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Abstract. The concept of a relatively pseudocomplemented directoid was introduced re-
cently by the first author. It was shown that the class of relatively pseudocomplemented
directoids forms a variety whose axiom system contains seven identities. The aim of this pa-
per is three-fold. First we show that these identities are not independent and their indepen-
dent subset is presented. Second, we modify the adjointness property known for relatively
pseudocomplemented semilattices in the way which is suitable for relatively pseudocomple-
mented directoids. Hence, they can also be considered as residuated structures in a rather
modified version. We also get two important congruence properties, namely congruence
distributivity and 3-permutability valid in the variety V of relatively pseudocomplemented
directoids. Then we show some basic results connected with subdirect irreducibility in V.
Finally, we show another way how to introduce pseudocomplementation on directoids via
relative pseudocomplementation.

Keywords: directoid, relatively pseudocomplemented directoid, congruence distributiv-
ity, 3-permutability, residuated structure, adjointness property, variety

MSC 2010 : 06A12, 06D15, 08B10

1. Introduction

Relatively pseudocomplemented lattices and semilattices play an important role

in the investigation of intuitionistic logics and their reducts. They were intensively

studied by G. T. Jones [8]. The operation of relative pseudocomplementation serves

as an algebraic counterpart of the intuitionistic connective implication. For the

readers’ convenience, we can refer to the compendium [5] where essential results on

relatively pseudocomplemented semilattices and lattices are gathered.

Supported by the Research and Development Council of the Czech Government via the
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To investigate some more general algebraic systems connected with non-classical

logic (as e.g. BCK-algebras, BCI-algebras, etc.), we often study ordered sets which

are not necessarily semilattices. However, a bit weaker structure was introduced by

J. Ježek and R. Quackenbush [7] as follows.

By a directoid (a commutative directoid in [7]) we mean a groupoid D = (D;⊓)

satisfying the identities

(D1) x ⊓ x = x (idempotency),

(D2) x ⊓ y = y ⊓ x (commutativity),

(D3) x ⊓ ((x ⊓ y) ⊓ z) = (x ⊓ y) ⊓ z (weak associativity).

Of course, every ∧-semilattice is a directoid but not vice versa. It can be shown

that every directoid D = (D;⊓) can be converted into an ordered set (D; 6) via

x 6 y if and only if x ⊓ y = x

and every downward directed ordered set (D; 6) can be organized into a directoid

taking

x ⊓ y = y ⊓ x ∈ L(x, y) = {z ∈ D; z 6 x and z 6 y}

arbitrarily for non-comparable elements x, y and

x ⊓ y = y ⊓ x = x when x 6 y,

see [7] or [5] for details. It is worth noticing that the operation ⊓ is not isotone in

general, in fact we have

x 6 y ⇒ x ⊓ z 6 y ⊓ z for all x, y, z ∈ D

if and only if (D;⊓) is an ∧-semilattice where ⊓ coincides with the infimum ∧ (with

respect to 6).

A natural question arises if a directoid with a least element 0 can be equipped with

pseudocomplementation. This task was investigated by the first author in [2] where

an axiom system for pseudocomplementation on directoids was presented. Another

problem is how to define and characterize relatively pseudocomplemented directoids.

As mentioned in [3], x is a greatest element satisfying a ∧ x 6 b if and only if x is a

greatest element satisfying a∧x = a∧ b in any relatively pseudocomplemented semi-

lattice. However, if for some a, b of an ∧-semilattice S the relative pseudocomplement

does not exist then the conditions need not coincide, see the following

E x am p l e 1. Let S = (S,∧) be an ∧-semilattice where S = {0, a, b, c, 1} whose

diagram is depicted in Fig. 1.
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Then there exists no pseudocomplement of c with respect to a since c∧ b = 0 6 a,

c ∧ a = a but there is no greatest x ∈ S with c ∧ x 6 a. On the other hand, there

exists a greatest x ∈ S with c ∧ x = c ∧ a, namely x = a.

Of course, the aforementioned conditions are not equivalent in directoids either,

see [3] for details. Hence we use the following definition of relative pseudocomple-

mentation in directoids which was introduced in [3].

Definition. Let D = (D;⊓) be a directoid and a, b ∈ D. An element x is

called a relative pseudocomplement of a with respect to b if it is a greatest element

of D such that a ⊓ x = a ⊓ b. It is denoted by a ∗ b. A directoid D is relatively

pseudocomplemented if there exists a ∗ b for every a, b ∈ D.

The fact that D is a relatively pseudocomplemented directoid will be expressed by

the notation D = (D;⊓, ∗). As shown in [3], every relatively pseudocomplemented

directoid has a greatest element (which is denoted by 1).

Let us mention that if the above definition of relative pseudocomplementation is

used for ∧-semilattices, what we get is nothing else than the definition of the so-called

sectional pseudocomplementation as defined in [1].

As already noticed, in a relatively pseudocomplemented semilattice our new defi-

nition of a ∗ b coincides with the usual relative pseudocomplement of a with respect

to b. Hence, every relatively pseudocomplemented semilattice belongs to the class of

relatively pseudocomplemented directoids.

E x am p l e 2. For the semilattice S from Example 1, the operation table for ∗

(defined by the above Definition) is

∗ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b c c 1 c 1
c b a b 1 1
1 0 a b c 1

Hence, if S is considered as a directoid then it is relatively pseudocomplemented.
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2. Axiom system

It was shown in [3] that the class of relatively pseudocomplemented directoids

forms a variety which is determined by additional four identities as follows.

Proposition (See Theorem 2 in [3]). Let (D;⊓) be a directoid and let ∗ be a

binary operation on D. Then D = (D;⊓, ∗) is a relatively pseudocomplemented

directoid if and only if it satisfies the following identities:

(S1) x ⊓ (x ∗ y) = x ⊓ y,

(S2) (x ∗ y) ⊓ y = y,

(S3) x ∗ y = x ∗ (x ⊓ y),

(S4) x ∗ x = y ∗ y.

A natural question is if the axioms (S1)–(S4) or, more generally, the axioms (D1)–

(D3), (S1)–(S4) are independent. An immediate reflexion shows that it is not the

case. In fact, we can prove the following result.

Theorem 1. Let D = (D;⊓, ∗) be an algebra with two binary operations. Then

D is a relatively pseudocomplemented directoid if and only if it satisfies the identities

(D2), (D3), (S1), (S2) and (S3).

P r o o f. All we need to prove is that the above listed identities imply (D1) and

(S4). For (D1) this is immediate because x⊓x = x⊓(x∗x) by (S1) and x⊓(x∗x) = x

by (S2), thus x ⊓ x = x. It remains to prove (S4).

By using (S3) and (S2), we infer

(1) x ∗ (y ∗ x) = x ∗ (x ⊓ (y ∗ x)) = x ∗ x

and

(x ⊓ y) ∗ x = (x ⊓ y) ∗ ((x ⊓ y) ⊓ x) = (x ⊓ y) ∗ (x ⊓ y).

Due to symmetry, also

(x ⊓ y) ∗ y = (x ⊓ y) ∗ (x ⊓ y)

and hence

(2) (x ⊓ y) ∗ x = (x ⊓ y) ∗ y.

Since y 6 x ∗ y by (S2), and y ⊓ z 6 y, we have y ⊓ z 6 x ∗ y and hence

(3) (x ∗ y) ⊓ (y ⊓ z) = (y ⊓ z).
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Replacing y by z ∗ y and z by y in (3), we get

(x ∗ (z ∗ y)) ⊓ ((z ∗ y) ⊓ y) = (z ∗ y) ⊓ y,

i.e.

(4) y ⊓ (x ∗ (z ∗ y)) = y.

This yields by (2)

y = y ⊓ (x ∗ ((x ⊓ y) ∗ y)) = y ⊓ (x ∗ ((x ⊓ y) ∗ x)).

We can apply (1) to conclude

y = y ⊓ (x ∗ x)

for each x, y ∈ D. This yields that x ∗ x is the greatest element of D which will be

denoted by 1. Hence x ∗ x = 1 = y ∗ y proving (S4). �

Now, we are going to prove that the remaining identities of Theorem 1 are really

independent.

Theorem 2. The identities (D2), (D3), (S1), (S2) and (S3) are independent.

P r o o f. As usual, we prove the independence of axioms by creating models

satisfying all the axioms except one.

(a) Let D = {0, 1} and let ⊓, ∗ be defined as follows:

⊓ 0 1
0 0 1
1 0 1

∗ 0 1
0 0 1
1 0 1

Then (D;⊓, ∗) satisfies all the identities except (D2): 1 ⊓ 0 = 0 6= 1 = 0 ⊓ 1.

(b) Let D = {0, a, 1} and let ⊓, ∗ be defined by the tables

⊓ 0 a 1
0 0 a 0
a a a 1
1 0 1 1

∗ 0 a 1
0 1 a 1
a 0 0 1
1 0 a a

Then (D;⊓, ∗) satisfies all the identities except (D3) since

(a ⊓ 1) ⊓ 0 = 0 6= a = a ⊓ ((a ⊓ 1) ⊓ 0).
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In all the remaining cases we have D = {0, 1}.

(c) If ⊓, ∗ are defined by

⊓ 0 1
0 0 1
1 1 1

∗ 0 1
0 0 0
1 0 0

then (D;⊓, ∗) satisfies all the identities except (S1) since

0 ⊓ 1 = 1 6= 0 = 0 ⊓ (0 ∗ 1).

(d) If ⊓, ∗ are defined by

⊓ 0 1
0 1 1
1 1 1

∗ 0 1
0 0 0
1 0 0

then (D;⊓, ∗) satisfies all the identities except (S2) since

(1 ∗ 0) ⊓ 0 = 1 6= 0.

(e) Finally, if ⊓, ∗ are defined by

⊓ 0 1
0 0 0
1 0 1

∗ 0 1
0 0 1
1 0 1

then (D;⊓, ∗) satisfies all the identities except (S3) since

0 ∗ 1 = 1 6= 0 = 0 ∗ (0 ⊓ 1).

�
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3. Relative pseudocomplement as a residuum

It is well-known that relatively pseudocomplemented ∧-semilattices can be con-

sidered alternatively as residuated structures where the relationship between the

operations ∧ and ∗ is established by the so-called adjointness property:

(AP) a ∧ x 6 b if and only if x 6 a ∗ b.

As mentioned above, this cannot be translated to directoids since the operation ⊓

is not isotone. A natural question is if also (AP) can be modified for directoids to

characterize relative pseudocomplementation as a residual operation. By replacing

a ∧ x 6 b by a ⊓ x = a ⊓ b, we can easily infer

(I) a ⊓ x = a ⊓ b ⇒ x 6 a ∗ b.

Unfortunately, the converse implication fails for relatively pseudocomplemented di-

rectoids, see the following

E x am p l e 3. Let D = (D,⊓, ∗) be a relatively pseudocomplemented directoid

whose Hasse diagram is depicted in Fig. 2 (one can easily enumerate the operation ∗).

c = a ⊓ x

a

1

a ∗ b = d

x

b

0 = a ⊓ b

Fig. 2

Although x 6 d = a ∗ b, we have a ⊓ x = c 6= 0 = a ⊓ b.

So, the right hand side of implication (I) must be completed to reach the condition

in the form of equivalence. Our solution follows.

Theorem 3. Let (D;⊓) be a directoid and let ∗ be a binary operation on D.

Then D = (D;⊓, ∗) is a relatively pseudocomplemented directoid if and only if the

following adjointness property holds:

(AD) a ⊓ x = a ⊓ b if and only if x 6 a ∗ b and a ⊓ (a ∗ b) = a ⊓ x.
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P r o o f. Assume first that D = (D;⊓, ∗) is a relatively pseudocomplemented

directoid. We prove that D satisfies (AD). If a ⊓ x = a ⊓ b then x 6 a ∗ b directly

by (I). Using (S1), we infer

a ⊓ x = a ⊓ b = a ⊓ (a ∗ b).

Conversely, if x 6 a ∗ b and a ⊓ (a ∗ b) = a ⊓ x then using (S1) we have

a ⊓ x = a ⊓ b

and hence (AD) is satisfied in D.

Now, we suppose that (D;⊓) is a directoid, ∗ is a binary operation on D and the

condition (AD) is satisfied. We need only to verify the identities (S1), (S2) and (S3).

Put x = a ∗ b. Then the right hand side of (AD) is satisfied, thus also the left

hand side which is a ⊓ (a ∗ b) = a ⊓ b proving (S1).

If we consider x = b, then the left hand side of (AD) holds and hence b 6 a ∗ b

which yields (a ∗ b) ⊓ b = b proving (S2).

Finally, for x = a ∗ (a ⊓ b) we have by (S1)

a ⊓ (a ∗ (a ⊓ b)) = a ⊓ (a ⊓ b) = a ⊓ b,

thus, applying (AD), we infer a ∗ (a ⊓ b) 6 a ∗ b. Taking x = a ∗ b on the left

hand side of (AD), we infer by (S1) a ⊓ (a ∗ b) = a ⊓ b = a ⊓ (a ⊓ b) and hence

a ∗ b 6 a ∗ (a ⊓ b). Altogether, also (S3) holds. By Theorem 1, D = (D;⊓, ∗) is a

relatively pseudocomplemented directoid. �

Although the condition (AD) is more complex than (AP), relatively pseudocom-

plemented directoids satisfy also a condition which is more similar to the adjointness

property.

Theorem 4. Let D = (D;⊓, ∗) be a relatively pseudocomplemented directoid.

The following condition is satisfied in D for all a, b, x ∈ D:

(A) a ⊓ x 6 b if and only if x 6 (a ⊓ x) ∗ b.

P r o o f. Assume x 6 (a⊓x) ∗ b. Since a⊓x 6 x, we have a⊓x 6 (a⊓x) ∗ b and

hence

a ⊓ x = (a ⊓ x) ⊓ ((a ⊓ x) ∗ b) = (a ⊓ x) ⊓ b

due to (S1). This yields a ⊓ b 6 b. The converse is trivial since a ⊓ x 6 b implies

x 6 1 = (a ⊓ x) ∗ b. �
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By putting x = a in (A), we conclude

a 6 a ∗ b ⇒ a 6 b.

By putting a = x and b = a ∗ b, the equivalence (A) yields

x 6 a ∗ b if and only if x 6 x ∗ (a ∗ b).

4. Congruence properties

It was already proved in [3] that the variety of relatively pseudocomplemented

directoids is congruence distributive. Unfortunately the explicit Jónsson terms en-

suring the Maltsev condition for congruence distributivity (see e.g. [4]) which are

listed there are not optimal (since the terms t0 and t1 coincide). In what follows, we

can improve it by introducing new terms t0, . . . , t4 as follows.

Theorem 5. The terms

t0(x, y, z) = x, t4(x, y, z) = z,

t1(x, y, z) = x ⊓ [((z ∗ y) ⊓ (x ∗ z)) ∗ (x ∗ y)],

t2(x, y, z) = x ⊓ (y ∗ z),

t3(x, y, z) = z ⊓ [((z ∗ x) ∗ (x ∗ y)) ∗ (z ∗ y)]

are Jónsson terms proving congruence distributivity of the variety of relatively pseu-

docomplemented directoids.

P r o o f. Of course, we have x = t0(x, y, x) = t4(x, y, x). Further, using (S1)–

(S4), we compute

t1(x, y, x) = x ⊓ [((x ∗ y) ⊓ (x ∗ x)) ∗ (x ∗ y)]

= x ⊓ [(x ∗ y) ∗ (x ∗ y)] = x ⊓ 1 = x,

t2(x, y, x) = x ⊓ (y ∗ x) = x,

t3(x, y, x) = x ⊓ [((x ∗ x) ⊓ (x ∗ y)) ∗ (x ∗ y)]

= x ⊓ [(x ∗ y) ∗ (x ∗ y)] = x ⊓ 1 = x.

For i even we compute

t0(x, x, y) = x = x ⊓ 1 = x ⊓ [((y ∗ x) ⊓ (x ∗ y)) ∗ 1]

= x ⊓ [((y ∗ x) ⊓ (x ∗ y)) ∗ (x ∗ x)] = t1(x, x, y),
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t2(x, x, y) = x ⊓ (x ∗ y) = x ⊓ y = y ⊓ x = y ⊓ (y ∗ x)

= y ⊓ [1 ∗ (y ∗ x)] = y ⊓ [((y ∗ x) ∗ 1) ∗ (y ∗ x)]

= y ⊓ [((y ∗ x) ∗ (x ∗ x)) ∗ (y ∗ x)] = t3(x, x, y).

For i odd we have

t1(x, y, y) = x ⊓ [((y ∗ y) ⊓ (x ∗ y)) ∗ (x ∗ y)]

= x ⊓ [(x ∗ y) ∗ (x ∗ y)] = x ⊓ 1 = x ⊓ (y ∗ y) = t2(x, y, y),

t3(x, y, y) = y ⊓ [((y ∗ x) ∗ (x ∗ y)) ∗ (y ∗ y)]

= y ⊓ [((y ∗ x) ∗ (x ∗ y)) ∗ 1] = y ⊓ 1 = y = t4(x, y, y).

�

We can prove one more congruence condition which is satisfied by the variety of

relatively pseudocomplemented directoids, namely the 3-permutability.

By the result of Hagemann and Mitschke (see [6]), a variety V is 3-permutable if

and only if there exist ternary terms p0, p1, p2 and p3 in V such that the following

identities hold in V :

(P) p0(x, y, z) = x, p3(x, y, z) = z,

pi(x, x, z) = pi+1(x, z, z) for i ∈ {0, 1, 2}.

Theorem 6. The variety V of relatively pseudocomplemented directoids is con-

gruence 3-permutable.

P r o o f. We need to find ternary terms p0, p1, p2, p3 satisfying (P). We can take

p0(x, y, z) = x, p3(x, y, z) = z and p1(x, y, z) = x ⊓ (y ∗ z), p2(x, y, z) = z ⊓ (y ∗ x).

Then clearly

p0(x, x, z) = x = x ⊓ 1 = x ⊓ (z ∗ z) = p1(x, z, z),

p1(x, x, z) = x ⊓ (x ∗ z) = x ⊓ z = z ⊓ x = z ⊓ (z ∗ x) = p2(x, z, z),

p2(x, x, z) = z ⊓ (x ∗ x) = z ⊓ 1 = z = p3(x, z, z).

�

There is an open problem if the variety V of relatively pseudocomplemented di-

rectoids is congruence permutable. Unfortunately, at the moment we are not able to

decide. That means we have neither an example of relatively pseudocomplemented

directoid D = (D;⊓, ∗) for which there are Θ, Φ ∈ ConD such that Θ ◦ Φ 6= Φ ◦ Θ,

nor a Maltsev term for V proving congruence permutability.
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On the other hand, we are able to find proper subvarieties of V which are congru-

ence permutable. Let us show some of them.

As mentioned in Introduction, every relatively pseudocomplemented semilattice

is a relatively pseudocomplemented directoid. Hence, the variety R of relatively

pseudocomplemented semilattices is a subvariety of V and thus also a variety B of

Boolean algebras. However, V has more proper subvarieties. Let W be the variety

of relatively pseudocomplemented directoids satisfying the identity

(T) ((x ∗ y) ∗ y) ⊓ x = x,

which is equivalent to x 6 (x ∗ y) ∗ y. It is well-known that this identity is valid in

R but W does not coincide with R, see the following

E x am p l e 4. Let (A;⊓, ∗) be a relatively pseudocomplemented directoid, where

A = {0, c, a, b, 1} and ⊓, ∗ are defined by the following Hasse diagram and the table:

c

b

1

a

0 = a ⊓ b

∗ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a b c 1 b 1
b a c a 1 1
1 0 c a b 1

Then (a ∗ b) ∗ b = b ∗ b = 1 > a, (b ∗ a) ∗ a = a ∗ a = 1 > b, (a ∗ c) ∗ c = c ∗ c =

1 > a, analogously for (b ∗ c) ∗ c and trivially for other combinations. Thus (A;⊓, ∗)

is a relatively pseudocomplemented directoid satisfying the identity (T) and hence

(A;⊓, ∗) ∈ W . On the other hand, (A;⊓, ∗) /∈ R since it is not a semilattice (of

course, a ∧ b = c 6= a ⊓ b).

It is worth noticing that (T) does not hold in V . For example, if S is the semilattice

of Example 2 considered as a directoid then S does not satisfy (T) since (b ∗ a) ∗ a =

c ∗ a = a 6> b.

Theorem 7. Let W be a subvariety of the variety of relatively pseudocomple-

mented directoids satisfying the identity (T). ThenW is congruence permutable and

p(x, y, z) = ((x ∗ y) ∗ z) ⊓ ((z ∗ y) ∗ x) is its Maltsev term.

P r o o f. It is an easy exercise to verify that

p(x, z, z) = ((x ∗ z) ∗ z) ⊓ ((z ∗ z) ∗ x) = ((x ∗ z) ∗ z) ⊓ x = x

by (T) and, analogously, p(x, x, z) = z. �
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It is a hard question to describe all subdirectly irreducible members of the variety

V of relatively pseudocomplemented directoids. However, it is easy to discern an

infinite family (in fact a proper class) of such algebras. To this end, we introduce the

following notation. Let S be a directoid with the greatest element q. Denote by S⊕1

the directoid which is constructed from S by adding a new greatest element 1. In

other words, the base set of S⊕1 is S∪{1} and the order in S remains and, moreover,

a < 1 for each a ∈ S. It is evident that if S is a relatively pseudocomplemented

directoid then S ⊕ 1 is so as well.

Theorem 8. For any relatively pseudocomplemented directoid S, the directoid

S ⊕ 1 is a subdirectly irreducible member of V .

P r o o f. By Theorem 3 in [3], the variety V is weakly regular, i.e., for each

S ∈ V and every congruence θ ∈ ConS, θ is fully determined by its kernel [1]θ.

Hence, S is subdirectly irreducible if there exists the least non-trivial kernel [1]µ for

some µ ∈ ConS.

Assume S ∈ V and create S = S⊕1. Let q be the greatest element of S. Consider

the congruence µ = θ(q, 1), i.e. the one generated by the pair 〈q, 1〉. It is evident

that we do not obtain another non-trivial pair induced by 〈q, 1〉 using the operation

⊓ and the trivial pairs 〈a, a〉 for a ∈ S. Since a 6 q for each a ∈ S, we have also

〈a ∗ 1, a ∗ q〉 = 〈1, 1〉. Further, 1 ∗ a = a and, since a 6 q for all a ∈ S, also q ∗ a = a,

thus 〈1 ∗ a, q ∗ a〉 = 〈a, a〉. Thus the operation ∗ does not create new pairs either

and hence µ has only one non-singleton class which is [1]µ = {1, q}. Hence, [1]µ
is non-trivial and minimal, thus µ is the unique atom in ConS. We conclude that

S = S ⊕ 1 is a subdirectly irreducible member of V . �

R em a r k. Unfortunately, the directoids of type S ⊕ 1 do not exhaust all sub-

directly irreducible members of V . When we consider the relatively pseudocomple-

mented directoid N5 from Example 2 (see Fig. 1) then it is also a subdirectly irre-

ducible member of V since its congruence lattice is a 4-element chain where non-trivial

members µ and ̺ have partitions {0, b}, {a}, {c, 1} and {0, b}, {a, c, 1}, respectively.

Corollary. Every finite chain considered as a relatively pseudocomplemented

directoid is subdirectly irreducible.
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5. Derived pseudocomplementation

The concept of pseudocomplement in directoids with the least element was already

introduced by the first author in [2] by using the concept of supremum. Having

a directoid with the least element 0, in symbols D = (D;⊓, 0), we can consider

another alternative of introducing pseudocomplementation as follows: an element y

is a pseudocomplement of x if it is the greatest element satisfying

(Q) x ⊓ y = 0.

At the first glance, this concept differs from that in [2] and, moreover, does not

satisfy several important identities from [2]. On the other hand, if D = (D;⊓, ∗, 0) is

a relatively pseudocomplemented directoid with 0 then for each x ∈ D, x ∗ 0 is just

the greatest element y satisfying (Q) and hence a pseudocomplement in the afore

mentioned sense. To distinguish these cases, the latest one, i.e. x ∗ 0, will be called

a d-pseudocomplement of x (an abbreviation of derived pseudocomplement from the

relative pseudocomplementation). Hence, a d-pseudocomplement is fully determined

by

x ⊓ x ∗ 0 = 0

and the implication

x ⊓ y = 0 ⇒ y 6 x ∗ 0

which, unfortunately, cannot be converted. This leads to the following

Definition. Let D = (D;⊓, 0) be a directoid with 0. For each x ∈ D, denote by

x0 the greatest element of D satisfying x ⊓ x0 = 0 and

x ⊓ y = 0 ⇒ y 6 x0.

Hence, if D = (D;⊓, ∗, 0) is a relative pseudocomplemented directoid with 0 then

x0 = x ∗ 0. On the other hand, the binary operation ∗ need not be the relative

pseudocomplementation on (D;⊓, 0) to get the d-pseudocomplementation, see the

following

E x am p l e 5. Let D be a directoid visualized in Fig. 4 and let ∗ be a binary

0

b = c ⊓ d

d

1

c

c ⊓ q = a

q

Fig. 4
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operation on D whose table is

∗ 0 a b c d q 1
0 1 1 1 1 1 1 1
a b 1 b 1 1 1 1
b a a 1 1 1 1 1
c 0 d q 1 d q 1
d 0 c b c 1 1 1
q 0 a c c d 1 1
1 1 a b c d q 1

Then ∗ is not a relative pseudocomplementation on D since it violates (S1):

c ⊓ c ∗ b = c ⊓ q = a 6= b = c ⊓ b.

On the other hand, x0 = x ∗ 0 is a d-pseudocomplementation on (D;⊓, 0).

We can state also

Lemma 1. Let D = (D;⊓, 0) be a directoid with 0 and let ∗ be a binary operation

on D satisfying the conditions (S2), (S3) and

(P1) x ⊓ x ∗ 0 = 0.

Then x0 = x ∗ 0 is a d-pseudocomplement of x ∈ D.

P r o o f. By (P1) we have x⊓ x0 = 0. Assume x⊓ y = 0. Then by (S2) and (S3)

we compute

y 6 x ∗ y = x ∗ (x ⊓ y) = x ∗ 0 = x0,

thus x0 is a d-pseudocomplement of x. �

Lemma 2. Let D = (D;⊓,0 , 0) be a directoid with d-pseudocomplementation.

Then the following assertions hold in D:

(a) x 6 x00;

(b) D has the greatest element 1 = 00;

(c) y 6 (x ⊓ y)0 if and only if x ⊓ y = 0.

P r o o f. (a) follows directly by the definition since x0 ⊓ x = x ⊓ x0 = 0 yields

x 6 x00.

(b) Since 0 ⊓ x = 0, we have x 6 00 for each x ∈ D. Hence, 00 is the greatest

element of D.

(c) If y 6 (x⊓ y)0 then x⊓ y 6 y implies x⊓ y 6 (x⊓ y)0 and hence 0 = (x⊓ y)⊓

(x⊓ y)0 = x⊓ y. The converse is trivial since x⊓ y = 0 yields y 6 1 = 00 = (x⊓ y)0.

�

22



R em a r k. Unfortunately, the d-pseudocomplement in a directoid D = (D;⊓, 0)

does not satisfy some desired identities and implications which hold for that defined

in [2], e.g. x000 = x0, x 6 y ⇒ y0 6 x0, x0 ⊓ y0 = (x0 ⊓ y0)00.
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