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POSITIVE SOLUTIONS OF THE p-LAPLACE EMDEN-FOWLER
EQUATION IN HOLLOW THIN SYMMETRIC DOMAINS
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Abstract. We study the existence of positive solutions for the p-Laplace Emden-Fowler
equation. Let H and G be closed subgroups of the orthogonal group O(N) such that H &
G C O(N). We denote the orbit of G through z € RY by G(z), i.e., G(z) := {gz: g € G}.
We prove that if H(z) & G(z) for all x € Q and the first eigenvalue of the p-Laplacian is
large enough, then no H invariant least energy solution is G invariant. Here an H invariant
least energy solution means a solution which achieves the minimum of the Rayleigh quotient
among all H invariant functions. Therefore there exists an H invariant G non-invariant
positive solution.
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1. INTRODUCTION

In this paper, we study the existence of positive solutions with partial symmetry
for the p-Laplace Emden-Fowler equation

(1.1) —Apu=ul"t, u>0 in{, u=0 on .
Here Apu := div(|]Vu[P~2Vu) is the p-Laplacian and Q is a bounded domain in RV

with N > 2. Denote the critical exponent by p* := Np/(N—p) if p < N and p* := 0o
if N < p. We assume that 2 < p < ¢ < p*. We define the Rayleigh quotient R(u)
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and the Nehari manifold N by

R(u) = (/Q|vu|de) (/lequ)_,,/q,

xi=fuewir@\ o) [ (var - uinac=of,

where WO1 P(Q) denotes the Sobolev space. Let G be a closed subgroup of the or-
thogonal group O(N). We call Q a G invariant domain if g(Q2) = Q for any g € G.
We call u(x) a G invariant solution if u(gz) = u(x) for any g € G and = € Q. Then
(1.1) has a G invariant positive solution. However, we are looking for an H invariant
G non-invariant solution under a certain assumption on H and G, where H and G
are closed subgroups of O(N) such that H ¢ G C O(N). When 2 is a G invariant
domain, we denote the set of G invariant functions in W, (Q) by W, *(Q, G). Define
N(G) == N NWyP(Q,G) and put

(1.2) Rg = inf{R(u): ue W, P(Q,G)\{0}} =inf{R(u): ue N(Q)}.

We call Rg a G invariant least energy and u a G invariant least energy solution if
u € N(G) and R(u) = Rg. Such a minimizer exists and becomes a G invariant
positive solution of (1.1). For z € RY, we define the orbit G(x) through = by

(1.3) G(z) :={gz: g € G}.
Let A, (€2) denote the first eigenvalue of the p-Laplace eigenvalue problem
(1.4) —Apu = NuP"2u  in Q, u=0 on 0.

It is well known that the first eigenvalue is simple and the corresponding eigenfunc-
tion is positive (see [7]). We state the main result of this paper.

Theorem 1.1. Assume that 2 < p < q < p*. Let G and H be closed subgroups
of O(N) and let U be a G invariant bounded domain in R such that H & G and
H(z) ¢ G(z) for all z € U. Then there exists a constant C' > 0 depending only on
G, H, U, p and q such that if Q is a G invariant subdomain of U and if \,(Q?) > C,
then Ry < Rg. Therefore no H invariant least energy solution is G invariant.

The existence of multiple positive solutions of (1.1) on the sphere has been obtained
by Kristaly [6] also, in which the nonlinear term is asymptotically critical. We
observe the Faber-Krahn inequality (see [1]), A\,(Q2) = Cn,|Q| /N, where Cy, > 0
is a constant independent of © and |©2| denotes the volume of 2. Then we obtain the
next corollary.
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Corollary 1.2. Under the assumption of Theorem 1.1, there exists a constant
0 > 0 depending only on G, H, U, p and q such that if Q) is a G invariant subdomain
of U and if |Q] < 0, then Ry < Rg.

We give a simple example of H, G and . A subgroup H of O(N) is said to be
transitive on the sphere SNV~1 if H(x) = SV~! for x € SV~1. All transitive Lie

groups were classified by Montgomery and Samelson [8] and Borel [2].
Example 1.3. Let G := O(N) and let H be any non-transitive closed subgroup

of O(N). Let Q be an annulus 1 < |z] < 1+ ¢ with € > 0. If ¢ > 0 is small enough,
then no H invariant least energy solution is radially symmetric.

2. LEAST ENERGY SOLUTIONS

Let L"(Q, G) denote the set of G invariant functions in L"(f2). Define the L*(Q)
inner product and the H}(2) inner product by

(u,v) 2 :z/uvdat:7 (u,v) iz ::/Vqudx.
Q Q

We define the orthogonal complements of L?(Q2, G) and H}(Q2, G) by

L*(Q,G)F = {u e L*(Q): (u,v)p> =0 for all v € L*(Q,G)},
HY(Q,G)F = {u e HLQ): (u,v)pp =0 for all v € Hy(Q,G)}.

Lemma 2.1 ([3], Lemma 3.2). We have the following assertions.
(i) H}(Q,G)t c L?(Q,G)*.
(i) Let1<rs <ocowithl/r+1/s=1. If u€ L"(Q)NL?*(Q,G)* andv € L*(Q, G),
then [, uvdz = 0.

Since p > 2, the Rayleigh quotient R is twice differentiable in the sense of the

Fréchet derivative. Then R’(u)vw is a bilinear form of v and w. We need the

formula of the special case R”(u)w? only.
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Lemma 2.2. Let u be a positive solution of (1.1). For w € Wy?(Q), we have
—p/q
(2.1) R’ (u)w?* = p(p — 2) (/ [Vul? dx) / |VulP~*(Vu - Vw)? dx

—p/q
+p(/|Vu|pdx) /|Vu|p_2|Vw|2 dz
—(p+a)/q
+p(q—p)(/|VUIpdx) (/uqlwdx)
—p/q
—plg— 1)</|Vu|pdx> /fuq*Qw2 dz.

Here all integrals are taken over ).

2

Proof. Multiplying (1.1) by w or w and integrating it over {2, we have

/|Vu|pdx = /uqu, /|Vu|p*2Vqudx = /uqflwdx.

Using the above identities and differentiating R(u + tw) twice at ¢ = 0, we ob-
tain (2.1). O

The next proposition plays the most important role in the paper.

Proposition 2.3. Let u be a G invariant least energy solution of (1.1) and let
Q be a G invariant bounded open set such that Q) C 4. Let ¢ be a function in
H} (1, G)t N We°(Qy) which satisfies

2.2 VulP~2u?|V 2d:c<i/ VulPe? dz.
(22) [ vur ek o < o [ vy

Then R((1+ ep)u) < R(u) for € > 0 small enough.

Proof. Set v := (1+ ep)u and define w := pu. Then v = u + sw. Since
u € CHQ) N HQ), wand v belong to H} (). Since u is a solution of (1.1), R'(u)
vanishes. The Taylor theorem ensures that

R(v) = R(u) + (£*/2)R" (u)w® + o(e?),

as ¢ — 0. Here o(c?)/e? — 0 as ¢ — 0. To prove R(v) < R(u) for ¢ > 0 small
enough, we have only to show that R”(u)w? < 0. We substitute w = pu in (2.1)
and compute all terms on the right hand side. We extend u by setting u(z) = 0
outside 2. By Lemma 2.1, we see that

u? € L*(0,G), @€ Hi}(Q,G)*F c L3(Q4,G)* .
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Consequently,

/uq_lwdm :/ ulpdr = 0.
Q 1951

Vu - Vw = |[Vul?¢ +uVu- Ve,
[Vwl? = [Vul?¢® + 2upVu - Vo + u?[V|?.

It is easy to see that

Substituting the above identities in (2.1) and putting

—p/q
A= </|Vu|pda:> ,

we have
(2.3) R’ (u)w? = p(p — 1)A/ |VulPp? dx
+2p(p — 1)A/ |VulP~2upVu - Vi da
+p(p — 2)A/ |VuP~4u?(Vu - V)2 dz
+ pA/ |VulP~2u?|V|? dz — p(q — 1)A/qu02 dx.
Now, multiplying (1.1) by up? and integrating over €2, we see that
/uq<p2 dz = /(|Vu|p<p2 + 2|VuP2upVu - Vi) da.
Substituting the above identity in (2.3), we obtain
(24) R = = plg—p)A [ [VuP? o
—2p(q — p)A/ |VuP~2upVu - Vo dz
+p(p — 2)A/ |VulP~*u?(Vu - V)? da
+pA/ |Vul|P~2u?|V|? dz.
We use the Schwarz inequality
lupVu - V| < iIVuIQsz32 +u?[Vel?
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in the second integral on the right hand side of (2.4) and employ |Vu-V| < |Vu|| V|
in the third integral. Then we obtain

, 1
R'(u)u? < = 3pla = p)a [ [Vulg? da

+p(2¢—p— 1)A/ |Vu|p_2u2|Vg0|2 dz.

The right hand side is negative because of (2.2). The proof is complete. O

To prove the main theorems, we need the Haar measure. Since GG is a compact Lie
group, it has a unique Haar measure dg. It is a positive Lebesgue measure which

/G f(hg)dg = /G f(gh) dg = /G flg~")dg = /G f(g)dg,
/Gf(g)dg>0 720, f£0, /Gldgzl,

for any h € G and any real valued integrable function f on G (see [9] for more
details).
Let M (N) be a linear space consisting of all N x N real matrices, which is equipped

satisfies

with the norm
llgl] :== max |gx| for g € M(N).
jol<1
For go € G and r > 0 we define a ball B(go,r; G) in G by
B(go,m;G) :={g € G: |lg — g0l < r}.

Then the volume of B(go,r; G) is defined by

|B(g0,7; G)| :== / 1dg.
B(go,m;G)

Using the invariance of the Haar measure, we have the next lemma.

Lemma 2.4 ([4], Lemma 5.6). Let G be a closed subgroup of O(N). Then the
volume |B(go,r; G)| does not depend on gyg € G but does on r only.

3. PROOF OF THE MAIN RESULTS

In this section, we prove the main theorem. Let H and G be as in Theorem 1.1.
Since G and H are compact groups, we can define

Q(x, g) = min |gz — ha|,  P(z) :=maxQ(z,g).
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Lemma 3.1. We have

|P(z) — P(y)| < 2|z —y| forz,ye€ RYN.

Proof. By the same computation as in our paper [3], Lemma 2.1 or [4],
Lemma 5.5, we obtain the lemma. ([

Recall the assumption of Theorem 1.1 that H(x) & G(z) for all # € U. This
implies that P(z) > 0 for z € U. Since P(x) is continuous by Lemma 3.1, the
minimum of P(z) on U is positive. We define

(3.1) 0 := 3 min P(z) > 0.

U

N[

Then for any = € U there exists a g € G such that
(3.2) |gx —hz| > 46 >0 for any h € H.

To prove Theorem 1.1, we shall construct a function ¢ which satisfies (2.2) and
belongs to H}(Q1,H). Let § > 0 be defined by (3.1). Choose ® € C'(R) which
satisfies 0 < ®(r) < 1 in R, ®(r) =1 for r < §, ®(r) = 0 for r > 26 and —2/§ <
®'(r) < 01in (4,26). Put r = |z|. Then ®(|z|) is a radial function whose support is
in |z| < 20.

Definition 3.2. We denote the Haar measures on H and G by dh and dg,
respectively. Let z¢ € Q be determined later on. We define

o(a) = [ @~ gmal)dg~ [ @(e ~ hao)ah
G H
dist(z, Q) := inf{|x —y|: y € Q},
Q= {z € RV dist(z,Q) < 20}.
Lemma 3.3 ([4], [5]). Function ¢ belongs to Hg (1, G)* N HY (2, H).
Since U is bounded, we define M := sup |x| and p := /M. Then p depends only

zeU
on G, H and U. We denote the volume of B(go, it; G) by co, i.e.,

(3.3) co = |B(go, 1 G)| = / ldg.

B(go,;G)

By Lemma 2.4, ¢y depends not on gg but on p, hence it depends only on G, H and U.
Let B(x,r) denote the ball in RY which is centered at = with radius r > 0.
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Lemma 3.4 ([4], [5]). For any x¢ € €, there exists a go € G such that
(3.4) w(x) = ¢o >0 forxz e B(goro,d/2).

In particular, ¢ # 0 in .

Let 6 be defined by (3.1). We choose a finite covering B(y;,§/4) with y1, ...,y € U
such that

k
(3.5) U c|JB(yi,6/4) with some k € N.
i=1

Hereafter we fix k and y1, ..., yr which satisfy the above inclusion.

Lemma 3.5. Let Q) be a GG invariant subdomain of U and let u be a G invariant
least energy solution. Extend u by setting u(x) = 0 outside ). Then there exists an

zo € ) such that
/ |Vu|P dz < k‘/ |Vul|P dz.
Q B(z0,6/2)
Proof. Choosei € {1,2,...,k} such that

/ [VulP dz = max/ [VulP dz.
B(yi,0/4) J B(y;,0/4)
Then we have

/ |VulP de < k/ [Vul|P dz.
Q B(y:,6/4)

Observe that QN B(y;,d/4) # . Otherwise the right hand side vanishes. We choose
an xo € QN B(y;,d/4). Then we have

/ |VulP dz < / |Vul|P dz.
B(yi,6/4) B(z0,0/2)

Combining the two above inequalities, we obtain the conclusion. O
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Lemma 3.6. Let A\, be the first eigenvalue of (1.4). Then

/Q |VolP~20? dz < )\;2/”||Vv||5 for any v € W, ().

Proof. From the variational characterization of the first eigenvalue, it follows

that for v € Wy (Q),
/\p/ [v|Pdz < / |Vol|P dz,
Q Q

loll, < Ay V211Vl

or equivalently

Using this inequality with the Holder inequality, we get
[ 1w d < Vol E ol < 3Vl

O

Define 6, ¢p and k by (3.1), (3.3) and (3.5), respectively, and then determine zg
by Lemma 3.5. Thus ¢(x) is well defined by Definition 3.2. To prove Theorem 1.1,
we define

C = [320key*(2g —p— 1) /(g — p)IP/?,

which depends only on G, H, U, p and q. We conclude this paper by proving
Theorem 1.1.

Proof of Theorem 1.1. Let C be as above. Suppose that A\,(2) > C. We
shall show that ¢ satisfies (2.2). Since |®'(r)| < 2/d by the definition of ®, we have
V| < 4/§. This inequality and Lemmas 3.6 and 3.5 show that

/Q|vu|p*2u2|w|2 dz < 1667 2X /7| Vul?

< 16672\, 2/7k / |Vaul? dz.
B(x0,6/2)

By Lemma 3.4, we choose gg € G satisfying (3.4). Since u is G invariant, the last
integral is estimated as

/ [VulP dz = / [VulP dz < 052/ |VulP? da.
B(w0,6/2) B(g0%0,5/2) B(gox0,6/2)

Combining the two above inequalities, we have

/ |Vu|P~2u?|Ve|* dz < 165—2A;2/pkc52/ |Vu|Pe? da.
0 B(g0%0.5/2)
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Since A, (2) > C, we obtain (2.2). Since ¢ € H}(Qy, H) by Lemma 3.3, v := (1+e¢)u
belongs to H} (2, H). By Proposition 2.3, we conclude that Ry < R(v) < R(u) =
Rg. The proof is complete. ([
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