

Academy of Sciences Institute of Photonics and Electronics v.v.i.

ufe

Technology of Optical Fibers

www.ufe.cz

Institute of Photonics and Electronics

FUNDAMENTAL RESEARCH

Optical Biosensors (SPR Homola)

Fiber Lasers and Non-linear Optics (Honzatko)

Nanomaterials (SIMS Lorincik)

Bioelectrodynamics (Cifra)

National Time and Frequency Standard (Kuna)

Outline

Intro	optical fibers
Technologies	MCVD preform preparation fiber drawing
Application	telecommunications fiber lasers (sensors)
Summary	& Invitation ICPF
LABO	MCVD, fiber drawing, sol-gel, magnetron sputtering

Optical fibers

Optical fibers

Optical losses in optical fibers

- trasparency of 3 mm of window-glass \approx 2 km of optical fiber

Purity of materials

- 1. Per Analysis PA (99 99,5 %)
- 2. Semiconductor PP (99,9995 %)
- **3.** Ultra-pure FO Optipur / for trace analysis [ppb]

 $\% - 10^{-2}$

ppm – 10⁻⁶ (parts per million)

ppb – 10⁻⁹ (parts per billion) : content of impurities acceptable in FO Optipur materials Ultra-pure technologies - CVD !

Optical fiber preparation - technology

CVD - Chemical Vapor Deposition TECHNOLOGIES

Production and deposition of material in solid state from starting materials in gaseous state through a chemical reaction :

A(g) + B(g) = AB(s)

Preform preparation - MCVD

MCVD – (Modified) Chemical Vapor Deposition

Sequential sintering of thin glassy layers (of thickness 1-20 µm) onto inner wall of silica substrate resulting in bulk material – preform

high purity (~ 10¹ ppb) high preciseness (better than 1 %)

Microphoto of cross section of Tomography of the refractive-index produced preform profile of preform

High purity material due to FO-Optipur purity starting materials.
High quenching rate ranging from 10² to 10³ °C/s !

[A.B. Chynoweth, 1979, M. Shimizu, 1986, Y. Ohmori, 1983, S. H. Wemple, 1973, H. Wehr 1986, I. Kasik, 2005, K. Sanada, 1980, M. M. Karim 1994

1. Vaporization of starting materials

•
$$V_{XCI4} = V_{Ox} * P_{XCI4}^{o} / (P - P_{XCI4}^{o}) \dots$$
 boiling point SiCl₄=56°C

2. Oxidation

- 1st -order kinetics, t = 0.02 s
- Chemical equilibrium :
- SiCl₄ (g) + O₂ → SiO₂ (s) + 2Cl₂

conversion ~ 0.95 – 0.99 (1500 °C)

• GeCl₄ (g) + O₂ \rightarrow GeO₂ (s) + 2Cl₂

conversion ~0.5 – 0.6 (1600 °C), f(t, x_{SiCl4}/x_{GeCl4})

3. Deposition

 Thermophoretic efficiency E = K. (1 – T_{cool surface} / T_{reaction}) ~ 0.6

Temperature field during deposition

Process parameters :

Variable :

- flow rates (Si, Ge, P, B, F, Ox ...)
- deposition temperature

Adjustable :

- temperature of starting materials (liquids)
- burner speed
- pressure
- rotation speed of the substrate tube
- substrate tube dimensions

[McChesney and Nagel, 1982, Wood, 1987, Kirchhof, 1986]

Other CVD technologies

Comparison

CVD (Chemical)

x PVD (Physical)

MCVD OVD etc. DC magnetron sputtering vacuum evaporation etc.

Layer thickness

 $1 - 10^{1} \, \mu m$ $1 - 10^{1} \, nm$

(however, both are reported as "thin layers")

Deposition rate

HIGH

LOW

Products

Layers, bulks

Layers only

Comparison

(M)CVD

conventional

Starting materials

gaseous (g) or liquid (l)

melting point of oxides different

(s) solid state melting point comparable

Purification methods

distillation

recrystallisation, remelting

Drawing of optical fiber from preforms

Diameter
80-1000 μm

Temperature 1800-2100°C

No thermo-insulation

Preparation of optical fibers

Telecommunication optical fibers Fiber lasers and amplifiers

Increasing requirements on speed and ammount of info.

Telecommunication & fiber amplifiers

1981 – 1st CZ optical fiber GI - technology transfer VÚSU Teplice, Hesfibel

in collaboration with Cesnet : testing 200 km line

All optical info processing

Stimulated emission \rightarrow laser

Amplification by Stimulated Emission of Radiation

* H. Jelínková, Čs. Časopis pro fyziku, No. 4-5, 2011

SPECIAL OPTICAL FIBERS for fiber lasers & amplifiers

Yb/Er, Tm -doped

Double-clad (DC) Twin-core (TCF) Microstructure (MSF)

Tm³⁺-Al₂O₃-SiO₂ fibers for Tm -doped fiber amplifier at 1470 nm

Non-optimized fiber parameters (low NA, low Tm³⁺ concentration), longer lifetime required.

Er/Yb -doped DC fibers

PCE $19 \rightarrow 40\%$

High-power fiber lasers

Er- fiber laser, pulsed 197 fs, 5m rezonator Liekki Ligth intensity Sun 63 MW/m² Optical fiber 12.7 GW/m²

Welding, cutting < 2kW

Optical fiber sensors

In vivo detection of pH in small samples (droplets, cells)

OPTICAL FIBERS – Materials - UV

- silica fibers SUPRASIL n_{200 nm} = 1.55 [ceramoptec.de, OceanO, IPE ...]
- planar silica, crystalline CaF₂ (MgF₂) [edmundoptics, technicalglass ...]

OPTICAL FIBERS – Materials – VIS/NIR

Silica n₆₃₃ =1.457 & doped silica n₆₃₃ = 1.45-1.50 [corning, lucent, ocean_o, IPE] Glass (silicate - Simax, Vycor, Pyrex) n₅₈₈ =1.5-1.95 [schott, LiFaTec.de, IPE...] Plastic n₅₈₈ =1.5-1.6 [mitsubishi.com, luceat.it, unlimited-inc.com...]

OPTICAL FIBERS – Materials - IR

- fluoride glasses [univ-rennes1.fr ...] (up to ~4 μm)
- sapphire [CRYTUR] (up to ~4 μm)
- silver-halides $AgCl_xBr_{1-x}$ (up to 15 μ m)
- chalco glasses (Se, As₂S₃, As₂Se₃...) [oxford-electronics, orc.soton.ac.uk] (< 20 μm)
- refractive indexes _{2-20um} ~ 2 2.5 >> silicate glasses [LiFaTec]

SUMMARY

- 1. Fiber technology : preparation of structures of high preciseness from materials of ultra-high purity (impurities in ppbs only). Difference between CVD and PVD.
- 2. Fiber preparation in two steps : preform preparation and fiber drawing. (M)CVD technique (preform) makes possible to prepare multilayered tailored structures of suitable level of purity.
- 3. Fibers conventional (passive) and special (active).
- 4. Research of optical fibers (CR) :

References

- **J. M. Senior** : Optical fiber communications Principle and practise, Pearson Education Limited, Harlow, England, 2009.
- A. Mendez, F.T. Morse : Specialty optical fibers handbook,

Elsevier Science & Technol, USA, 2006.

- J. Schrofel, K. Novotný : Optické vlnovody, SNTL, 1986
- **Saaleh,** Fotonika (1 4), Matfyzpres
- S. R. Nagel, J. B. McChesney, K. L. Walker : An overview of the MCVD process and performance, IEEE J. Quantum Electron. QE-18 (1982) 459-477
- Československý časopis pro fyziku 1/2010, 4-5/2010, 1/2011
- Jemná mechanika a optika 55 (2010)
- Sdělovací technika 3/2011

Uplatnění v oboru

ÚCHP : Laboratoř chemie a fyziky aerosolů

- Aerosols, Clouds, and Trace gases Research InfraStructure Network
- Thermophysical properties of water in unexplored, technologically significant regions
- Study of transport of inhaled nano-sized particles (Pb, Cd) and their allocation in organs
- Laser chemistry příprava tenkých vrstev, nanočástic, nanodestiček a dalších objektů technikami laserové ablace, laserové depozice z plynné fáze, CVD a MAPLE (Matrix Assisted Pulsed Laser Evaporation).

