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APPLICATION OF A CENTER MANIFOLD THEORY

TO A REACTION-DIFFUSION SYSTEM OF COLLECTIVE MOTION

OF CAMPHOR DISKS AND BOATS
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Abstract. Unidirectional motion along an annular water channel can be observed in an
experiment even with only one camphor disk or boat. Moreover, the collective motion of
camphor disks or boats in the water channel exhibits a homogeneous and an inhomogeneous
state, depending on the number of disks or boats, which looks like a kind of bifurcation
phenomena. In a theoretical research, the unidirectional motion is represented by a traveling
wave solution in a model. Hence it suffices to investigate a linearized eigenvalue problem
in order to prove the destabilization of a traveling wave solution. However, the eigenvalue
problem is too difficult to analyze even if the number of camphor disks or boats is 2. Hence
we need to make a reduction on the model. In the present paper, we apply the center
manifold theory and reduce the model to an ordinary differential system.
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1. Introduction

Self-driven motion of animal and inanimal organisms is observed in several fields,

e.g., biology [6], chemistry [1], and nonlinear physics [4], [10], [11]. Organisms move

spontaneously to aggregate and form self-organized structures through long-range

interactions [5]. Therefore it is important not only to clarify the mechanism of the
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self-sustaining motion of each organism but also to study how organisms behave as

a whole system.

Spatiotemporal collective motions in chemical experiments with camphor have

been investigated in [7], [8], [9]. A camphor scraping at an air–water surface ex-

hibits several motions, e.g., clockwise/counterclockwise rotation, and translation

([8]). Also, it was shown in [7] and [9] that unidirectional motion can be observed

if we put a camphor disk or boat in an annular water channel. In an experimental

setup, a camphor boat is composed of a plastic disk and a camphor disk stuck on

the edge of the plastic disk with an adhesive. Camphor disks and boats constitute

a system for changing the number of particles and with simple interaction. In this

system we find two different states depending on the number. It was reported in [9]

that when the number of boats is less than 30, camphor boats move with a constant

velocity and spatially disperse with the same spacing between the boats, which is

called a homogeneous state. On the other hand, when the number is larger than 30,

the velocities of the boats change with temporal oscillation, and the shock wave

appears in the line of the boats, which is an inhomogeneous state.

Various motions which a camphor disk and boat exhibit have been studied math-

ematically. In this article we are based on [7] and [9], and introduce the following

mathematical model for the self-sustaining motion of a camphor disk and boat:

(1.1)















x′′c (t) = −µx′c(t) +
γ1
2̺

[ 1

1 + au(xc(t) + ̺, t)
−

1

1 + au(xc(t)− ̺, t)

]

,

∂u

∂t
=
∂2u

∂x2
− ku+ f(x, xc(t)),

where a, γ1, k, µ, ̺ are positive constants. The first equation is described by the New-

tonian equation with the surface tension of water given by γ1/(1+ au) as a function

of u. In this model, a camphor scraping is regarded as a particle, and the center of

a camphor disk or boat is denoted by xc(t). The surface concentration, denoted by u,

of a camphor molecular layer is supposed to yield to the reaction-diffusion equation

with the function f(x, x0) defined by

f(x, x0) =











1, 0 < x− x0 < ̺,

s, −̺ < x− x0 < 0,

0, otherwise,

which represents that camphor molecules are supplied only from (x0 − ̺, x0 + ̺)

where a camphor disk or boat contacts the water surface. Let s ∈ [0, 1], which

means that a camphor disk considered in this model is an inhomogeneous medium

and the amount of the supply on (x0 − ̺, x0) is not larger than on (x0, x0 + ̺).
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The spontaneous motion of a camphor disk and boat can be characterized by

a traveling wave solution of

(1.2)







































z′c(t) = yc(t), t > 0,

y′c(t) = − µ(yc(t)− c)

+
γ1
2̺

[ 1

1 + au(zc(t) + ̺, t)
−

1

1 + au(zc(t)− ̺, t)

]

, t > 0,

∂u

∂t
=
∂2u

∂z2
− c

∂u

∂z
− ku+ f(z, zc(t)), −∞ < z <∞, t > 0,

where we set zc(t) = xc(t)+ct, yc(t) = z′c(t), z = x+ct in (1.1). We denote the right-

hand side of (1.2) by F (zc(t), yc(t), u(z, t); c) for simplicity. A stationary solution of

(1.2) is called a traveling wave solution, and the parameter c is called the wave

speed, where the function p(z) is supposed to be a C1-function. It is easy to see that

a traveling wave solution (0, 0, p(z)) in (1.2) exists with c > 0 for any parameter set.

As shown in [7], there is a critical value such that (1.2) for s = 1 has a traveling

wave solution with a positive wave speed only in the case that µ is smaller than the

critical value. Hence the pair of the critical value and c = 0 is obviously a bifurcation

point. Actually, there is a bifurcation point with s < 1 in (1.2). For example,

we set (a, γ1, k, ̺) = (0.64, 1.7, 0.011, 0.84). Then there are s ∈ (0.12, 0.13) and

a bifurcation point (µ0, c0) such that 0.298 < µ0 < 0.3 and 0.271 < c0 < 0.273. We

will characterize such a bifurcation point in a mathematical sense later.

The existence of the bifurcation point affects the linearized eigenvalue problem

(1.3) λΦ = F ′(0, 0, p; c0)Φ

≡







YΦ

−µ0YΦ − a
γ1
2̺

[p′(̺)ZΦ + φ(̺)

(1 + ap(̺))2
−
p′(−̺)ZΦ + φ(−̺)

(1 + ap(−̺))2

]

A(φ, ZΦ)







for Φ = Φ(z) = t(ZΦ, YΦ, φ), where
t denotes the transpose. A linear functional

A(φ, Z) with the domain H1(R)× R is determined by the trilinear form

(A(φ, Z), ϕ) ≡

∫

∞

−∞

(−φ′ϕ′ − c0φ
′ϕ− kφϕ) dz − Z[sϕ(−̺)− (s− 1)ϕ(0)− ϕ(̺)]

for ϕ ∈ H1(R), where (·, ·) is the pairing between (H1(R))′, the dual space of H1(R),

and H1(R). It is obvious that Φ(z) = (−1, 0, φ(z)) is a solution of (1.3) for λ = 0,

where φ(z) = p′(z). Actually, (1.3) has a degeneracy condition at µ = µ0, and there

is a solution Ψ(z) = t(ZΨ, YΨ, ψ(z)) of F
′(0, 0, p; c0)Ψ = −Φ. The existence of Ψ(z)

generically means that the multiplicity of the zero eigenvalue of F ′(0, 0, p; c0) is equal

to 2. More precisely, we suppose that the following conditions hold true at (µ0, c0);
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(A1) There is a solution Ψ(z) of F ′(0, 0, p; c0)Ψ = −Φ.

(A2) The spectra of F ′(0, 0, p; c0), denoted by Σc, consist of {0} and Σ1, where

Σ1 ⊂ {λ ∈ C; Reλ 6 −κ} for κ > 0, and Reλ denotes the real part of

a complex value λ.

(A3) The generalized eigenspace associated with 0 is spanned by Φ and Ψ.

Now we consider the collective motion of (N + 1)-camphors on a one-dimensional

circuit (0, L). Our system is described by

(1.4)











































z′i = yi, t > 0,

y′i = −µ(yi − c0) +
γ1
2̺

[ 1

1 + au(zi + ̺, t)
−

1

1 + au(zi − ̺, t)

]

, t > 0,

∂u

∂t
=
∂2u

∂z2
− c0

∂u

∂z
− ku+

N
∑

i=0

f(z, zi), 0 < z < L, t > 0,

u(0, t) = u(L, t),
∂u

∂z
(0, t) =

∂u

∂z
(L, t), t > 0

for N > 1 and i = 0, . . . , N , where zi = zi(t), yi = yi(t), and u = u(z, t). For simplic-

ity, we denote the operator associated with the right-hand sides of the first, second,

and third equation of (1.4) by L(U) = t(Lz
0(U),Ly

0(U), . . . ,Lz
N (U),Ly

N (U),Lu(U)),

where U = t(z0, y0, . . . , zN , yN , u) for 0 6 zi 6 L, yi ∈ R (i = 0, . . . , N), u ∈ H1(0, L)

and Lz
i ,L

y
i (i = 0, . . . , N), Lu are given by

Lz
i (U) = yi,

Ly
i (U) = −µ(yi − c0) +

γ1
2̺

[ 1

1 + au(zi + ̺, t)
−

1

1 + au(zi − ̺, t)

]

,

Lu(U) = Tu+
N
∑

i=0

f(z, zi).

The linear operator T : H1(0, L) → (H1(0, L))′ is determined by the bilinear form

(Tu, ϕ) =
∫ L

0
(−u′ϕ′−c0u′ϕ−kuϕ) dz for ϕ ∈ H1(0, L). In the same way as in (1.2),

there exists a traveling wave solution of (1.4) such that zi = iL/(N + 1), which

corresponds to the homogeneous state observed in the experiment of [9]. According

to the result obtained in [9], the traveling wave solution is expected to be unstable for

a large number N . In order to prove the instability of the traveling wave solution,

it is necessary to find an unstable eigenvalue. However, the linearized eigenvalue

problem is too difficult to analyze theoretically even in the case of N = 1. From

this point of view, we need to reduce (1.4) and derive a new system. This is our

motivation in this article.

Let l be a position of the 0-th particle and denote the distance between the i-th and

the (i+1)-st particles by hi for i = 0, . . . , N−1. Since we consider a one-dimensional
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circuit, hN is defined by the distance between the N -th and the 0-th particles. Thus

we define a relative position of the i-th particle by zi = zi(h) ≡
i−1
∑

j=0

hj , where

h = t(h0, . . . , hN ). We put z0 = 0. Note that the position of the i-th particle is

given by zi = zi + l. Here we assume that one particle is sufficiently separated from

any others. In other words, hi is assumed to satisfy hi > h∗ for any i = 0, . . . , N ,

where h∗ is sufficiently large and fixed.

Due to the interactions described by (1.4), the positions of the particles will be

varied. Then the position l and the distance hi are regarded as functions in time,

denoted by l(t) and hi(t). In the statement of our result, we use the following

notation. Put r = t(r0, . . . , rN ), P (z, l,h) =
N
∑

i=0

[(zi + l)e2i+1 + p(z − zi − l)e2N+3],

ξ(z, l,h, r) =
N
∑

i=0

ri[ZΨe2i+1 + YΨe2i+2 +ψ(z − zi − l)e2N+3], and S(z, l,h, r) =

P (z, l,h) + ξ(z, l,h, r), where ei is the unit vector in R
2N+3 given by

ei =
t(0, . . . , 0,

i
∨

1, 0, . . . , 0),

and ϕ is an L-periodic function for a function ϕ defined on (−∞,∞), which is given

by

(1.5) ϕ(z) = ϕ(z − nL),
(

n−
1

2

)

L < z <
(

n+
1

2

)

L, n ∈ Z.

We suppose that ϕ is identically equal to 0 in a neighborhood of z = (n+1/2)L for any

n ∈ Z, and if ϕ ∈ C1(R), ϕ also belongs to C1(R). Although ϕ may not satisfy (1.5)

on all z ∈ (−∞,∞), we do not distinguish the extended function from the original

one, and we write the extended function as ϕ. Define δ ≡ δ(h) = maxi e
−αhi for

a constant α > 0. Then, if hi > h∗, δ is small. LetM(h∗, r∗) = {S(z, l,h, r); l ∈ R,

hi > h∗, |ri| < r∗ for all i = 0, . . . , N}. Set η = µ− µ0.

Theorem 1.1. There exist h∗, r∗, η∗, α, C0 > 0 and a neighborhood N of

M(h∗, r∗) such that for the initial data U0 ∈ N of (1.4) there exist l(t),h(t), r(t)

such that ‖U(·, t) − S(·, l(t),h(t), r(t))‖ 6 C0(δ + |r|2 + |η|) holds true as long as

hi > h∗, |ri| < r∗ for any i = 0, . . . , N , where U(z, t) is a solution of (1.4), and ‖ · ‖

is a standard norm in X ≡ R
N+1 × R

N+1 × L2(0, L). In addition, l(t), hi(t), and

ri(t) (i = 0, . . . , N) yield to

(1.6)











l′ = r0 +O(δ + |r|2 + η),

h′i = ri+1 − ri +O(δ + |r|2 + η),

r′i = O(δ + |r|2 + η)

for i = 0, . . . , N , where rN+1 = r0.
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This theorem says that the partial differential equation (1.4) can be reduced to

the ordinary differential equation (1.6). Our result for N = 1 is similar to the

one in [3], where the authors considered the interaction between two pulses with

very small velocity near a bifurcation point in a reaction-diffusion system. In that

article each pulse can be approximated by a stationary solution, which implies that

all eigenfunctions Φ,Ψ,Φ∗,Ψ∗ are expected to be symmetric, that is, odd or even

functions. Here Φ∗ and Ψ∗ will be introduced in the next section. As a result, several

calculations in the reduction process become easier than in our case. Actually, we

can obtain higher order terms in (1.6) by an argument similar to that in [3] though

equations (1.6) have only ri, which we will show in the forthcoming paper.

In the next section we will describe the outline of the proof of Theorem 1.1. We

apply a center manifold theory developed in [2] and [3] for the derivation of (1.6). In

order to construct a center manifold, generalized eigenfunctions play an important

role. Those functions will be defined in Proposition 2.1. Finally, we do calculations

and derive (1.6) from (1.4) in a formal way.

2. Outline of the proof

In this section, we describe the outline of the proof. In the reduction process

to show Theorem 1.1, we will project the solution U(z, t) onto a finite dimen-

sional space E(h). This space is constructed by using Φ,Ψ and the generalized

eigenfunctions Φ∗,Ψ∗ of (F ′(0, 0, p; c0))
∗ which satisfy (F ′(0, 0, p; c0))

∗Φ∗ = 0 and

(F ′(0, 0, p; c0))
∗Ψ∗ = −Φ∗, respectively, where (F ′(0, 0, p; c0))

∗ denotes the adjoint

operator of F ′(0, 0, p; c0). Under (A1)–(A3), Φ
∗,Ψ∗ do exist thanks to Fredholm’s

alternative. Moreover, the eigenfunctions Ψ,Φ∗, and Ψ∗ are uniquely determined

by the orthogonal conditions 〈Φ,Ψ∗〉 = 1, 〈Ψ,Ψ∗〉 = 0, 〈∂Ψ/∂z,Φ∗〉 = 0 in gen-

eral, where 〈·, ·〉 is the standard inner product in R × R × L2(R), and ∂Ψ/∂z =

(0, 0, ψ′(z)). Note that 〈Ψ,Φ∗〉 = 1, 〈Φ,Φ∗〉 = 0 automatically hold. Put Φ∗(z) =
t(Z∗

Φ, Y
∗

Φ , φ
∗(z)) and Ψ∗(z) = t(Z∗

Ψ, Y
∗

Ψ, ψ
∗(z)). Note that p′, ψ, φ∗, ψ∗ decay expo-

nentially as |z| → ∞.

To construct E(h), we introduce Φi(h), Ψi(h), Φ
∗

i (h), and Ψ
∗

i (h) for i = 0, . . . , N .

Proposition 2.1. There exist Φi(h), Ψi(h), Φ
∗

i (h), and Ψ
∗

i (h) ∈ R
N+1×R

N+1×

H1(0, L) such that

[Φi(h)](z) = −e2i+1 + φ(z − zi)e2N+3 +O(δ),

[Ψi(h)](z) = ZΨe2i+1 + YΨe2i+2 + ψ(z − zi)e2N+3 +O(δ),

[Φ∗

i (h)](z) = Z∗

Φe2i+1 + Y ∗

Φe2i+2 + φ∗(z − zi)e2N+3 +O(δ),
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[Ψ∗

i (h)](z) = Z∗

Ψe2i+1 + Y ∗

Ψe2i+2 + ψ∗(z − zi)e2N+3 +O(δ),

∂[Ψi(h)]

∂z
(z) = ψ

′

(z − zi)e2N+3 +O(δ),

and these functions are supposed to satisfy

(2.1) 〈Φi(h),Ψ
∗

i (h)〉 = 1, 〈Φi(h),Φ
∗

i (h)〉 = 0, 〈Φi(h),Ψ
∗

k(h)〉 = 0,

〈Ψi(h),Φ
∗

i (h)〉 = 1, 〈Ψi(h),Ψ
∗

i (h)〉 = 0, 〈Ψi(h),Φ
∗

k(h)〉 = 0

for any i = 0, . . . , N and k 6= i, where 〈·, ·〉 is the standard inner product in R
N+1 ×

R
N+1 × L2(R).

This proposition can be proved in the same way as in [2] and [3] so that we omit the

details of the proof. Thanks to (2.1), {Φi(h),Ψi(h)}Ni=0 is linearly independent in X .

Then we define E(h) to be the linear space spanned by Φi(h),Ψi(h) (i = 0, . . . , N).

Let Q(h) be the projection from X to E(h), where Id is the identity on X . Note that

Q(h)U for U ∈ X is given by Q(h)U =
N
∑

i=0

(〈U,Ψ∗

i (h)〉Φi(h) + 〈U,Φ∗

i (h)〉Ψi(h)).

Now we are in a position to derive the reduced equation (1.6) from (1.4) by formal

calculations and describe the outline of the proof of Theorem 1.1. We first substitute

S(z, l,h, r) into U(z, t) in (1.4). Note that (1.4) is simply written as Ut = L(U).

Since the function ξ(z, l,h, r) is represented by ξ(z, l,h, r) =
N
∑

i=0

ri[Ψi(h)](z − l),

straightforward calculations give

(2.2) −
N
∑

i=0

(l′ + l′i)
(

[Φi(h)](z)+ ri
∂[Ψi(h)]

∂z
(z)

)

+

N
∑

i=0

r′i[Ψi(h)](z) = L(S(z, 0,h, r))

by putting z − l → z, where li(t) ≡ zi(h(t)) (i = 0, . . . , N). Then, multiplying by

Q(h) both sides of (2.2) and applying Proposition 2.1, we have

(2.3) −(l′ + l′i)
(

1 + ri

〈∂Ψi(h)

∂z
,Ψ∗

i (h)
〉)

= 〈L(S(z, 0,h, r)),Ψ∗

i (h)〉+O(δ),

−r′i = 〈L(S(z, 0,h, r)),Φ∗

i (h)〉+O(δ).

Finally, we obtain the lowest order terms of the two inner products 〈L(S(z, 0,h, r)),

Φ∗

i (h)〉, and 〈L(S(z, 0,h, r)),Ψ∗

i (h)〉. Set S(z, 0,h, r) = t(ẑ0, ŷ0, . . . , ẑN , ŷN , u(z)).

Since all particles are separated and r is small due to the assumptions, we have

(2.4) Lz
i (S(z, 0,h, r)) = ri +O(δ), Ly

i (S(z, 0,h, r)) = O(δ + |r|2 + η).
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By an argument similar to that used to obtain (2.4), it holds true Lu(S(z, 0,h, r)) =
N
∑

i=0

[f(z, ẑi)− f(z, zi) + riTψ(z − zi)] + O(δ). Since φ∗, ψ∗ decay exponentially to 0

as |z| → ∞, we have

∫ L

0

[f(z, ẑi)− f(z, zi) + riTψ(z − zi)]φ∗(z − zi) dz

= ri(A(ψ,ZΨ), φ
∗) +O(δ + |r|2) = −ri

∫

∞

−∞

p′(z)φ∗(z) dz +O(δ + |r|2)

owing to A(ψ,ZΨ) = −p′. Similarly, the inner product of Lu(S(z, 0,h, r)) and

ψ∗(z − zi) is equal to −ri
∫

∞

−∞
p′(z)ψ∗(z) dz +O(δ + |r|2). From these calculations,

we see that 〈L(S(z, 0,h, r)),Ψ∗

i (h)〉 = −ri+O(δ+|r|2+η) and 〈L(S(z, 0,h, r)),Φ∗

i (h)〉

= O(δ + |r|2 + η) due to the orthogonal conditions, which concludes Theorem 1.1.
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