

2. the set {fk ; k ∈ 5 } is equi-integrable.
Then for every ε > 0 there is an η > 0 such that for any finite family {Jj : j =

1, . . . , p} of non-overlapping intervals in I with
∑

j

µ(Jj) < η we have

∣

∣

∣

∣

∑

j

∫

Jj

fk

∣

∣

∣

∣

< ε, k ∈ 5 .

/10+$2$43
. Let ε > 0 be given. Since fk are equi-integrable on I , there exists a

gauge δ on I such that |
∑

i

fk(ti)µ(Ii) −
∫

I
fk| < ε for k ∈ 5 whenever {(ti, Ii)} is a

δ-fine M -partition of I . Fixing a δ-fine M -partition {(ti, Ii)} of I let k0 ∈ 5 be such
that

|fk(ti) − f(ti)| < ε for k > k0,

put C = max{|f(ti)|, |fk(ti)| ; i, k 6 k0} and set η = ε(C + 1)−1.

Suppose that {Jj : j = 1, . . . , p} is a finite family of non-overlapping intervals in I

such that
∑

j

µ(Jj) < η. By subdividing these intervals if necessary, we may assume

that for each j, Jj ⊆ Ii for some i. For each i let Mi = {j ; Jj ⊆ Ii} and let

D = {(ti, Jj) : j ∈ Mi, i}.

Note that D is a δ-fine M -system in I .
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Using the Saks-Henstock Lemma 11 we get

∣

∣

∣

∣

∑

j

∫

Jj

fk

∣

∣

∣

∣

6

∣

∣

∣

∣

∑

j

[
∫

Jj

fk − fk(ti)µ(Jj)

]∣

∣

∣

∣

+
∑

j

|fk(ti)|µ(Jj)

6 ε + (C + ε)
∑

j

µ(Jj) < ε + (C + ε)η < ε

(

2 +
ε

C + 1

)

and this proves the lemma. �

Lemma 14. Assume that fk : I → " , k ∈ 5 , are McShane (Lebesgue) integrable
functions such that

1. fk(t) → f(t) for t ∈ I ,

2. the set {fk ; k ∈ 5 } forms an equi-integrable sequence.
Then for every ε > 0 there exists an η > 0 such that

(a) if F is closed, G open, F ⊂ G ⊂ I , µ(G \ F ) < η then there is a gauge

ξ : I → (0,∞) such that

B(t, ξ(t)) ⊂ G for t ∈ G,

B(t, ξ(t)) ∩ I ⊂ I \ F for t ∈ I \ F

and

(b) for ξ-fine M -systems {(ul, Ul)}, {(vm, Vm)} satisfying

ul, vm ∈ G, F ⊂ int
⋃

ul∈F

Ul, F ⊂ int
⋃

vm∈F

Vm

we have

(15)

∣

∣

∣

∣

∑

l

fk(ul)µ(Ul) −
∑

m

fk(vm)µ(Vm)

∣

∣

∣

∣

6 ε

for every k ∈ 5 .
/10+$2$43

. Denote Φk(J) =
∫

J
fk for an interval J ⊂ I (the indefinite integral or

primitive of fk) and put ε̂ = ε/10.

Since fk are equi-integrable we obtain by the Saks-Henstock Lemma 11 that there

is a gauge ∆ on I such that

(16)

∣

∣

∣

∣

∑

j

[fk(rj)µ(Kj) − Φk(Kj)]

∣

∣

∣

∣

6 ε̂

for every ∆-fine M -system {(rj , Kj)} and k ∈ 5 .
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Assume that

(17) {(wp, Wp)} is a fixed ∆-fine M -partition of I.

Let k0 ∈ 5 be such that
|fk(wp) − f(wp)| < 1

for k > k0 and all p. Put κ = max
p,k6k0

{1 + |f(wp)|, |fk(wp)|}. Then

(18) |fk(wp)| < κ for all k ∈ 5 and p.

Assume that η > 0 satisfies

(19) η · κ 6 ε̂

and take

(20) 0 < ξ(t) 6 ∆(t), t ∈ I.

Since the setsG and I\F are open, the gauge ξ can be chosen such that B(t, ξ(t)) ⊂ G

for t ∈ G and B(t, ξ(t)) ∩ I ⊂ I \ F for t ∈ I \ F .

This shows part (a) of the lemma.

Since {(wp, Wp)} is a partition of I , we have
⋃

p

Wp = I and therefore

∑

l

fk(ul)µ(Ul) =
∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(ul)µ(Wp ∩ Ul ∩ Vm)(21)

+
∑

p

∑

l : ul∈F

fk(ul)µ

(

Wp ∩ Ul

∖

⋃

m : vm∈F

Vm

)

+
∑

p

∑

l : ul∈I\F

fk(ul)µ(Wp ∩ Ul)

and similarly

∑

m

fk(vm)µ(Vm) =
∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(vm)µ(Wp ∩ Ul ∩ Vm)(22)

+
∑

p

∑

m : um∈F

fk(vm)µ

(

Wp ∩ Vm

∖

⋃

l : ul∈F

Ul

)

+
∑

p

∑

m : vm∈I\F

fk(vm)µ(Wp ∩ Vm).
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The M -systems

{(ul, Wp ∩ Ul ∩ Vm) ; p, ul ∈ F, vm ∈ F},

{(wp, Wp ∩ Ul ∩ Vm) ; p, ul ∈ F, vm ∈ F}

are ∆-fine and therefore, by (16), we have the inequalities

∣

∣

∣

∣

∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(ul)µ(Wp ∩ Ul ∩ Vm) − Φk(Wp ∩ Ul ∩ Vm)

∣

∣

∣

∣

6 ε̂,

∣

∣

∣

∣

∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(wp)µ(Wp ∩ Ul ∩ Vm) − Φk(Wp ∩ Ul ∩ Vm)

∣

∣

∣

∣

6 ε̂.

Hence

∣

∣

∣

∣

∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(ul)µ(Wp ∩ Ul ∩ Vm)

−
∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(wp)µ(Wp ∩ Ul ∩ Vm)

∣

∣

∣

∣

6 2ε̂

and similarly also

∣

∣

∣

∣

∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(vm)µ(Wp ∩ Ul ∩ Vm)

−
∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(wp)µ(Wp ∩ Ul ∩ Vm)

∣

∣

∣

∣

6 2ε̂.

Therefore

∣

∣

∣

∣

∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(ul)µ(Wp ∩ Ul ∩ Vm)(23)

−
∑

p

∑

l : ul∈F

∑

m : vm∈F

fk(vm)µ(Wp ∩ Ul ∩ Vm)

∣

∣

∣

∣

6 4ε̂.

Since {(ul, Ul)} is a ξ-fine M -system with ul ∈ G, we obtain by the properties of the

gauge ξ given in (a) and from the assumption F ⊂ int
⋃

ul∈F

Ul, F ⊂ int
⋃

vm∈F

Vm

that

(24)

(

⋃

p,ul∈F

Wp ∩ Ul \
⋃

vm∈F

Vm

)

∪
⋃

p,ul∈I\F

Wp ∩ Ul ⊂ G \ F.
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Further, the M -systems

{(

ul, Wp ∩ Ul \
⋃

vm∈F

Vm

)

; p, ul ∈ F

}

∪ {(ul, Wp ∩ Ul) ; p, ul ∈ I \ F},

{(

wp, Wp ∩ Ul \
⋃

vm∈F

Vm

)

; p, ul ∈ F

}

∪ {(wp, Wp ∩ Ul) ; p, ul ∈ I \ F}

are∆-fine (note thatWp∩Ul\
⋃

vm∈F

Vm andWp∩Ul are figures in general). Therefore

by (16) we have

∣

∣

∣

∣

∑

p,ul∈F

[

fk(ul)µ

(

Wp ∩ Ul \
⋃

vm∈F

Vm

)

− Φk

(

Wp ∩ Ul \
⋃

vm∈F

Vm

)]

+
∑

p,ul∈I\F

[fk(ul)µ(Wp ∩ Ul) − Φk(Wp ∩ Ul)]

∣

∣

∣

∣

6 ε̂,

∣

∣

∣

∣

∑

p,ul∈F

[

fk(wp)µ

(

Wp ∩ Ul \
⋃

vm∈F

Vm

)

− Φk

(

Wp ∩ Ul \
⋃

vm∈F

Vm

)]

+
∑

p,ul∈I\F

[fk(wp)µ(Wp ∩ Ul) − Φk(Wp ∩ Ul)]

∣

∣

∣

∣

6 ε̂.

This yields

∣

∣

∣

∣

∑

p,ul∈F

fk(ul)µ

(

Wp ∩ Ul \
⋃

vm∈F

Vm

)

+
∑

p,ul∈I\F

fk(ul)µ(Wp ∩ Ul)

−
∑

p,ul∈F

fk(wp)µ

(

Wp ∩ Ul \
⋃

vm∈F

Vm

)

−
∑

p,ul∈I\F

fk(wp)µ(Wp ∩ Ul)

∣

∣

∣

∣

6 2ε̂.

By virtue of (24), (18), the assumption µ(G \ F ) < η and (19) we have

∣

∣

∣

∣

∑

p,ul∈F

fk(wp)µ

(

Wp ∩ Ul \
⋃

vm∈F

Vm

)

+
∑

p,ul∈I\F

fk(wp)µ(Wp ∩ Ul)

∣

∣

∣

∣

6 κ · η 6 ε̂

and therefore

(25)

∣

∣

∣

∣

∑

p,ul∈F

fk(ul)µ

(

Wp ∩ Ul \
⋃

vm∈F

Vm

)

+
∑

p,ul∈I\F

fk(ul)µ(Wp ∩ Ul)

∣

∣

∣

∣

6 3ε̂

and similarly also

(26)

∣

∣

∣

∣

∑

p,vm∈F

fk(vm)µ

(

Wp ∩ Vm \
⋃

ul∈F

Ul

)

+
∑

p,vm∈I\F

fk(wm)µ(Wp ∩ Vm)

∣

∣

∣

∣

6 3ε̂.
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From (21), (22), (23), (25) and (26) we get

∣

∣

∣

∣

∑

l

fk(ul)µ(Ul) −
∑

m

fk(vm)µ(Vm)

∣

∣

∣

∣

6 10ε̂ 6 ε

and (15) is satisfied. This proves part (b) of the lemma. �

Theorem 15. Assume that fk : I → " , k ∈ 5 , are McShane integrable functions
such that

1. fk(t) → f(t) for t ∈ I ,

2. the set {fk ; k ∈ 5 } is equi-integrable.
Then fk ·χE , k ∈ 5 , is an equi-integrable sequence for every measurable set E ⊂ I .

/10+$2$43
. Let ε > 0 be given and let η > 0 corresponds to ε by Lemma 14.

Assume that E ⊂ I is measurable. Then there exist F ⊂ I closed and G ⊂ I open

such that F ⊂ E ⊂ G where µ(G \ F ) < η. Assume that the gauge ξ : I → (0,∞)

is given as in the Lemma 14 and that {(ul, Ul)}, {(vm, Vm)} are ξ-fine M -partitions

of I .

By virtue of (a) in Lemma 14 we have

if ul ∈ E then Ul ⊂ G, F ⊂ int
⋃

ul∈F

Ul

and

if vm ∈ E then Vm ⊂ G, F ⊂ int
⋃

vm∈F

Vm.

Hence by (b) from Lemma 14 we have

∣

∣

∣

∣

∑

l,ul∈E

fk(ul)µ(Ul) −
∑

m,vm∈E

fk(vm)µ(Vm)

∣

∣

∣

∣

6 ε

and therefore also

∣

∣

∣

∣

∑

l

fk(ul)χE(ul)µ(Ul) −
∑

m

fk(vm)χE(vm)µ(Vm)

∣

∣

∣

∣

6 ε.

This is the Bolzano-Cauchy condition from Theorem 4 for equi-integrability of the

sequence fk · χE , k ∈ 5 , and the proof is complete. �
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Proposition 16. Assume that fk : I → " , k ∈ 5 , are McShane integrable
functions such that

1. fk(t) → f(t) for t ∈ I ,

2. the set {fk ; k ∈ 5 } is equi-integrable.
Then for every ε > 0 there is an η > 0 such that if E ⊂ I is measurable with

µ(E) < η then
∣

∣

∣

∣

∫

I

fk · χE

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

E

fk

∣

∣

∣

∣

6 2ε

for every k ∈ 5 .
/10+$2$43

. Let ε > 0 be given and let η > 0 correspond to ε by Lemma 13 and

assume that µ(E) < η. Then there is an open set G ⊂ I such that E ⊂ G and

µ(G) < η.

The equi-integrability of fk implies the existence of a gauge ∆: I → (0, +∞) such

that for every ∆-fine M -partition {(ti, Ii)} of I the inequality
∣

∣

∣

∣

∑

i

fk(ti)µ(Ii) −

∫

I

fk

∣

∣

∣

∣

< ε

holds.

By Theorem 15 the integrals
∫

I
fk · χE , k ∈ 5 , exist and for every θ > 0 there is

a gauge δ : I → (0, +∞) which satisfies B(t, δ(t)) ⊂ G if t ∈ G, δ(t) 6 ∆(t) for t ∈ I

and
∣

∣

∣

∣

∑

m

fk(vm) · χE(vm)µ(Vm) −

∫

I

fk · χE

∣

∣

∣

∣

6 θ

holds for any δ-fine M -partition {(vm, Vm)} of I .

If vm ∈ E ⊂ G then Vm ⊂ G and
∑

m,vm∈E

µ(Vm) 6 η.

Since {(vm, Vm) ; vm ∈ E} is a ∆-fine M -system, we have by the Saks-Henstock

Lemma 11 the inequality
∣

∣

∣

∣

∑

m,vm∈E

[

fk(vm)µ(Vm) −

∫

Vm

fk

]∣

∣

∣

∣

6 ε

and by Lemma 13 we get
∣

∣

∣

∣

∑

m,vm∈E

∫

Vm

fk

∣

∣

∣

∣

6 ε.

Hence
∣

∣

∣

∣

∫

E

f

∣

∣

∣

∣

6 θ +

∣

∣

∣

∣

∑

m,vm∈E

fk(vm)µ(Vm)

∣

∣

∣

∣

6 θ +

∣

∣

∣

∣

∑

m,vm∈E

[

fk(vm)µ(Vm) −

∫

Vm

fk

]∣

∣

∣

∣

+

∣

∣

∣

∣

∑

m,vm∈E

∫

Vm

fk

∣

∣

∣

∣

6 θ + 2ε.
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This proves the statement because θ > 0 can be chosen arbitrarily small. �

Using Proposition 12 and 16 and the concept of uniform absolute continuity of a

sequence of functions given in Definition 7 we obtain the following.

Theorem 17. Assume that fk : I → " , k ∈ 5 , are McShane integrable functions
such that fk(t) → f(t) for t ∈ I .

Then the set {fk ; k ∈ 5 } forms an equi-integrable sequence if and only if {fk ; k ∈

5 } is uniformly absolutely continuous.
> $.-�?A@ B CD*,-FEG0+7H9I')0+<KJ

18. Theorem 17 shows that the relaxed Vitali conver-

gence Theorem 9 is equivalent to our convergence Theorem 4 which uses the concept

of equi-integrability.

Therefore Theorem 4 is in the sense of Gordon [1] also a sort of primary theo-

rem because the Lebesgue dominated convergence theorem and the Levi monotone

convergence theorem follow from Theorem 4 (see [1, p. 203]).

Note also that if we are looking at the Vitali convergence Theorem 8 where the

sequence fk, k ∈ 5 , is assumed to converge to f in measure then by the Riesz theorem

[3] there is a subsequence fkl
which converges to f for all t ∈ I \N where µ(N) = 0.

If we set fkl
(t) = f(t) for t ∈ N then Theorem 17 yields that the assumption of the

Vitali convergence Theorem implies that the original sequence fk, k ∈ 5 , contains a
subsequence which is equi-integrable.
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