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BOUNDARY VALUE PROBLEM WITH AN INNER POINT FOR
THE SINGULARLY PERTURBED SEMILINEAR
DIFFERENTIAL EQUATIONS
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Abstract. In this paper we investigate the problem of existence and asymptotic behavior
of solutions for the nonlinear boundary value problem

ey +ky=ft,y), te€(ab), k<0, 0<e<1

satisfying three point boundary conditions. Our analysis relies on the method of lower and
upper solutions and delicate estimations.
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1. INTRODUCTION

We will consider the three point boundary value problem

(1.1) ey’ +ky=f(t,y), te{ab), k<0, 0<e<k1,
(1.2) y(a) =y(c) =y(b), a<c<b.

We can view this equation as the mathematical model of the nonlinear dynamical
system with a high-speed feedback. Moreover, this class of equations has special
significance in connection with applications involving nonlinear vibrations. We focus
on the existence and asymptotic behavior of solutions y.(¢) for £ belonging to a non-
resonant set and on an estimate of the difference between the solution y.(¢) of (1.1),
(1.2) and a singular solution u(t) of the equation ku = f(t, u).
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This is a singularly perturbed problem because the order of the differential equa-
tion drops when € becomes zero. The situation in the present case is complicated by
the fact that there is an inner point in the boundary conditions, in contrast to the
“standard” boundary conditions as the Dirichlet problem, Neumann problem, Robin
problem, periodic boundary value problem ([1], [4], [5]), for example. In the problem
considered there does not exist a positive solution v, of DE ey” — my = 0, m > 0,
0 < € (i.e. 0. is convex) such that 0.(c) — vc(a) = u(c) — u(a) > 0 and v.(t) — 0T
for t € (a,b) and € — 0T, which could be used to solve this problem by the method
of upper and lower solutions. We will define the correction function pieor) (t) which
will allow us to apply the method.

As was said before, we apply the method of upper and lower solutions and some
delicate estimates to prove the existence of a solution for problem (1.1), (1.2) which
converges uniformly to the solution u of the reduced problem (i.e. if we let ¢ — 0%
in (1.1)) on every compact subset of the interval (a,b) for ¢ — 0F.

As usual (cf. [3]), we say that a. € C*((a,b)) is a lower solution for problem (1.1),
(1.2) ifea (t)+kac(t) = f(t,as(t)) and a.(c)—ae(a) = 0, a:(b) —ae(c) < 0 for every
t € {a,b). An upper solution 3. € C?({a,b)) satisfies 87 (t) + kB:(t) < f(t, B(t))
and (. (c) — Be(a) =0, Be(b) — Be(c) = 0 for every t € (a,b).

Theorem 1.1 [2], [3]. If a., 8. are respectively lower and upper solutions for
(1.1), (1.2) such that a. < (., then there exists a solution y. of (1.1), (1.2) with
e < Ye < fe.

Denote H(u) = {(t,y); a<t<b,|y—u(t) <d(t)}, where d(t) is the positive
continuous function on (a, b) such that

lu(c) —u(a)| +6 fora<t<a+ 30,
dit)y=< ¢ fora+d<t<b—9,
lu(b) —u(c)| +6 forb— 16 <t <b,

§ is a small positive constant and v € C? is a solution of the reduced equation
ku = f(t,u) on (a,b). We will assume that such a solution u exists. Further, we will
write s(e) = O(r(e)) when 0 < 1irn+ [s(e)/r(e)| < 0.
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2. MAIN RESULT
Theorem 2.1. Let f € C'(H(u)) satisfy the condition

‘ of (t,y)

Y ‘ <w < —k for every (t,y) € H(u) (hyperbolicity condition).

Then there exists €9 such that for every ¢ € (0,e0) the problem (1.1), (1.2) has a
unique solution satisfying the inequality

—0l™ () — b, (t) — Ce < ye(t) — (u(t) + ve(t)) < 0c(t) + Ce  for u(c) —u(a) =0
and
—0.(t) — Ce < ye(t) — (u(t) + ve(t)) < v (t) + 0. (t) + Ce  for u(c) — u(a) <0
n {(a,b) where
ou(t) = u(c) l—)u(a) ' (e\/m_/s(bft) _ oV/mlet=t) | \/mie(t—e) _ e\/m_/e(cft))v

@E(t):M.(e\/m_/E(t ) _ oV/TEa) 4 o/TEet) _ o /TE-0).

( v/m/e(b— a)+ v/m/e(c— b)_’_e\/m/e(a c))
_ (e\/m/e(a—b)_’_e\/m/s(b—c)_‘_e\/m/e(c—a))7

m = —k —w, C =m max{|u”(t)|;t € (a,b)} and the function

,U(corr) — w|u(c) — U’(a)l Ol Uf(t)
S0 =T e MCTER)

oVmiea—ay__ V=(t) VT
o IroETE )

is positive for t € (a, b).

Remark 1. The function v.(t) satisfies

1) ev! —mv. =0,

2) .(e) — (@) = —(u(e) — u(a)), v.(6) — vo(c) = O,

> 0 (< 0) is decreasing (increasing) for u(c) —u(a) > 0 (< 0),

onverges uniformly to 0 for € — 0% on every compact subset of (a,b),

= (u(c) — u(a))O(e\/m_/EX(t)) where y(t) =a—t for a <t < 3(b+c) and
x(t)=t—b+a—cfor 3(b+c) <t <b.
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The function v, (t) satisfies
) bl —mv. =0,
) = 0=(a) = 0, 9(b) = Ve (c) = |u(b) — u(c)],

t) > 0 is increasing,

(1

(2) i.c

(3) 0(t)

(4) ©¥(t) converges uniformly to 0 for ¢ — 0T on every compact subset of (a,b),

(5) D:(t) = |u(b) — u(c )|O(e\/m_/5’h<(lt ) where Y(t) =t —b for (a4 c) <t < band
Lt)=c—b+a—tfora<t<i(a+o).

The correction function vﬁ“’”)( t) will be determined precisely in the next section.

3. THE CORRECTION FUNCTION v\ (t)
Consider the linear problem
(3.1) ey’ —my = —2wlv:(t)], te{ab), e>0

with the boundary condition (1.2).
We apply the method of upper and lower solutions. We define

a:(t) =0

and ) )
w w
(1) = — L))t € {a,b)} = = |v-(a)].
Pe(t) = — max {Jve(t)] .t € (a,b)} = —— |ve(a)]
Obviously, |v.(a)| = 2wm ™ u(c) —u(a)|(1+O(eV™/(2=9))) and the constant func-
tions o, and (. are lower and upper solutions for problem (3.1), (1.2). Thus on the

basis of Lemma 1.1 there exists a unique solution y“" of the linear problem (3.1),
(1.2) for every € such that

n {(a,b). The solution we denote by pleor) (t) i.e. is

Uécorr) (t) d:ef yELi“(t)
and we compute v\ (t) exactly:

pleer) (1) = — LU V) 4y



be(t) = wlu(c) — U(a)|t(e, /m /e(b—t) + e /m/e(t=b) _ g\/m/e(c—t) _ e\/m/e(tfc)).

ws(a) —1ZJE(C) = w|u§))\/_( )| ( \/T”_/E(b a) _’_e\/m_/e(a b)

_ eV/m/e(e—a) _ e\/m_/em—c))
_w|u() ()|(\/_(bc)+e\/m_/scb) )

D/me
_ wlu(c) — u(a)|
= TO(M
_wlu(e) —u(a)| o mizp-c e
Yele) = elb) = S p (oY) g VI )
_ Mb(g _ e\/m_/e(cfb) . e\/m_/s(bfc))
Dy/me
_ wlu(c) —u(a)| (e\/m_/sm—c))
Vme ’
_ wlu(c) — u(a)| ex(t
Ye(t) = NG ———L——"0(eVm/x(t)),

Thus, we obtain

,U(corr) — w|u(c) ( )| ol UE(f’)
eo0=""m o s

OVl |u(b; —(tl)t(c)| * tO(e\/m_/EX(t))} '

4. PROOF OF THEOREM

Proof. First we will consider the case u(c) — u(a) > 0. We define the lower
solutions by

ac(t) = ult) + vo(t) — v (1) — 0 (t) — .

and the upper solutions by

Be(t) = u(t) + v (t) + 0. (t) + Te.



Here I'. = ¢A/m where A is the constant which shall be defined below, a <
on (a,b) and satisfy the boundary conditions prescribed for the lower and upper
solutions of (1.1), (1.2).

Now we show that ea (t) + kae(t) = f(t, a:(t)) and €87 (t) + kB:(t) < f(t, B(1)).
Denote h(t,y) = f(t,y) — ky. By the Taylor theorem we obtain

h(t, ae (1)) = h(t, ae(t)) = h(t,u(t)) = =5 = (ve(t) — ol () = 0:(t) — T2),

where (t,0.(t)) is a point between (¢, a.(t)) and (¢, u(t)), and (¢,0.(t)) € H(u) for
sufficiently small . Hence, from the inequalities m < Oh(t,0.(t))/0y < m + 2w in
H (u) we have

e (t) — h(t,a:(t)) = eu(t) + ev(t)
— evl” (1) — 0! () — (m + 2w)v(t) + Mo (t) + mi.(t) + ml-.

€ g

Because v, (t) = |v:(t)| we have —epleo)” () — 2wv.(t) + mol™ (t) = 0, as follows

from DE (3.1), we get
ea (t) — h(t,a:(t)) = eu”(t) + mle = —elu” (t)]| + A.

For 5.(t)) we have the inequality

Oh(t,0(t))

h(t, Be(t)) — eB(t) = ay (ve(t) + 0e(t) + Te) — B ()

=m(v(t) + 0= (t) + Te) — e(u” (t) + vl (t) + 02 (1))

> eA —elu’ ()]
where (t,0.(t)) is a point between (t,u(t)) and (¢, 5.(t)) and (¢,0.(t)) € H(u) for
sufficiently small e.

The case u(c) — u(a) < 0:

The lower solutions
ae(t) = u(t) + ve(t) — 0 (t) — T
and the upper solutions

Be(t) = u(t) +ve(t) + Uécorr) (t) + 0 (t) + Te



satisfy

oh
eal — h(t,a) = eu” +evl —ed! — 8_(U€ — . —T.)
Y

.,  Oh .
=ceu” +ev! —ev”—f—a—y( Ve + 0 + Te)
A1

> eu +evl! —ed! + m(—ve + 0 + Te)
=ceu” +eA > eA —elu”|

oh
ht,8.) — el = 2
(1.0 =<8 = 5

> (m + 211))’[)5 + m( (corr) + D + Fe) —eu — 61);/ _ €’U§COH)// B g@é’

(Ve + v 45, +T,) — e’ — ev ev(c"”) —ed?

(corr) _ _. (corr)” A " _ A "
= — 2w |v| + mu ev; +eA—cu' =cA—cu

>eA —elu”|.

Now, if we choose a constant A such that A > |u”(t)], t € (a,b) then ea(t) >
h(t,ae(t)) and eB.(t) < h(t, B=(t)) in (a,b).

The existence of a solution for (1.1), (1.2) satisfying the above inequality follows
from Lemma 1.1. The uniqueness of solutions follows from the fact that the function
h(t,y) is increasing in the variable y in H(u) (Peano’s phenomenon). O

Remark 2. Theorem 2.1 implies that y.(t) = u(t) + O(e) on every compact
subset of (a,b) and

Jim (o) = T y.(0) = u(c).
The boundary layer effect occurs at the point a or/and b in the case when u(a) # u(c)
or/and u(b) # u(c).

Example 1. Consider the linear problem
ey —y=t, te{0,2),0<ex1

with the boundary condition

Its unique solution

Ve _9eV/1/e 4
4\/_ 2e3\/m + 2e\/_
N —eV1/e 4 o3V 2e2\/_
W 9Vl £ ooV 1E 1

Ve (t) 1/et

1/et t



converges (by virtue of Theorem 2.1 and Remark 2) to the solution u(t) = —t of the
reduced problem as ¢ — 0" on the interval (0,2) and

lim ys(o) = 11I(I)1+ y6(2) = u(l) =-1

e—0

and
lim y2(0) = lim y.(2) = o0

e—01 e—0t

(the boundary layer phenomenon).
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