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Abstract. We introduce the notion of order weakly sequentially continuous lattice op-
erations of a Banach lattice, use it to generalize a result regarding the characterization of
order weakly compact operators, and establish its converse. Also, we derive some interesting
consequences.
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1. Introduction and notation

Following Dodds [3], an operator T from a Banach lattice E into a Banach space

X is called order weakly compact whenever T [−x, x] is relatively weakly compact

for every x ∈ E+ (see Definition 3.4.1 of [4]). Thus, according to Eberlein-Šmulian

Theorem [2, Theorem 3.40], the operator T is order weakly compact if and only

if for every order bounded sequence (xn) of E, (T (xn)) has a weakly convergent

subsequence in X .

In [4], some characterizations of order weakly compact operators are established.

More precisely, it is proved that an operator T from an AM-space E into a Banach

space X is order weakly compact if and only if (T (xn)) is norm convergent for each

order bounded σ(E, E′)-Cauchy sequence (xn) of E (see Corollary 3.4.10 in [4]).

After that, an example proving that the last result is not true in arbitrary Banach

lattices is given. Nonetheless, when we read the proof of Corollary 3.4.10 in [4], we

observe that this result is still true when we assume only that the lattices operations

of E are weakly sequentially continuous.
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Our objective in this paper is to generalize this result of [4] and study its converse.

To do this, we will need to introduce a new notion that we call “order weakly se-

quentially continuous lattice operations”, which, we believe, is weaker than the well

known notion “weakly sequentially continuous lattice operations”, and we will show

that if we replace in Corollary 3.4.10 of [4] the hypothesis that “E is an AM-space”

by the weaker hypothesis “the lattice operations of E are order weakly sequentially

continuous” we obtain the same characterization for order weakly compact operators.

Next, we will establish the converse by proving that if for each order weakly compact

operator T from a Banach lattice E into a Banach space X , the sequence (T (xn)) is

norm convergent whenever (xn) is an order bounded σ(E, E′)-Cauchy sequence, then

E has order weakly sequentially continuous lattice operations or c0 is not embbeding

in X . As consequences, we will obtain a characterization of the discreteness of a

Banach lattice with an order continuous norm and a characterization of a Banach

lattice with order weakly sequentially continuous lattice operations.

To state our results, we need to fix some notation and recall some definitions. A

vector lattice E is an ordered vector space in which sup(x, y) exists for every x, y

∈ E. A subspace F of a vector lattice E is called a sublattice if for every pair of

elements a, b of F the supremum of a and b taken in E belongs to F . A subset B

of a vector lattice E is said to be solid if it follows from |y| 6 |x| with x ∈ B and

y ∈ E that y ∈ B. An order ideal of E is a solid subspace. Let E be a vector lattice,

then for each x, y ∈ E with x 6 y, the set [x, y] = {z ∈ E : x 6 z 6 y} is called an

order interval. A subset of E is said to be order bounded if it is included in some

order interval. A nonzero element x of a vector lattice E is discrete if the order ideal

generated by x equals the subspace generated by x. The vector lattice E is discrete

if it admits a complete disjoint system of discrete elements. A Banach lattice is

a Banach space (E, ‖ · ‖) such that E is a vector lattice and its norm satisfies the

following property: for each x, y ∈ E such that |x| 6 |y|, we have ‖x‖ 6 ‖y‖. If E

is a Banach lattice, its topological dual E′, endowed with the dual norm, is also a

Banach lattice. A norm ‖ · ‖ of a Banach lattice E is order continuous if for each

generalized sequence (xα) such that xα ↓ 0 in E, the sequence (xα) converges to 0 for

the norm ‖ · ‖ where the notation xα ↓ 0 means that the sequence (xα) is decreasing,

its infimum exists and inf(xα) = 0. A Banach lattice E is called an AM-space if

for each x, y ∈ E such that inf(x, y) = 0 we have ‖x + y‖ = max{‖x‖ , ‖y‖}. The

Banach lattice E is an AL-space if its topological dual E′ is an AM-space. We refer

to [2] for unexplained terminology on Banach lattice theory.
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2. Main results

We will use the term operator T : E −→ F between two Banach lattices meaning

a bounded linear mapping. It is positive if T (x) > 0 in F whenever x > 0 in E. The

operator T is regular if T = T1 − T2 where T1 and T2 are positive operators from

E into F . It is well known that each positive linear mapping on a Banach lattice is

continuous. For more information on positive operators, we refer the reader to [2].

To establish our first major result, we will need the following lemma:

Lemma 2.1. A sequence (xn) of a topological vector space (E, τ) is τ -Cauchy if

and only if (xkn
− xn) is τ -convergent to zero for every subsequence (xkn

) of (xn).

P r o o f. Assume first that (xn) is τ -Cauchy, let (xkn
) be a subsequence of (xn)

and let V be a τ -neighborhood of zero. By definition, there exists n0 such that for

all p, q > n0 we have xp −xq ∈ V . In particular, for n > n0 we obtain xn −xkn
∈ V .

Hence, the sequence (xkn
− xn) τ -converges to zero.

Conversely, assume by way of contradiction that (xn) is not τ -Cauchy. To complete

the proof, we have to construct a subsequence (xkn
) of (xn) such that (xkn

−xn) does

not τ -converge to zero. Since (xn) is not τ -Cauchy, there exists a τ -neighborhood V

of zero such that for each n ∈ N there exist p, q > n satisfying xp − xq /∈ V . (∗)

Fix a circled τ -neighborhood W of zero with W + W ⊆ V . We have to construct

a subsequence (xkn
) of (xn) such that xkn

− xn /∈ W for each n.

⊲ For n = 1 there exist p, q > 1 satisfying xp − xq /∈ V . This implies that

xp−x1 /∈ W or xq−x1 /∈ W (if not, then xp−xq = (xp−x1)−(xq−x1) ∈ W +W ⊆ V

and this is impossible). Hence there exists k1 > 1 such xk1
− x1 /∈ W .

⊲ Assume that xk1
, . . . , xkn

are constructed such that xki
− xi /∈ W for each

1 6 i 6 n. It follows from (∗) that there exist p, q > kn such that xp − xq /∈ V .

This implies that xp − xn+1 /∈ W or xq − xn+1 /∈ W . Hence, there exists kn+1 > kn

such xkn+1
− xn+1 /∈ W . This completes the construction of the subsequence (xkn

)

of (xn) such that xkn
− xn /∈ W for each n. Since W is a τ -neighborhood of zero,

(xkn
− xn) does not τ -converge to zero. This completes the proof. �

Let us recall that a Banach space E is said to have the Schur property if every

sequence weakly convergent to 0 in E is norm convergent to zero. As an example,

the Banach space l1 has the Schur property.

Recall that a Banach lattice E is said to have weakly sequentially continuous

lattice operations whenever xn → 0 for σ(E, E′) implies |xn| → 0 for σ(E, E′). Note

that every AM-space has this property (see Theorem 4.31 of [2]). Also, any Banach

lattice with the Schur property has weakly sequentially continuous lattice operations.

Thus, Banach lattices C[0, 1], l1 and l1⊕C[0, 1] have weakly sequentially continuous

lattice operations.
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Now, we introduce a new notion that we call “order weakly sequentially continuous

lattice operations”.

Definition. A Banach lattice E is said to have order weakly sequentially con-

tinuous lattice operations if for every order bounded sequence (xn) of E satisfying

xn → 0 for σ(E, E′) we have |xn| → 0 for σ(E, E′).

It is clear that each Banach lattice with weakly sequentially continuous lattice

operations has order weakly sequentially continuous lattice operations. We believe

that the converse is false in general. However, right now we do not have an example.

Nonetheless, there exists a Banach lattice which does not have order weakly se-

quentially continuous lattice operations. In fact, L2[0, 1], which does not have weakly

sequentially continuous lattice operations, does not have order weakly sequentially

continuous lattice operations, either. For instance, let (rn) be the sequence of

Rademacher functions in L2[0, 1]. This sequence is order bounded and weakly con-

vergent to 0. However, |rn| = 1 for all n, where 1 is the constant function on [0, 1]

with value 1.

Now, we are in position to generalize Corollary 3.4.10 of [4].

Theorem 2.2. Let E be a Banach lattice with order weakly sequentially con-

tinuous lattice operations (in particular, with weakly sequentially continuous lattice

operations), and let X be a Banach space. Then for every operator T : E → X , the

following assertions are equivalent:

i) T is order weakly compact.

ii) For each order bounded σ(E, E′)-Cauchy sequence (xn) of E, the sequence

(T (xn)) is norm convergent in X .

P r o o f. i) ⇒ ii) Let (xn) ⊂ E be an order bounded weakly Cauchy sequence.

We have to show that (T (xn)) is norm convergent. This is equivalent to proving

that (T (xn)) is a norm Cauchy sequence. By Lemma 2.1, it suffices to establish

that (T (xkn
− xn)) is norm convergent to zero for every subsequence (xkn

) of (xn).

Let (xkn
) be a subsequence of (xn). Since (xn) is σ(E, E′)-Cauchy, it follows from

Lemma 2.1 that xkn
− xn → 0 for σ(E, E′). On the other hand, the sequence

(xkn
− xn) is order bounded and E has order weakly sequentially continuous lattice

operations, hence |xkn
− xn| → 0 for σ(E, E′). Consequently, both ((xkn

− xn)+)

and ((xkn
−xn)−) are weakly convergent to zero. Now, from Corollary 3.4.9 of [4] it

follows that both (T (xkn
− xn)+) and (T (xkn

− xn)−) are norm convergent to zero.

So (T (xkn
− xn)) is convergent in the norm to zero. This completes the proof of

i) ⇒ ii).

ii)⇒ i) We have to show that T is order weakly compact. By Theorem 3.4.4 of [4],

it suffices to show that (T (xn)) is norm convergent to zero for every order bounded
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disjoint sequence (xn) ⊂ E+. Let (xn) be such a sequence. It is easy to see that

xn → 0 for σ(E, E′). So, (xn) is σ(E, E′)-Cauchy. Then, by ii), (T (xn)) is norm

convergent to zero (necessarily to 0 because T (xn) → 0 weakly). �

R em a r k. Observe that the implication ii) ⇒ i) of Theorem 2.2 is true without

any hypothesis on E, but the implication i)⇒ ii) of Theorem 2.2 is false if the Banach

lattice E does not have order weakly sequentially continuous lattice operations. In

fact, let us take the example after Corollary 3.4.10 of [4], i.e. let (rn) be the sequence

of Rademacher functions in L2[0, 1]. This sequence is order bounded and weakly

convergent to 0. Note that the identity operator T = IdL2[0,1] : L2[0, 1] → L2[0, 1] is

order weakly compact and such that ‖T (rn)‖ = ‖rn‖ = 1 for each n. This proves

that (T (rn)) is not norm convergent.

As a consequence, we obtain the following characterization of discrete Banach

lattices:

Corollary 2.3. Let E be a Banach lattice with an order continuous norm. Then

the following assertions are equivalent:

i) E is discrete.

ii) E has weakly sequentially continuous lattice operations.

iii) E has order weakly sequentially continuous lattice operations.

iv) Each order bounded σ(E, E′)-convergent sequence of E is norm convergent.

P r o o f. i) ⇒ ii) Follows from Proposition 2.5.23 of [4].

ii) ⇒ iii) Obvious.

iii) ⇒ iv) Let (xn) be an order bounded sequence of E such that xn → x weakly.

It is clear that (xn −x) is a σ(E, E′)-Cauchy sequence. On the other hand, since the

norm of E is order continuous, the identity operator T = IdE : E → E is order weakly

compact. By hypothesis, the lattice operations of E are order weakly sequentially

continuous, hence it follows from Theorem 2.2 that (T (xn −x)) = ((xn −x)) is norm

convergent to zero. So, (xn) is norm convergent to x and we are done.

iv) ⇒ i) It suffices to show that the condition (iv) of Corollary 21.13 of [1] holds.

We note that the first part of the condition (iv) of Corollary 21.13 of [1] is just

our condition iv) and the second part of the condition (iv) of Corollary 21.13 [1] is

obviously satisfied. Hence, the condition (i) of Corollary 21.13 of [1] implies that E

is discrete. �

Now, we look at the converse.
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Theorem 2.4. Let E be a Banach lattice and X a Banach space. If for each

order weakly compact operator T : E → X , the sequence (T (xn)) is norm conver-

gent whenever (xn) is an order bounded σ(E, E′)-Cauchy sequence, then one of the

following assertions is valid:

i) E has order weakly sequentially continuous lattice operations.

ii) c0 is not embbeded in X .

P r o o f. Assume by way of contradiction that E does not have order weakly

sequentially continuous lattice operations and c0 is embbeded in X . Let (xn) be an

order bounded sequence which is weakly convergent to 0 but its module (|xn|) is not

weakly convergent to 0. We will use the same proof as for Theorem 2 of Wickstead

[5] to find f ∈ (E′)+, a sequence (gn) of E′ and g ∈ E′ with gn, g ∈ [−f, f ] and

gn → g for σ(E′, E) satisfying gn(xn) > ε for all n and some ε > 0. (In fact, there is

f ∈ E′ with f(|xn|) not convergent to 0. By choosing a subsequence and, if necessary,

replacing f by −f we may suppose that there is ε with f(|xn|) > ε > 0 for all n ∈ N.

As the same is true for |f |, we may assume that f > 0.

Equip E with the seminorm x 7−→ f(|x|) and denote the completion of its Haus-

dorff quotient (which is an AL-space) by Z. Let J : E −→ Z be the canonical

embedding and let Z0 denote the separable closed sublattice of Z generated by

{Jxn : n ∈ N}. There is a positive contractive projection P of Z onto Z0. We know

that ‖Jxn‖ > ε for each n, so there exists ϕn ∈ Z ′ with ‖ϕn‖ = 1 and ϕn(Jxn) > ε.

Since Z0 is separable we may pass to subsequences (which we continue to denote

by (xn) and (ϕn), respectively) with (P ′ϕn) converging weak* to ϕ (say). If we let

gn = J ′P ′ϕn and g = J ′ϕ then gn, g ∈ [−f, f ] and gn → g weakly* and gn(xn) > ε

for all n ∈ N.)

Now we consider the linear map S1 defined by

S1 : E → c0, x 7−→ S1(x) = (gn(x) − g(x))∞1 .

Since gn → g for σ(E′, E), we have gn(x) − g(x) → 0 for all x ∈ E. So (gn(x) −

g(x))∞1 ∈ c0 and

‖S1(x)‖∞ = sup
n

|gn(x) − g(x)| 6 2‖x‖ · ‖f‖ for all x ∈ E.

This shows that S1 is well defined and continuous. Moreover, S1 is order weakly

compact. In fact, let (zn) be an order bounded disjoint sequence of E+ and note

that

‖S1(zn)‖∞ = sup
k

|gk(zn) − g(zn)| 6 2f(zn) for all n.

It is easy to see that f(zn) → 0 (see [2, p. 192]). So ‖S1(zn)‖
∞

→ 0. Thus by

Theorem 5.57 of [2] S1 is order weakly compact.
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On the other hand, since c0 is embbeded in X , there exists an embedding S2 : c0 →

X and hence there exist two constants K, M > 0 such that

K ‖(αn)∞n=1‖∞ 6 ‖S2((αn)∞n=1)‖ 6 M ‖(αn)∞n=1‖∞ for all (αn)∞n=1 ∈ c0

Finally, we consider the composed operator S = S2 ◦ S1 : E → X . Since S1 is order

weakly compact then S is also order weakly compact. Note that (xn) is an order

bounded sequence which is weakly convergent to 0. So, (xn) is σ(E, E′)-Cauchy.

Now, for every n we have

‖S(xn)‖ = ‖S2((gk(xn) − g(xn))∞k=1)‖

> K ‖(gk(xn) − g(xn))∞k=1‖∞

> K |gn(xn) − g(xn)| .

Then (S(xn)) certainly does not converge to 0 as |gn(xn) − g(xn)| is eventually

bounded away from zero (because g(xn) → 0 and gn(xn) > ε for all n). Clearly,

S(xn) → 0 weakly. Hence, (S(xn)) is not norm convergent, which contradicts with

our hypothesis. This completes the proof of the theorem. �

As a consequence of Theorem 2.2 and Theorem 2.4, we obtain the following char-

acterization of Banach lattices with order weakly sequentially continuous lattice op-

erations.

Corollary 2.5. Let E be a Banach lattice. Then the following assertions are

equivalent:

i) If T : E → c0 is an order weakly compact operator, then (T (xn)) is norm

convergent for every order bounded σ(E, E′)-Cauchy sequence (xn) of E.

ii) E has order weakly sequentially continuous lattice operations.

To give another result we need to recall that an operator T from a Banach lattice

E into a Banach space F is said to be AM-compact if it carries each order bounded

subset of E onto a relatively compact subset of F . It is clear that each AM-compact

operator is order weakly compact. However, the converse is false in general. In fact,

the identity operator of L2[0, 1] is weakly compact, and hence order weakly compact.

However, it is not AM-compact (if it were, then each order interval of L2[0, 1] would

be compact. But the interval [−1,1] contains Rademacher functions, which is a

weakly convergent sequence to 0 and all its elements have norm 1, so it has no norm

convergent subsequence. This gives a contradiction).

We end our paper by the following characterization of AM-compact operators.
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Proposition 2.6. Let E be a Banach lattice with an order continuous norm.

Then the following assertions are equivalent:

i) Each operator T : E → c0 is AM-compact.

ii) For each operator T : E → c0, (T (xn)) is norm convergent for every order

bounded σ(E, E′)-Cauchy sequence (xn) of E.

iii) E has weakly sequentially continuous lattice operations.

iv) E is discrete.

P r o o f. i)⇒ ii) Let T : E → c0 be an operator. Assume by way of contradiction

that there exists an order bounded σ(E, E′)-Cauchy sequence (xn) of E such that

(T (xn)) is not norm convergent. Then there exists a subsequence (xkn
) of (xn) such

that (T (xkn
− xn)) is not norm convergent to zero. By choosing a subsequence of

(xkn
), we may suppose that there is ε > 0 such that ‖T (xkn

− xn)‖ > ε for all n ∈ N.

As (T (xkn
− xn)) is weakly convergent to zero, we conclude that (T (xkn

− xn)) has

no norm convergent subsequence. So, since ((xkn
− xn)) is order bounded, T is not

AM-compact, which contradicts i).

ii) ⇒ iii) By Corollary 2.5, E has order weakly sequentially continuous lattice

operations. As the norm of E is order continuous, it follows from Corollary 2.3 that

E has weakly sequentially continuous lattice operations.

iii) ⇔ iv) Since the norm of E is order continuous, the result follows from Corol-

lary 2.3.

iv) ⇒ i) Let T : E → c0 be an operator. Since E is discrete and its norm is order

continuous, it follows from Corollary 21.13 of [1] that each order interval [−x, x] is

norm compact. So, T ([−x, x]) is norm compact and hence T is AM-compact. �
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