

Institute of Photonics and Electronics v.v.i. (www.ufe.cz) Technology of Optical Fibers FILANO team

ufe

www.ufe.cz/dpt240, www.ufe.cz/~kasik

Ústav fotoniky a elektroniky AV ČR, v.v.i.

Prof. Jiří Homola Česká hlava 2009

ZÁKLADNÍ VÝZKUM:

fotonika

- vláknové lasery a zesilovače, optická vlákna
- optické biosenzory
- státní etalon času, detekce pole živých buněk

100 FTE

Outline

Intro

Optical fibers

TechnologiesPreform preparation – MCVD & others silica properties – MCVD vers. conventional fiber drawing

ApplicationTelecommunications, fiber lasers,
amplifiers, sensors

Summary LABO

MCVD, fiber drawing, sol-gel, magnetron sputtering

Optical fiber

Optical fiber : dielectric structure, L<< r, n_{core} > n_{clad} [W. Snell +1626, J. Tyndall +1893] attenuation, dispersion

Optical losses in optical fibers

- trasparency of 3 mm of window-glass \approx 2 km of optical fiber

Purity of material

- 1. Per Analysis PA (99 99,5 %)
- 2. Semiconductor PP (99,9995 %)
- **3.** Ultra-pure FO Optipur / for trace analysis [ppb]

 $\% - 10^{-2}$

ppm – 10⁻⁶ (parts per million)

ppb – 10⁻⁹ (parts per billion) : content of impurities acceptable in FO Optipur materials Ultra-pure technologies - CVD !

Optical fiber preparation

Ultra-pure technologies CVD - Chemical Vapor Deposition

A(g) + B(g) = AB(s)

Goal : starting materials (g) or (l) can be purified (E.g. distilled)

Preform preparation

MCVD – (Modified) Chemical Vapor Deposition

- Sequential sintering of thin glassy layers (of thickness 1-20 µm) onto inner wall of silica substrate resulting in bulk material – preform [S. R. Nagel, 1982]
- high purity (~ 10¹ ppb) high preciseness (better than 1 %)

MCVD process model

1. Vaporization of starting materials

•
$$V_{XCI4} = V_{Ox} * P_{XCI4}^{o} / (P - P_{XCI4}^{o}) \dots$$
 boiling point SiCl₄=56°C

2. Oxidation

- 1st -order kinetics, t = 0.02 s
- Chemical equilibrium :
- SiCl₄ (g) + O₂ \rightarrow SiO₂ (s) + 2Cl₂

conversion ~ 0.95 – 0.99 (1500 °C)

• GeCl₄ (g) + O₂ \rightarrow GeO₂ (s) + 2Cl₂

conversion ~0.5 – 0.6 (1600 °C), f(t, x_{SiCl4}/x_{GeCl4})

3. Deposition

MCVD process model

Temperature field during deposition

MCVD process model

Process parameters :

Variable :

- flow rates (Si, Ge, P, B, F, Ox ...)
- deposition temperature

Adjustable :

- temperature of starting materials (liquids)
- burner speed
- pressure
- rotation speed of the substrate tube
- substrate tube dimensions

[McChesney and Nagel, 1982, Wood, 1987, Kirchhof, 1986]

MCVD output parameters

Tomography of the refractive-index profile of preform

- High purity material due to FO-Optipur purity starting materials.
- High quenching rate ranging from 10² to 10³ °C/s !

MCVD - doping of silica

[A.B. Chynoweth, 1979, M. Shimizu, 1986, Y. Ohmori, 1983, S. H. Wemple, 1973, H. Wehr 1986, I. Kasik, 2005, K. Sanada, 1980, M. M. Karim 1994]

Other CVD technologies (ultra-pure)

Other technologies : sol-gel

No melting, disorder imprinted.

[J. McKenzie (US), J. B. McChesney, 1997, A. Pope (US), 1993, M. Guglielmi (It), J. Livage (F), R. Almeida (P), S. Ribeiro (Br), B. McCraith (Ir), J. Brinker (US), S. Sakka (J), V. Matejec & J.Mrazek (CZ)]

Comparison

CVD (Chemical)

x PVD (Physical)

MCVD OVD etc. DC magnetron sputtering vacuum evaporation etc.

Layer thickness

1 – 10¹ µm

1 - 10¹ **nm**

(however, both are reported as "thin layers")

Deposition rate

HIGH

LOW

Products

Layers only

Comparison x co

conventional

Starting materials

gaseous (g) or liquid (l)

(M)CVD

melting point of oxides different

(s) solid state melting point comparable

Purification methods

distillation

recrystallisation, remelting

Annealing ~ 1120-1180 °**C** [www.Heraeus, M. B. Volf, 1987, A. B. Chynoweth, 1979, M. Ohashi, 1992, O. V. Mazurin, 1980, K. Shiraki, 1993]

[A. B. Chynoweth, 1979, O. V. Mazurin, 1980, S. H. Wemple, 1973]

Properties(M)CVDxconventional

Optical properties - transparency

Dependence of absorption at UV on technology of silica production [Safibra, 2010 & M. B. Volf, 1987]

Properties(M)CVDxconventional

Optical properties – refractive index

 $n_{633 \text{ nm}, 20 ^{\circ}\text{C}} = 1.457$ $n_{10.6 \,\mu\text{m}, 20 ^{\circ}\text{C}} < 1$ [www.heraeus.de]

1.48 < n < 1.95 [www.schott.com]

Comparison : GLASS (M)CVD x conventional

GLASS : solid state material, amorphous, usually produced by quenching of melt, in glassy state (stable below T_q) [Hlaváč, 1981]

Structure

amorphous

amorphous

short-distance order (< 1 nm) longer-distance disorder (>1 nm) no X-ray crystallographic signal nano-structure imprint feasible (glass/glassceramics)

Production - kinetics

sintering + melting & quenching ~10² -10³ °C/s melting + quenching ~10°C/min

VŠCHT – ÚSK, 2013

[G. Tammann, 1933]

- higher porosity •
- lower density •

Temperature **VŠCHT – ÚSK, 2013**

Transformation

area

Crystal

Drawing of optical fibers

Comparison of fibers

optical

X

soft-glass

SILICA (doped with GeO_2 , P_2O_5 , B_2O_3 ...) High productivity (relative)

- Purity FO Optipur grade
- Chemical durability
- Precise geometry (<0.5 μm)
- Low optical loss ~ 0.2 dB/km
- Strength ~ 5 GPa due to coating
- Use in **OPTICS**

• (CaO, MgO)-Al₂O₃-B₂O₃-SiO₂

- $Na_2O CaO (Al_2O_3) SiO_2$
- High productivity low processing temperature, cheap starting materials
- Thermo-insulating properties
- Chemical durability
- A geometry allowing weaving
- Strength ~ 2.5 GPa (without coating, temporary)
- Use as insulators and textiles

Application

Telecommunications

Testing of 200 km telecom line

SM 1300, 1550 nm

GI - technology transfer VÚSU Teplice, Hesfibel TR

1981 – 1st demonstration of CZ optical fiber – UFE/URE/JLS

Telecommunications : fiber lasers and amplifiers

High power fiber lasers

Intensity of light Sun 63 MW/m2 1W-fiber laser 12.7 GW/m2

Welding, cutting < 2kW savings, fast process

Er- fiber laser, pulsed 197 fs, 5m resonator Liekki

Fiber-optic sensors

Small devices capable of continuous and reversible monitoring of (bio)chemical species and their concentration

Principle : change of properties of the light due to chemical (physical) changes of medium.

SUMMARY

MCVD

Suitable for the preparation of :

- silica-based materials, doped (up to 50 mol%)
- **few-component** (up to ~ 6 components) materials
- materials for photonics, optics, optoelectronics
- materials of high-level purity (~ 10¹ ppb)
- products requiring high preciseness of geometry (better 1 %)

SUMMARY

- 1. OF technology : preparation of structures of high preciseness from materials of ultra-high purity (impurities in ppbs only).
- 2. OF preparation in two steps : preform preparation and fiber drawing.

(M)CVD technique (preform) makes possible to prepare multilayered tailored structures of suitable level of purity.

- 3. Fibers conventional (passive) and specialty (active).
- 4. Research of optical fibers (CR) :

References

- **J. M. Senior** : Optical fiber communications Principle and practise, Pearson Education Limited, Harlow, England, 2009.
- A. Mendez, F.T. Morse : Specialty optical fibers handbook,

Elsevier Science & Technol, USA, 2006.

- J. Schrofel, K. Novotný : Optické vlnovody, SNTL, 1986
- **Saaleh,** Fotonika (1 4), Matfyzpres
- S. R. Nagel, J. B. McChesney, K. L. Walker : An overview of the MCVD process and performance, IEEE J. Quantum Electron. QE-18 (1982) 459-477
- Československý časopis pro fyziku 1/2010, 4-5/2010, 1/2011
- Jemná mechanika a optika 55 (2010)
- Sdělovací technika 3/2011

Uplatnění v oboru

UCHP - Oddělení aerosolových a laserových studií : Laserová ablační příprava nanostrukturovaných prášků, RNDr. Vladislav Dřínek, CSc., PROJEKT MAGISTERSKÉHO/BAKALÁŘKÉHO STUDIA

UCHP - Oddělení aerosolových a laserových studií : Laserová ablační příprava nanostrukturovaných prášků v kryogenních atmosférách RNDr. Vladislav Dřínek, CSc., PROJEKT DOKTORSKÉHO STUDIA

ALMA - Akademická laboratoř materiálového průzkumu malířských děl, RNDr. Janka Hradilová

