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Abstract. We present an algorithm for computing the greatest integer that is not a
solution of the modular Diophantine inequality ax mod b 6 x, with complexity similar to
the complexity of the Euclid algorithm for computing the greatest common divisor of two
integers.
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1. Introduction

Given two integers m and n with n 6= 0, we denote by m mod n the remainder

of the division of m by n. Following the terminology used in [6], a proportionally

modular Diophantine inequality is an expression of the form ax mod b 6 cx, where a,

b and c are positive integers. The set S(a, b, c) of integer solutions of this inequality

is a numerical semigroup, that is, it is a subset of N (here N denotes the set of
nonnegative integers) that is closed under addition, contains the zero element and

its complement in N is finite. We say that a numerical semigroup is proportionally
modular if it is the set of integer solutions of a proportionally modular Diophantine

inequality.

The integers a, b and c in the inequality ax mod b 6 cx are, respectively, the

factor, the modulus and the proportion of the inequality. Following the terminology

used in [7], proportionally modular Diophantine inequalities with proportion 1, that
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is, such that c = 1, are simply called modular Diophantine inequalities. A numerical

semigroup is modular if it is the set of integer solutions of a modular Diophantine

inequality.

If S is a numerical semigroup, then the greatest integer that does not belong to

S is an important invariant of S, called the Frobenius number of S (see [3]) and

denoted here by g(S). Giving a formula for the Frobenius number of S(a, b, 1),

as a function of a and b, is still an open problem. Some progress was made in

[7] and [4]. In [2] an algorithm to determine the Frobenius number of S(a, b, c) is

described. The aim of the present paper is to give an algorithm that computes

the Frobenius number of S(a, b, 1), with complexity similar to the complexity of the

Euclid algorithm for computing the greatest common divisor of two integers. This

algorithm has considerably smaller complexity than the one presented in [2] in most

of the cases.

2. Preliminaries

Given a nonempty subset A of Q+
0 (here Q+

0 is the set of nonnegative rational

numbers), we will denote by 〈A〉 the submonoid of (Q+
0 , +) generated by A, that is,

〈A〉 = {λ1a1 + . . .+λnan ; n ∈ N \ {0}, λ1, . . . , λn ∈ N and a1, . . . , an ∈ A}. Clearly,

〈A〉 ∩ N is a submonoid of (N , +), represented here by S(A). We will refer to S(A)

as the submonoid of N associated to A.

Let p and q be two positive rational numbers with p < q. We use the notation

[p, q] = {x ∈ Q ; p 6 x 6 q} and ]p, q[ = {x ∈ Q ; p < x < q}.

The following result is a reformulation of [6, Corollary 9].

Proposition 1.

(1) Let a, b and c be positive integers such that c < a < b. Then S([ b
a , b

a−c ]) =

S(a, b, c).

(2) Conversely, if a1, b1, a2 and b2 are positive integers such that
b1
a1

< b2
a2

, then

S([ b1
a1

, b2
a2

]) = S(a1b2, b1b2, a1b2 − a2b1).

Since the inequality ax mod b 6 cx has the same solutions as the inequality

(a mod b)x mod b 6 cx, we can assume that a < b. Moreover, if c > a, then

S(a, b, c) = N . Therefore, we can suppose that a, b and c are positive integers such

that c < a < b. Consequently, the condition imposed in (1) of the above proposition

is not restrictive.

The next proposition is [8, Proposition 5].
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Proposition 2. If I is an interval of positive rational numbers (not necessarily

closed), then S(I) is a proportionally modular numerical semigroup.

As an immediate consequence of Propositions 1 and 2 we have the following result.

Proposition 3. Let I be an interval of rational numbers greater than one. Then

S(I) is a proportionally modular numerical semigroup. Moreover, every proportion-

ally modular numerical semigroup not equal to N is of this form.
The following lemma can be easily deduced from [8, Lemma 2] and will be used

several times in this paper.

Lemma 4. Let I be an interval of positive rational numbers and let x be a

positive integer. Then x ∈ S(I) if and only if there exists a positive integer y such

that x/y ∈ I.

If S is a numerical semigroup, then the smallest positive integer that belongs to

S is the multiplicity of S (see [1]) and it is denoted by m(S). If a1, b1, a2 and b2 are

positive integers such that b1
a1

< b2
a2

, then [9, Algorithm 12] allows us to compute the

multiplicity of S([ b1

a1

, b2
a2

]). In essence, this algorithm follows the steps of the Euclid

algorithm for computing the greatest common divisor of two integers.

Note that, by Proposition 1, we have S(a, b, 1) = S([ b
a , b

a−1 ]). In Theorem 18 we

will see that

g
(

S
([ b

a
,

b

a − 1

]))

= b − m
(

S
(] b

a
,

b

a − 1

[))

and in Theorem 9 that

S
(] b

a
,

b

a − 1

[)

= S
([2b2 + 1

2ab
,

2b2 − 1

2b(a − 1)

])

.

Therefore

g
(

S
([ b

a
,

b

a − 1

]))

= b − m
(

S
([2b2 + 1

2ab
,

2b2 − 1

2b(a − 1)

]))

and m
(

S
([

2b2+1
2ab , 2b2−1

2b(a−1)

]))

can be computed by applying [9, Algorithm 12].
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3. A proportionally modular representation for an

open modular numerical semigroup

If x1 < x2 < . . . < xk are integers, then we use {x1, x2, . . . , xk,→} to denote the

set {x1, x2, . . . , xk} ∪ {z ∈ Z; z > xk}. Following the terminology used in [8], a

numerical semigroup S is a half-line if S = {0}∪ {m(S),→}, and it is open modular

if either S is a half-line or there exist integers a and b such that 2 6 a < b and

S = S(] b
a , b

a−1 [).

If S = S(] b
a , b

a−1 [), then by Proposition 2 we know that S is a proportionally

modular numerical semigroup and therefore it admits a proportionally modular rep-

resentation, that is, there exist positive integers x, y and z such that S = S(x, y, z).

Observe that, in view of Proposition 1, it suffices to find positive integers a1, b1,

a2 and b2 such that S(] b
a , b

a−1 [) = S([ b1
a1

, b2
a2

]). Finding these positive integers is the

fundamental aim of this section. To this end, we need some preliminary results and

concepts.

If S is a numerical semigroup, then N \ S is finite. The elements of N \ S are the

so called gaps of S. The cardinality of N \ S is known as the singularity degree of S

(see [1]).

The Frobenius number and the singularity degree of an open modular numerical

semigroup can be easily computed by using the following result.

Lemma 5 [8, Theorem 11]. Let 2 6 a < b be integers, α = gcd{a, b} and β =

gcd{a − 1, b}. Then S(] b
a , b

a−1 [) is a proportionally modular numerical semigroup

with Frobenius number b and singularity degree 1
2 (b − 1 + α + β).

The next lemma is straightforward to prove.

Lemma 6. Let 2 6 a < b be integers. Then b − 1 ∈ S(] b
a , b

a−1 [).

P r o o f . A simple check shows that b
a < b−1

a−1 < b
a−1 . By applying Lemma 4 we

have that b − 1 ∈ S(] b
a , b

a−1 [). �

It is well-known (see for instance [5]) that every numerical semigroup S is finitely

generated and therefore there exists a finite subset A of N such that S = 〈A〉. We

say that A is a minimal system of generators of S if no proper subset of A generates

S. It is also well-known (see [5]) that S∗ \ (S∗ + S∗) is the unique minimal system

of generators of S, with S∗ = S \ {0}. The cardinality of the minimal system of

generators of S is also an important invariant of S called the embedding dimension

of S (see [1]).

From Lemmas 5 and 6 we deduce the following result which gives an upper bound

to the minimal generators of S(] b
a , b

a−1 [).
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Lemma 7. Let 2 6 a < b be integers. Then every minimal generator of

S(] b
a , b

a−1 [) is smaller than 2b.

P r o o f . From Lemmas 5 and 6 we know that {b − 1, b + 1,→} ⊆ S(] b
a , b

a−1 [).

We conclude the proof by pointing out that every positive integer greater than or

equal to 2b belongs to {b − 1, b + 1,→} + {b − 1, b + 1,→}. �

A simple check proves the next result.

Lemma 8. Let 2 6 a < b be integers. Then b
a < 2b2+1

2ab < 2b2−1
2b(a−1) < b

a−1 .

We are now ready to state the principal result of this section.

Theorem 9. Let 2 6 a < b be integers. Then S(] b
a , b

a−1 [) = S([2b2+1
2ab , 2b2−1

2b(a−1) ]).

P r o o f . From Lemma 8 we have that [ 2b2+1
2ab , 2b2−1

2b(a−1) ] ⊆] b
a , b

a−1 [ and so

S([2b2+1
2ab , 2b2−1

2b(a−1) ]) ⊆ S(] b
a , b

a−1 [). To prove the other inclusion we only need to

show that every minimal generator of S(] b
a , b

a−1 [) belongs to S([2b2+1
2ab , 2b2−1

2b(a−1) ]).

Let x be a minimal generator of S(] b
a , b

a−1 [). Then by Lemma 4 there exists a

positive integer y such that b
a < x

y < b
a−1 . Moreover, by applying Lemma 7 we have

that x 6 2b − 1 and, since 1 < b
a < x

y , we deduce that y < 2b − 1. Let us show

that 2b2+1
2ab 6 x

y 6 2b2−1
2b(a−1) . As

b
a < x

y , we have by < ax and so ax − by > 1. Hence

2abx− 2b2y > 2b. Since y < 2b− 1, we infer that 2abx− 2b2y > y, and consequently
2b2+1
2ab 6 x

y . Arguing in a similar way with
x
y < b

a−1 , we get 2b2y − 2b(a − 1)x > y,

which is equivalent to x
y 6 2b2−1

2b(a−1) . Finally, by applying Lemma 4 we obtain that

x ∈ S([2b2+1
2ab , 2b2−1

2b(a−1) ]). �

As an immediate consequence of the previous theorem we have the following result.

Corollary 10. Let 2 6 a < b be integers and let α and β be rational numbers

such that b
a < α 6 2b2+1

2ab < 2b2−1
2b(a−1) 6 β < b

a−1 . Then S([α, β]) = S(] b
a , b

a−1 [).

From this we deduce the following.

Corollary 11. Let 2 6 a < b be integers. If k is an integer greater than or equal

to 2b2, then S(] b
a , b

a−1 [) = {x ∈ N ; (ka − 1)x mod kb 6 (k − 2)x}.

P r o o f . A simple check shows that

b

a
<

kb

ka − 1
6

2b2 + 1

2ab
<

2b2 − 1

2b(a − 1)
6

kb

k(a − 1) + 1
<

b

a − 1
.

By applying Corollary 10, we have that S(] b
a , b

a−1 [) = S([ kb
ka−1 , kb

k(a−1)+1 ]). We con-

clude the proof by using Proposition 1. �

371



The next result is an immediate consequence of Lemma 5 and Corollary 11.

Corollary 12. Let 2 6 a < b be integers. Set α = gcd{a, b}, β = gcd{a − 1, b},

and let k be an integer greater than or equal to 2b2. Then the numerical semigroup

S(ka− 1, kb, k − 2) has Frobenius number b and singularity degree 1
2 (b− 1 + α + β).

4. An algorithm for computing the Frobenius number of a

modular numerical semigroup

In this section, our first goal will be to prove Theorem 18, which establishes a

relationship between the Frobenius number of S([ b
a , b

a−1 ]) and the multiplicity of

S(] b
a , b

a−1 [), for a and b integers such that 2 6 a < b. Before that, we need to recall

and establish some results.

The next result is deduced from Proposition 1 and [7, Corollary 6].

Lemma 13. Let 2 6 a < b be integers. If x ∈ N \ S([ b
a , b

a−1 ]), then b − x ∈

S([ b
a , b

a−1 ]).

The following lemma follows from [7, Lemma 11] and describes the integers x for

which both x and b − x belong to S([ b
a , b

a−1 ]).

Lemma 14. Let 2 6 a < b be integers. Then {x, b− x} ⊆ S([ b
a , b

a−1 ]) if and only

if

x ∈
{

0,
b

α
, 2

b

α
, . . . , (α − 1)

b

α
,
b

β
, 2

b

β
, . . . , (β − 1)

b

β
, b

}

,

where α = gcd{a, b} and β = gcd{a − 1, b}.

The next result gives an upper bound for the Frobenius number of S([ b
a , b

a−c ]).

Lemma 15. Let 1 6 c < a < b be integers. Then the Frobenius number of

S([ b
a , b

a−c ]) is smaller than b − 1.

P r o o f . By Proposition 1 we know that S([ b
a , b

a−c ]) = {x ∈ N ; ax mod b 6 cx}.

Note that, if x > b − 1, then ax mod b 6 b − 1 6 c(b − 1) 6 cx and therefore

x ∈ S([ b
a , b

a−c ]). �

Next we discard some values for the multiplicity of S(] b
a , b

a−1 [).
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Lemma 16. Let 2 6 a < b be integers, α = gcd{a, b}, β = gcd{a − 1, b} and

S′ = S(] b
a , b

a−1 [). Then m(S′) /∈ {0, b
α , 2 b

α , . . . , (α − 1) b
α , b

β , 2 b
β , . . . , (β − 1) b

β , b}.

P r o o f . By Lemma 4 there exists a positive integer y such that b
a < m(S′)

y < b
a−1 .

Let us assume that m(S′) = k b
α with k ∈ {1, . . . , α}. Then b

a = kb/α
ka/α = m(S′)

ka/α <
m(S′)

y < b
a−1 . Hence S(]m(S′)

ka/α , m(S′)
ka/α−1 [) ⊆ S′. In view of Lemma 5 we have that

g(S(]m(S′)
ka/α , m(S′)

ka/α−1 [)) = m(S′) and also g(S′) = b. So we deduce that b 6 m(S′).

From Lemma 6 we know that m(S′) 6 b− 1, which is not possible. Similarly we can

prove that m(S′) 6= k b
β for k ∈ {1, . . . , β}. �

Now we study which elements of S([ b
a , b

a−1 ]) belong to S(] b
a , b

a−1 [).

Lemma 17. Let 2 6 a < b be integers, α = gcd{a, b} and β = gcd{a − 1, b}. If

x ∈ S([ b
a , b

a−1 ])\{0, b
α , 2 b

α , . . . , (α−1) b
α , b

β , 2 b
β , . . . , (β−1) b

β , b}, then x ∈ S(] b
a , b

a−1 [).

P r o o f . Since x ∈ S([ b
a , b

a−1 ]), by Lemma 4 there exists a positive integer y such

that b
a 6 x

y 6 b
a−1 . If

x
y = b

a , then x = k b
α for some positive integer k. Suppose that

k > α + 1. Let us prove that k b
α ∈ S(] b

a , b
a−1 [). To this end, in view of Lemma 4,

it suffices to see that b
a < kb/α

ka/α−1 < b
a−1 . But a simple check shows that these

inequalities hold. The case x
y = b

a−1 is analogous to the previous one. �

We are now ready to state the theorem announced at the beginning of this section.

Theorem 18. Let 2 6 a < b be integers. Define S = S([ b
a , b

a−1 ]) and S′ =

S(] b
a , b

a−1 [). Then g(S) = b − m(S′).

P r o o f . From Lemmas 14 and 16 we deduce that b − m(S′) /∈ S. By Lemma

17 we obtain that, if x ∈ {1, . . . , m(S′) − 1}, then either x /∈ S or x ∈ {0, b
α , 2 b

α , . . . ,

(α− 1) b
α , b

β , 2 b
β , . . . , (β − 1) b

β , b}. Hence, by Lemmas 13 and 14 we have that {b− 1,

b − 2, . . . , b − (m(S′) − 1)} ⊆ S. Moreover, Lemma 15 asserts that {b − 1,→} ⊆ S.

Therefore g(S) = b − m(S′). �

Now, we present an algorithm that allows us to compute the Frobenius number

of S([ b
a , b

a−1 ]) for a and b integers such that 2 6 a < b. In view of Proposition 1,

we have S([ b
a , b

a−1 ]) = S(a, b, 1). Therefore, this algorithm computes the Frobenius

number of a modular numerical semigroup.

In [9] we gave an algorithm for computing the multiplicity of a proportionally

modular numerical semigroup defined by a closed interval. Thus the idea is to

combine this algorithm with Theorems 9 and 18.

A l g o r i t hm 19. Input: a and b integers such that 2 6 a < b.

Output: The Frobenius number of S([ b
a , b

a−1 ]).
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(1) Compute the multiplicity m of S([2b2+1
2ab , 2b2−1

2b(a−1) ]) by using [9, Algorithm 12].

(2) Return b − m.

Next we briefly recall [9, Algorithm 12]. In order to do this, we need to introduce

some concepts.

Let a1, b1, a2 and b2 be positive integers. Define

R
([ b1

a1
,
b2

a2

])

=
[ a2

b2 moda2
,

a1

b1 mod a1

]

.

Given a closed interval I of positive rational numbers we can construct recursively

the following sequence of closed intervals:

I1 = I,

In+1 = R(In), if In contains no integers, and In+1 = In, otherwise.

We will refer to {In}n∈N\{0} as the sequence of intervals associated with I.

Given a rational number q we denote by ⌊q⌋ the integer max{z ∈ Z; z 6 q} and

by ⌈q⌉ the integer min{z ∈ Z; q 6 z}. Let I be a closed interval. If I does not

contain an integer, then ⌊x⌋ = ⌊y⌋ for every x, y ∈ I. This integer is denoted by ⌊I⌋.

We are now ready to recall [9, Algorithm 12].

A l g o r i t hm 20. Input: I a closed interval of positive rational numbers such

that S(I) 6= N .
Output: The multiplicity of the semigroup S(I).

(1) Compute the sequence of intervals associated to I until we find the first inter-

val of the sequence that contains an integer. Let us denote such intervals by

I1, I2, . . . , Il.

(2) If Il = [α, β], then P (Il) = ⌈α⌉/1.

(3) Calculate P (I1) by applying successively P (In−1) = P (In)−1 + ⌊In−1⌋.

(4) The multiplicity of S(I) is the numerator of P (I1).

We end this section with an example that illustrates Algorithm 19.

E x am p l e 21. Let us compute the Frobenius number of the modular numerical

semigroup S(17, 108, 1). By Proposition 1, we have S(17, 108, 1) = S([10817 , 108
16 ]).

(1) (a)

I1 =
[23329

3672
,
23327

3456

]

, I2 =
[3456

2591
,
3672

1297

]

.

Note that 2 ∈ I2.

(b) P (I2) = 2
1 .

(c) P (I1) = 1
2 + 6 = 13

2 .

(d) The multiplicity of S([233293672 , 23327
3456 ]) is 13.

(2) The Frobenius number of S([10817 , 108
16 ]) is 108 − 13 = 95.
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