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LOCALLY SPECTRALLY BOUNDED LINEAR MAPS
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Abstract. Let L(H) be the algebra of all bounded linear operators on a complex Hilbert
space H. We characterize locally spectrally bounded linear maps from L£(H) onto itself.
As a consequence, we describe linear maps from £(H) onto itself that compress the local
spectrum.
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1. INTRODUCTION

Throughout this paper, X will denote a complex Banach space and £(X) the
algebra of all bounded linear operators on X with identity operator I. The local
resolvent set of an operator T' € L(X) at a point « € X, gr(x), is the set of all A € C
for which there exists an open neighborhood Uy of A in C and an analytic function
f: Ux — X such that the equation (1 — T') f(11) = « holds for all ;1 € Uy. The local
spectrum of T at x, denoted by or(z), is given by

or(z) :=C\ or(x),

and is a compact subset of o(T"). The local spectral radius of T' at x is defined by

rr(z) := limsup ||T"z|| /",

n—-+oo

and coincides with the maximum modulus of o7 (z) provided that T has the single-
valued extension property. Recall that T is said to have the single-valued extension
property if for every open set U of C, the equation

(T=Ne(N) =0 (AeU),
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has no nontrivial analytic solution on U. Evidently, every operator T € L(X)
with empty interior point spectrum enjoys this property. Our references on local
spectral theory are the remarkable books of P.Aiena [1] and of K.Laursen and
M. Neumann [11].

We will say that a linear map ¢: £(X) — L£(X) is locally spectrally bounded at
a fixed nonzero vector e € X if there is a positive constant M such that r,1)(e) <
Mrrp(e) for all T € £(X). When X is an infinite dimensional Hilbert space, we prove
the following.

Theorem 1.1. Let H be an infinite dimensional Hilbert space and let e be a fixed
nonzero vector in H. A continuous surjective linear map ¢: L(H) — L(H) is locally
spectrally bounded at e if and only if there are a nonzero scalar ¢ and an invertible
operator A € L(H) such that Ae = e, and p(T) = cATA™" for all T € L(H).

This theorem is an extension of the result due to Brac¢i¢ and Miiller [7, Theo-
rems 3.3 and 3.4], where they characterized continuous surjective linear maps from
L(X) into itself that preserve the local spectrum (local spectral radius) at a fixed
vector in X.

The following results show, unlike in the infinite dimensional case, that the addi-
tional assumption of continuity on ¢ can be omitted, and extend the main results
from [4], [6], [9] to this more general scope.

Theorem 1.2. Let n > 3 be a positive integer and let e € C™ be a fixed nonzero
vector. Let ¢: M, (C) — M,(C) be a surjective linear map. If ¢ is locally spectrally
bounded at e, then there exist a nonzero scalar ¢ and matrices A, S € M, (C) with
A invertible and Ae = Se = e such that either o(T) = cATA™! + ¢(S — I) tx(T/n)
or p(T) = cAT" A~ + ¢(S — I)tr(T/n) for all T € M, (C). Here tr(-) denotes the
usual trace function on M, (C) and T*" is the transpose of the matrix T

Corollary 1.3. Let n > 3 be a positive integer and let e € C" be a fixed nonzero
vector. Let ¢: M, (C) — M,(C) be a surjective linear map such that o(I) and I
are linearly dependent. Then the map ¢ is locally spectrally bounded at e if, and
only if, there are a nonzero scalar ¢ and an invertible matrix A € M,,(C) such that
Ae = e and ¢(T) = cATA™! for all T € M, (C).
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2. PROOF OF THE MAIN RESULTS

We first fix some notation. The duality between the Banach spaces X and its dual
X* will be denoted by (-,-). For z € X and f € X*, as usual we denote by z® f the
rank at most one operator on X given by z — (z, f)x. For T € £(X) we will denote
by ker(T"), T*, o(T), 0su(T), and r(T'), the null space, the adjoint, the spectrum, the
surjectivity spectrum, and the spectral radius of T'; respectively.

The proof of our results uses several auxiliary lemmas. The first is quoted in [3,
lemma 2.1]. It concerns spectrally bounded linear maps from a purely infinite C*-
algebra with real rank zero onto a semi-simple Banach algebra. For our purposes,
the only relevant example of an algebra having these properties is the algebra £L(H)
of all bounded linear operators on an infinite-dimensional Hilbert space H.

Recall that a linear map ¢ between unital Banach algebras A and B is called
spectrally bounded if there is a positive constant M such that

r(p(a)) < Mr(a) (a € A),
where 7(-) denotes the spectral radius function.

Lemma 2.1. Let H be an infinite dimensional Hilbert space and let ¢: L(H) —
L(H) be a surjective spectrally bounded linear map. Then there exist a nonzero
scalar A and an epimorphism or an anti-epimorphism J: L(H) — L(H) such that
o(T)=AJ(T) for all T € L(H).

A few comments must be added to this statement. In [3, lemma 2.1], A can be
any central unitary element; however, since the centre of £(H) is trivial, A must be
a complex number in our setting. Further, the conclusion of [3, lemma 2.1] is that J
is a Jordan epimorphism; since the algebra C(H) is prime, a well known theorem of
Herstein [10] tells us that J must be an epimorphism or an anti-epimorphism in our
setting.

The following lemma characterizes spectrally bounded linear maps from M, (C)
onto itself.

Lemma 2.2. A surjective linear map ¢ from M,(C) into itself is spectrally
bounded if, and only if, there exist a nonzero scalar ¢ € C and an automorphism or
an anti-automorphism ¢ on M, (C) such that o(T) = co(T) + (o(I) — cI) tr(T/n)
for all T € M, (C).

Proof. Thisis a consequence of [13, Remark 4]. O
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Lemma 2.3. Let e be a fixed nonzero vector in X, and let T € L(X). If
A € 04y (T), then for every € > 0, there exists T' € L(X) such that ||T —T'|| < ¢ and
A€ opi(e).

Proof. See [7, Lemma 2.2]. O

The following result is inspired by [7].

Lemma 2.4. Let e be a fixed nonzero vector in X. If ¢: L(X) — L(X) is a
continuous surjective locally spectrally bounded linear map at e, then ¢ is spectrally
bounded.

Proof. Suppose that ¢ is locally spectrally bounded at e. Without loss of
generality, we can assume that r,(7y(e) < rr(e) for every T' € L£(X), and let us
show that r(¢(T)) < r(T) for all T € L(X). To this end, let T € L(X) and let
A € o(p(T)) satisty |A| = r(¢(T)), which means A € g4, (¢(T")). By Lemma 2.3, for
each integer n > 1 there exists an operator T/, in £(X) such that | T/, — o(T)|| < n~!
and A € o7/ (e). Since ¢ is continuous and surjective, by the Banach open mapping
theorem there exists n > 0 such that nB(0,1) C ¢(B(0,1)), where B(0,1) denotes
the open unit ball of £(X). Therefore, for each n there exists 7,, € L£(X) such
that o(T},) = T/, and ||T;, — T|| < 7 Y||T! — o(T))|| < n~*n~t. Thus T,, — T and
A € au(r,)(e) for all n > 1. So, by the upper semi-continuity of the spectral radius
function, we have

r(T) = limsupr(T,,)

n—oo

> limsupry, (e)

n—oo

> limsup 747, (e)
n—oo

Z [Al = r(p(T)).
Hence ¢ is spectrally bounded from £(X) onto itself. O
The next lemma is simple, and its proof is straightforward. We include it for the

sake of completeness.

Lemma 2.5. Assume that X is a complex Banach space of dimension at least
two, and let e € X be a nonzero vector of X. If A € L(X*, X) is a bijective operator,
then the anti-automorphism ¢: T — AT* A~ is not locally spectrally bounded at e.

Proof. Assume, on the contrary, that ¢ is locally spectrally bounded at e, and
let M be a positive constant such that r g7+ 4-1(e) < Mrp(e) for all T € L(X). Note
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that for every T' € L(X),

rp-(A™te) = limsup | T*" A~ te||'/™

n—oo

= limsup ||A" (AT* A=) e /7

n—oo

< limsup |[(AT* A7) "e|[Y™ = r e 41 (e).

n—oo

Similarly, we have r 7+ 4-1(e) < r7-(A~1e), and so
(2.1) rr-(A7te) = rppe a1 (e) < Mrr(e)

for all T € L(X).

Now, let € X be such that z and e are linearly independent and (z, A~ te) =1,
and let f € X* be such that (e, f) = 0 and (x, f) = 1. The operator T := z ® f
satisfies Te = 0 and T*"A~1le = f for all n > 1. Hence, rr(e) = 0 and rp- (A~ te) =
1. This contradicts the inequality (2.1) and completes the proof. ([

Remark 2.6. Just as in the proof of the above lemma one can see that when
X = H is a Hilbert complex space and A € H is a bijective operator, the anti-
automorphism ¢: T — AT A~! is not locally spectrally bounded at a nonzero
fixed vector e € H. Here T% denotes the transpose of the operator T relative to a
fixed but arbitrary orthonormal basis.

Let us recall the following useful facts that will be often used in the sequel. It
is well-known that 7' € £(X) has the single-valued extension property if, and only
if, for every A € C and every nonzero vector z in ker(A — T') we have or(z) = {\};
see [1]. Furthermore, if X = C" is a finite dimensional space, then for every x € C”

(2.2) or(z) = | J {M: 1<k <pwith Pi(z) # 0}
1<k<p
Here A1, A2,..., A, are the distinct eigenvalues of T, Ej the corresponding root

spaces, and P: C" — Ej, (1 < k < p) the canonical projections; see [5].
We now have collected all the necessary ingredients and are therefore in a position
to prove the main results of this paper.

Proof of Theorem 1.2. Suppose that ¢ is locally spectrally bounded at e,
and let M be a positive constant such that r,)(e) < Mrr(e) for all T € L(X).
By Lemma 2.4, the map ¢ is spectrally bounded; and so, by Lemma 2.2, there
exist a nonzero scalar ¢ € C and an invertible matrix A € M, (C) such that either
o(T) = cATA™ + (o(I) — cI) tx(T/n) or (T) = cAT" A=t + (o(I) — cI) tx(T/n)
for all T € M, (C).
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Assume that p(T) = cATA™! + (p(I) — cI) tr(T/n) for all T € M, (C), and note
that e and Ae are linearly dependent. Indeed, suppose by the way of contradiction
that e and A~ 'e are linearly independent. Asn > 3, we can find a matrix T} € M,,(C)
such that Tye = 0, TyA7 e = A~ le, and tr(T1) = 0. We have o7, (¢) = {0} and
o1y (€) = {c}; and so 1, (e) = 0 and ry(7,)(e) = |c|. This entails that ¢ = 0 and
contradicts the surjectivity of ¢. Now, let us show by the way of contradiction that
e and ¢(I)e are linearly dependent. So, assume on the contrary that e and ¢(I)e are
linearly independent, and note that in this case e and A1 f are linearly independent
too, where f := p(I)e—ce. It is easy to see that we can find a matrix T, € M, (C) such
that Toe = 0, T, A" f = c YA (1 +¢) f —¢(I)f), and tr(T>/n) = 1. Thus, we have
o, (e) = {0}, rn,(e) =0, o(Tz)e = f and o(T2)f = f. From this together with the
equality (2.2), we infer that o,(1,)(e) = {1} and ry(p,)(e) = 1, which contradicts the
fact that ¢ is locally spectrally bounded at e. So, write ¢(I)e = ke for some nonzero
constant k € C, and let us show that & = ¢. For every v € C we can find a matrix T,
such that T,e = e and tr(T, /n) = v. As e and A~ 'e are linearly dependent, it is easy
to see that (T, )e = (c+ (k — c)v)e, and so ry(7,)(e) = |(c + (k — ¢)v)|. Therefore,
as rr, (e) = 1, we have |(c + (k — ¢)v)| < M for all v € C, which implies that k = ¢
and ¢(I)e = ce. Hence ¢(T) = cATA™ +¢(S —I)tr(T/n) for all T € M,,(C), with
Ae = ae for some nonzero a € C and Se = e, where S := ¢~ 1¢(I). Dividing A by «
if necessary, we may assume that Ae = e.

The case when ¢ takes the second form is dealt with similarly; and the proof is
complete. O

Proof of Corollary 1.3.  Checking the ‘if’ part is straightforward, so we will
only deal with the ‘only if’ part. So assume that ¢ is locally spectrally bounded at
e, and write @(I) = kI for some scalar k. By the proof of the above theorem there
exist a nonzero scalar ¢ and an invertible matrix A with Ae = e and ¢(I)e = ce such
that either o(T) = cATA™! + (o(I) — cI) tr(T/n) or (T) = cAT* A=t + (o(I) —
cI)tr(T/n) for all T € M, (C). In particular, k¥ = ¢ and so either ¢(T') = cATA™!
or (T) = cAT" A1 for all T € M,,(C). Lemma 2.5 yields that ¢ takes only the
first form; and the proof is therefore complete. O

Proof of Theorem 1.1. Note that, since the sufficiency condition is obvious, we
only need to prove the necessity. So, assume that ¢ is locally spectrally bounded
at e. By Lemma 2.4 the map ¢ is spectrally bounded, and therefore by Lemma 2.1
there exist a nonzero complex number ¢ and an epimorphism or an anti-epimorphism
J on L(H) such that o(T) = c¢J(T) for all T € L(H).

Next, let us show by way of contradiction that ¢ is injective. So, assume that
¢ is not injective and note that, in this case, ker(¢p) is an ideal of L(H) containing
IC(H), the ideal of all compact operators on H. So, pick an arbitrary € > 0 and let
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fe be a linear functional on H such that f.(e) = — 1. We have (e ® f. + I)e = e,
oewf.r1(e) = {e}, and oy (ews4+1)(€) = gomy(e) = {c} since e ® f. € K(H). In
particular, 7eg . 7(e) = € and ry(egf.+1)(€) = |c[, and so there is a positive constant
M such that |c| < Me for all € > 0 since ¢ is locally spectrally bounded at e. This
implies that ¢ = 0, which is a contradiction. Thus J is an automorphism or an anti-
automorphism. Now by the fundamental isomorphism theorem [12, Theorem 2.5.19]
(see also [8]) there exists an invertible operator A € L£L(H) such that J(T) = AT A1
or J(T) = AT"A~! for all T € L(H). Lemma 2.5 ensures that the second form is
excluded, and consequently ¢ takes only the first. Moreover, in this case, Ae = e
for some nonzero scalar \; otherwise, we can find T € L(X) such that Te = 0
and TA 'e = A~'e. This shows that rp(e) = 0 and r,y(e) = 1, and gives a
contradiction. Dividing A by A\ if necessary, we may assume that Ae = e; and the
proof is complete. O

3. LINEAR LOCAL SPECTRUM COMPRESSORS

This section is devoted to deriving some consequences of the main results of this
paper. These consequences describe linear maps from £(H) onto itself compressing
the local spectrum. A linear map ¢ from L£(H) into itself is said to compress the
local spectrum at a fixed nonzero vector e € H if

O—ga(T) (6) Q or (6)

for all T € L(H).

The first consequence extends [7, Theorem 3.3] by replacing “preserves the local
spectrum” by the weaker hypothesis “compresses the local spectrum” in the Hilbert
space setting.

Theorem 3.1. Let H be an infinite dimensional Hilbert space and let ¢ € H
be a fixed nonzero vector. A continuous surjective linear map ¢: L(H) — L(H)
compresses the local spectrum at e if and only if there is an invertible operator
A € L(H) such that Ae = e, and (T) = ATA™! for all T € L(H).

Proof. Assume that ¢ compresses the local spectrum at e. By using the fact
that rr(x) > max{|A|: A € op(x)} for all T € L(H) (see for instance [1] or [11])
together with the same argument as in the proof of Lemma 2.4, one can see that ¢ is
spectrally bounded. Now, in the same way as in the end of the proof of Theorem 1.1,
one can see that ¢ is injective and there exist a nonzero scalar ¢ and an invertible
operator A € L(H) such that either p(T) = cATA™! or p(T) = cAT*"A~! for all
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T € L(H). By [9, Lemma 5], the second form is not possible, and ¢(T) = cATA~!
for all T' € L(H), from which one can see that A can be supposed to satisfy Ae = e.
The desired conclusion follows from the fact that {c} = o, (e) € o7(e) = 1, which
means that ¢ = 1.

As the sufficiency condition is obvious, the proof is complete. O

The second consequence describes linear maps on M,, (C) which compress the local
spectrum at a fixed nonzero vector, and extends the main result of [9].

Theorem 3.2. Let n be a positive integer, and let e € C" be a fixed nonzero
vector. A linear map ¢ from M, (C) into itself compresses the local spectrum at e if
and only if there is an invertible matrix A € M, (C) such that

(3.3) Ae =e and o(T) = ATA™' for all T € M, (C).

Proof. Evidently, the formula (3.3) defines a compressing local spectrum bi-
jective linear map at e.

Conversely, if ¢ compresses the local spectrum, then in particular, it preserves at
least one eigenvalue of each matrix, i.e., o(p(T)) No(T) # O for all T € M, (C).
Therefore, by [2, Theorem 2], there is an invertible matrix A € M, (C) such that
o(T) = ATA™ ! or o(T) = AT" A~! for all T € M,,(C). Moreover, by [9, Lemma 5]
the second form is excluded, and consequently ¢ takes only the first, from which we
may assume that Ae = e. This completes the proof. O
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