POSITIVE SOLUTIONS OF THE p-LAPLACE EMDEN-FOWLER EQUATION IN HOLLOW THIN SYMMETRIC DOMAINS

RYUJI KAJIKIYA, Honjo-machi

(Received September 3, 2013)

Abstract. We study the existence of positive solutions for the p-Laplace Emden-Fowler equation. Let H and G be closed subgroups of the orthogonal group O(N) such that $H \subsetneq G \subset O(N)$. We denote the orbit of G through $x \in \mathbb{R}^N$ by G(x), i.e., $G(x) := \{gx \colon g \in G\}$. We prove that if $H(x) \subsetneq G(x)$ for all $x \in \overline{\Omega}$ and the first eigenvalue of the p-Laplacian is large enough, then no H invariant least energy solution is G invariant. Here an H invariant least energy solution means a solution which achieves the minimum of the Rayleigh quotient among all H invariant functions. Therefore there exists an H invariant G non-invariant positive solution.

Keywords: Emden-Fowler equation; group invariant solution; least energy solution; positive solution; variational method

MSC 2010: 35J20, 35J25

1. Introduction

In this paper, we study the existence of positive solutions with partial symmetry for the p-Laplace Emden-Fowler equation

(1.1)
$$-\Delta_p u = u^{q-1}, \qquad u > 0 \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial\Omega.$$

Here $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u)$ is the *p*-Laplacian and Ω is a bounded domain in \mathbb{R}^N with $N \geq 2$. Denote the critical exponent by $p^* := Np/(N-p)$ if p < N and $p^* := \infty$ if $N \leq p$. We assume that $2 \leq p < q < p^*$. We define the Rayleigh quotient R(u)

This research was supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science (No. 24540179).

and the Nehari manifold \mathcal{N} by

$$R(u) := \left(\int_{\Omega} |\nabla u|^p \, \mathrm{d}x \right) \left(\int_{\Omega} |u|^q \, \mathrm{d}x \right)^{-p/q},$$

$$\mathcal{N} := \left\{ u \in W_0^{1,p}(\Omega) \setminus \{0\} \colon \int_{\Omega} (|\nabla u|^p - |u|^q) \, \mathrm{d}x = 0 \right\},$$

where $W_0^{1,p}(\Omega)$ denotes the Sobolev space. Let G be a closed subgroup of the orthogonal group O(N). We call Ω a G invariant domain if $g(\Omega) = \Omega$ for any $g \in G$. We call u(x) a G invariant solution if u(gx) = u(x) for any $g \in G$ and $x \in \Omega$. Then (1.1) has a G invariant positive solution. However, we are looking for an H invariant G non-invariant solution under a certain assumption on H and G, where H and G are closed subgroups of O(N) such that $H \subsetneq G \subset O(N)$. When Ω is a G invariant domain, we denote the set of G invariant functions in $W_0^{1,p}(\Omega)$ by $W_0^{1,p}(\Omega,G)$. Define $\mathcal{N}(G) := \mathcal{N} \cap W_0^{1,p}(\Omega,G)$ and put

(1.2)
$$R_G := \inf\{R(u) \colon u \in W_0^{1,p}(\Omega, G) \setminus \{0\}\} = \inf\{R(u) \colon u \in \mathcal{N}(G)\}.$$

We call R_G a G invariant least energy and u a G invariant least energy solution if $u \in \mathcal{N}(G)$ and $R(u) = R_G$. Such a minimizer exists and becomes a G invariant positive solution of (1.1). For $x \in \mathbb{R}^N$, we define the orbit G(x) through x by

(1.3)
$$G(x) := \{gx \colon g \in G\}.$$

Let $\lambda_p(\Omega)$ denote the first eigenvalue of the p-Laplace eigenvalue problem

(1.4)
$$-\Delta_p u = \lambda |u|^{p-2} u \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial \Omega.$$

It is well known that the first eigenvalue is simple and the corresponding eigenfunction is positive (see [7]). We state the main result of this paper.

Theorem 1.1. Assume that $2 \le p < q < p^*$. Let G and H be closed subgroups of O(N) and let U be a G invariant bounded domain in \mathbb{R}^N such that $H \subsetneq G$ and $H(x) \subsetneq G(x)$ for all $x \in \overline{U}$. Then there exists a constant C > 0 depending only on G, H, U, p and q such that if Ω is a G invariant subdomain of U and if $\lambda_p(\Omega) > C$, then $R_H < R_G$. Therefore no H invariant least energy solution is G invariant.

The existence of multiple positive solutions of (1.1) on the sphere has been obtained by Kristály [6] also, in which the nonlinear term is asymptotically critical. We observe the Faber-Krahn inequality (see [1]), $\lambda_p(\Omega) \geq C_{N,p} |\Omega|^{-p/N}$, where $C_{N,p} > 0$ is a constant independent of Ω and $|\Omega|$ denotes the volume of Ω . Then we obtain the next corollary.

Corollary 1.2. Under the assumption of Theorem 1.1, there exists a constant $\delta > 0$ depending only on G, H, U, p and q such that if Ω is a G invariant subdomain of U and if $|\Omega| < \delta$, then $R_H < R_G$.

We give a simple example of H, G and Ω . A subgroup H of O(N) is said to be transitive on the sphere S^{N-1} if $H(x) = S^{N-1}$ for $x \in S^{N-1}$. All transitive Lie groups were classified by Montgomery and Samelson [8] and Borel [2].

Example 1.3. Let G := O(N) and let H be any non-transitive closed subgroup of O(N). Let Ω be an annulus $1 < |x| < 1 + \varepsilon$ with $\varepsilon > 0$. If $\varepsilon > 0$ is small enough, then no H invariant least energy solution is radially symmetric.

2. Least energy solutions

Let $L^r(\Omega, G)$ denote the set of G invariant functions in $L^r(\Omega)$. Define the $L^2(\Omega)$ inner product and the $H^1_0(\Omega)$ inner product by

$$(u,v)_{L^2} := \int_{\Omega} uv \,\mathrm{d}x, \quad (u,v)_{H^1_0} := \int_{\Omega} \nabla u \nabla v \,\mathrm{d}x.$$

We define the orthogonal complements of $L^2(\Omega,G)$ and $H^1_0(\Omega,G)$ by

$$\begin{split} L^2(\Omega,G)^{\perp} &:= \{ u \in L^2(\Omega) \colon \, (u,v)_{L^2} = 0 \text{ for all } v \in L^2(\Omega,G) \}, \\ H^1_0(\Omega,G)^{\perp} &:= \{ u \in H^1_0(\Omega) \colon \, (u,v)_{H^1_0} = 0 \text{ for all } v \in H^1_0(\Omega,G) \}. \end{split}$$

Lemma 2.1 ([3], Lemma 3.2). We have the following assertions.

- (i) $H_0^1(\Omega, G)^{\perp} \subset L^2(\Omega, G)^{\perp}$.
- (ii) Let $1 \leq r, s \leq \infty$ with 1/r + 1/s = 1. If $u \in L^r(\Omega) \cap L^2(\Omega, G)^{\perp}$ and $v \in L^s(\Omega, G)$, then $\int_{\Omega} uv \, \mathrm{d}x = 0$.

Since $p \ge 2$, the Rayleigh quotient R is twice differentiable in the sense of the Fréchet derivative. Then R''(u)vw is a bilinear form of v and w. We need the formula of the special case $R''(u)w^2$ only.

Lemma 2.2. Let u be a positive solution of (1.1). For $w \in W_0^{1,p}(\Omega)$, we have

$$(2.1) R''(u)w^{2} = p(p-2)\left(\int |\nabla u|^{p} dx\right)^{-p/q} \int |\nabla u|^{p-4} (\nabla u \cdot \nabla w)^{2} dx$$

$$+ p\left(\int |\nabla u|^{p} dx\right)^{-p/q} \int |\nabla u|^{p-2} |\nabla w|^{2} dx$$

$$+ p(q-p)\left(\int |\nabla u|^{p} dx\right)^{-(p+q)/q} \left(\int u^{q-1}w dx\right)^{2}$$

$$- p(q-1)\left(\int |\nabla u|^{p} dx\right)^{-p/q} \int u^{q-2}w^{2} dx.$$

Here all integrals are taken over Ω .

Proof. Multiplying (1.1) by u or w and integrating it over Ω , we have

$$\int |\nabla u|^p \, \mathrm{d}x = \int u^q \, \mathrm{d}x, \quad \int |\nabla u|^{p-2} \nabla u \nabla w \, \mathrm{d}x = \int u^{q-1} w \, \mathrm{d}x.$$

Using the above identities and differentiating R(u + tw) twice at t = 0, we obtain (2.1).

The next proposition plays the most important role in the paper.

Proposition 2.3. Let u be a G invariant least energy solution of (1.1) and let Ω_1 be a G invariant bounded open set such that $\Omega \subset \Omega_1$. Let φ be a function in $H_0^1(\Omega_1, G)^{\perp} \cap W^{1,\infty}(\Omega_1)$ which satisfies

(2.2)
$$\int_{\Omega} |\nabla u|^{p-2} u^2 |\nabla \varphi|^2 dx < \frac{q-p}{2(2q-p-1)} \int_{\Omega} |\nabla u|^p \varphi^2 dx.$$

Then $R((1 + \varepsilon \varphi)u) < R(u)$ for $\varepsilon > 0$ small enough.

Proof. Set $v:=(1+\varepsilon\varphi)u$ and define $w:=\varphi u$. Then $v=u+\varepsilon w$. Since $u\in C^1(\overline{\Omega})\cap H^1_0(\Omega)$, w and v belong to $H^1_0(\Omega)$. Since u is a solution of (1.1), R'(u) vanishes. The Taylor theorem ensures that

$$R(v) = R(u) + (\varepsilon^2/2)R''(u)w^2 + o(\varepsilon^2),$$

as $\varepsilon \to 0$. Here $o(\varepsilon^2)/\varepsilon^2 \to 0$ as $\varepsilon \to 0$. To prove R(v) < R(u) for $\varepsilon > 0$ small enough, we have only to show that $R''(u)w^2 < 0$. We substitute $w = \varphi u$ in (2.1) and compute all terms on the right hand side. We extend u by setting u(x) = 0 outside Ω . By Lemma 2.1, we see that

$$u^q \in L^2(\Omega_1, G), \quad \varphi \in H^1_0(\Omega_1, G)^{\perp} \subset L^2(\Omega_1, G)^{\perp}.$$

Consequently,

$$\int_{\Omega} u^{q-1} w \, \mathrm{d}x = \int_{\Omega_1} u^q \varphi \, \mathrm{d}x = 0.$$

It is easy to see that

$$\nabla u \cdot \nabla w = |\nabla u|^2 \varphi + u \nabla u \cdot \nabla \varphi,$$
$$|\nabla w|^2 = |\nabla u|^2 \varphi^2 + 2u \varphi \nabla u \cdot \nabla \varphi + u^2 |\nabla \varphi|^2.$$

Substituting the above identities in (2.1) and putting

$$A := \left(\int |\nabla u|^p \, \mathrm{d}x \right)^{-p/q},$$

we have

$$(2.3) R''(u)w^{2} = p(p-1)A \int |\nabla u|^{p} \varphi^{2} dx$$

$$+ 2p(p-1)A \int |\nabla u|^{p-2} u \varphi \nabla u \cdot \nabla \varphi dx$$

$$+ p(p-2)A \int |\nabla u|^{p-4} u^{2} (\nabla u \cdot \nabla \varphi)^{2} dx$$

$$+ pA \int |\nabla u|^{p-2} u^{2} |\nabla \varphi|^{2} dx - p(q-1)A \int u^{q} \varphi^{2} dx.$$

Now, multiplying (1.1) by $u\varphi^2$ and integrating over Ω , we see that

$$\int u^q \varphi^2 \, \mathrm{d}x = \int (|\nabla u|^p \varphi^2 + 2|\nabla u|^{p-2} u \varphi \nabla u \cdot \nabla \varphi) \, \mathrm{d}x.$$

Substituting the above identity in (2.3), we obtain

(2.4)
$$R''(u)w^{2} = -p(q-p)A \int |\nabla u|^{p} \varphi^{2} dx$$
$$-2p(q-p)A \int |\nabla u|^{p-2} u \varphi \nabla u \cdot \nabla \varphi dx$$
$$+p(p-2)A \int |\nabla u|^{p-4} u^{2} (\nabla u \cdot \nabla \varphi)^{2} dx$$
$$+pA \int |\nabla u|^{p-2} u^{2} |\nabla \varphi|^{2} dx.$$

We use the Schwarz inequality

$$|u\varphi\nabla u\cdot\nabla\varphi|\leqslant \frac{1}{4}|\nabla u|^2\varphi^2+u^2|\nabla\varphi|^2$$

in the second integral on the right hand side of (2.4) and employ $|\nabla u \cdot \nabla \varphi| \leq |\nabla u| |\nabla \varphi|$ in the third integral. Then we obtain

$$R''(u)w^{2} \leqslant -\frac{1}{2}p(q-p)A\int |\nabla u|^{p}\varphi^{2} dx$$
$$+p(2q-p-1)A\int |\nabla u|^{p-2}u^{2}|\nabla \varphi|^{2} dx.$$

The right hand side is negative because of (2.2). The proof is complete.

To prove the main theorems, we need the Haar measure. Since G is a compact Lie group, it has a unique Haar measure dg. It is a positive Lebesgue measure which satisfies

$$\int_{G} f(hg) \, dg = \int_{G} f(gh) \, dg = \int_{G} f(g^{-1}) \, dg = \int_{G} f(g) \, dg,$$
$$\int_{G} f(g) \, dg > 0 \quad \text{if } f \geqslant 0, \ f \not\equiv 0, \quad \int_{G} 1 \, dg = 1,$$

for any $h \in G$ and any real valued integrable function f on G (see [9] for more details).

Let M(N) be a linear space consisting of all $N \times N$ real matrices, which is equipped with the norm

$$||g|| := \max_{|x| \le 1} |gx|$$
 for $g \in M(N)$.

For $g_0 \in G$ and r > 0 we define a ball $B(g_0, r; G)$ in G by

$$B(g_0, r; G) := \{ g \in G \colon \|g - g_0\| < r \}.$$

Then the volume of $B(g_0, r; G)$ is defined by

$$|B(g_0, r; G)| := \int_{B(g_0, r; G)} 1 \, \mathrm{d}g.$$

Using the invariance of the Haar measure, we have the next lemma.

Lemma 2.4 ([4], Lemma 5.6). Let G be a closed subgroup of O(N). Then the volume $|B(g_0, r; G)|$ does not depend on $g_0 \in G$ but does on r only.

3. Proof of the main results

In this section, we prove the main theorem. Let H and G be as in Theorem 1.1. Since G and H are compact groups, we can define

$$Q(x,g) := \min_{h \in H} |gx - hx|, \quad P(x) := \max_{g \in G} Q(x,g).$$

Lemma 3.1. We have

$$|P(x) - P(y)| \leq 2|x - y|$$
 for $x, y \in \mathbb{R}^N$.

Proof. By the same computation as in our paper [3], Lemma 2.1 or [4], Lemma 5.5, we obtain the lemma. \Box

Recall the assumption of Theorem 1.1 that $H(x) \subsetneq G(x)$ for all $x \in \overline{U}$. This implies that P(x) > 0 for $x \in \overline{U}$. Since P(x) is continuous by Lemma 3.1, the minimum of P(x) on \overline{U} is positive. We define

(3.1)
$$\delta := \frac{1}{4} \min_{\overline{t}} P(x) > 0.$$

Then for any $x \in \overline{U}$ there exists a $g \in G$ such that

$$(3.2) |gx - hx| \ge 4\delta > 0 for any h \in H.$$

To prove Theorem 1.1, we shall construct a function φ which satisfies (2.2) and belongs to $H^1_0(\Omega_1, H)$. Let $\delta > 0$ be defined by (3.1). Choose $\Phi \in C^1(\mathbb{R})$ which satisfies $0 \leqslant \Phi(r) \leqslant 1$ in \mathbb{R} , $\Phi(r) = 1$ for $r \leqslant \delta$, $\Phi(r) = 0$ for $r \geqslant 2\delta$ and $-2/\delta \leqslant \Phi'(r) \leqslant 0$ in $(\delta, 2\delta)$. Put r = |x|. Then $\Phi(|x|)$ is a radial function whose support is in $|x| \leqslant 2\delta$.

Definition 3.2. We denote the Haar measures on H and G by dh and dg, respectively. Let $x_0 \in \Omega$ be determined later on. We define

$$\varphi(x) := \int_G \Phi(|x - gx_0|) \, \mathrm{d}g - \int_H \Phi(|x - hx_0|) \, \mathrm{d}h,$$
$$\mathrm{dist}(x, \Omega) := \inf\{|x - y| \colon y \in \Omega\},$$
$$\Omega_1 := \{x \in \mathbb{R}^N \colon \operatorname{dist}(x, \Omega) < 2\delta\}.$$

Lemma 3.3 ([4], [5]). Function φ belongs to $H_0^1(\Omega_1, G)^{\perp} \cap H_0^1(\Omega_1, H)$.

Since U is bounded, we define $M := \sup_{x \in U} |x|$ and $\mu := \delta/M$. Then μ depends only on G, H and U. We denote the volume of $B(g_0, \mu; G)$ by c_0 , i.e.,

(3.3)
$$c_0 := |B(g_0, \mu; G)| = \int_{B(g_0, \mu; G)} 1 \, \mathrm{d}g.$$

By Lemma 2.4, c_0 depends not on g_0 but on μ , hence it depends only on G, H and U. Let B(x,r) denote the ball in \mathbb{R}^N which is centered at x with radius r > 0.

Lemma 3.4 ([4], [5]). For any $x_0 \in \Omega$, there exists a $g_0 \in G$ such that

(3.4)
$$\varphi(x) \geqslant c_0 > 0 \quad \text{for } x \in B(g_0 x_0, \delta/2).$$

In particular, $\varphi \not\equiv 0$ in Ω .

Let δ be defined by (3.1). We choose a finite covering $B(y_i, \delta/4)$ with $y_1, \ldots, y_k \in \overline{U}$ such that

(3.5)
$$\overline{U} \subset \bigcup_{i=1}^{k} B(y_i, \delta/4) \text{ with some } k \in \mathbb{N}.$$

Hereafter we fix k and y_1, \ldots, y_k which satisfy the above inclusion.

Lemma 3.5. Let Ω be a G invariant subdomain of U and let u be a G invariant least energy solution. Extend u by setting u(x) = 0 outside Ω . Then there exists an $x_0 \in \Omega$ such that

$$\int_{\Omega} |\nabla u|^p \, \mathrm{d}x \leqslant k \int_{B(x_0, \delta/2)} |\nabla u|^p \, \mathrm{d}x.$$

Proof. Choose $i \in \{1, 2, ..., k\}$ such that

$$\int_{B(y_i,\delta/4)} |\nabla u|^p \, \mathrm{d}x = \max_j \int_{B(y_i,\delta/4)} |\nabla u|^p \, \mathrm{d}x.$$

Then we have

$$\int_{\Omega} |\nabla u|^p \, \mathrm{d}x \leqslant k \int_{B(y_i, \delta/4)} |\nabla u|^p \, \mathrm{d}x.$$

Observe that $\Omega \cap B(y_i, \delta/4) \neq \emptyset$. Otherwise the right hand side vanishes. We choose an $x_0 \in \Omega \cap B(y_i, \delta/4)$. Then we have

$$\int_{B(y_i,\delta/4)} |\nabla u|^p \, \mathrm{d}x \leqslant \int_{B(x_0,\delta/2)} |\nabla u|^p \, \mathrm{d}x.$$

Combining the two above inequalities, we obtain the conclusion.

Lemma 3.6. Let λ_p be the first eigenvalue of (1.4). Then

$$\int_{\Omega} |\nabla v|^{p-2} v^2 \, \mathrm{d}x \leqslant \lambda_p^{-2/p} \|\nabla v\|_p^p \quad \text{for any } v \in W_0^{1,p}(\Omega).$$

Proof. From the variational characterization of the first eigenvalue, it follows that for $v \in W_0^{1,p}(\Omega)$,

$$\lambda_p \int_{\Omega} |v|^p dx \leqslant \int_{\Omega} |\nabla v|^p dx,$$

or equivalently

$$||v||_p \leqslant \lambda_p^{-1/p} ||\nabla v||_p.$$

Using this inequality with the Hölder inequality, we get

$$\int_{\Omega} |\nabla v|^{p-2} v^2 \, \mathrm{d}x \leqslant \|\nabla v\|_p^{p-2} \|v\|_p^2 \leqslant \lambda_p^{-2/p} \|\nabla v\|_p^p.$$

Define δ , c_0 and k by (3.1), (3.3) and (3.5), respectively, and then determine x_0 by Lemma 3.5. Thus $\varphi(x)$ is well defined by Definition 3.2. To prove Theorem 1.1, we define

$$C := \left[32\delta^{-2}kc_0^{-2}(2q - p - 1)/(q - p)\right]^{p/2},$$

which depends only on G, H, U, p and q. We conclude this paper by proving Theorem 1.1.

Proof of Theorem 1.1. Let C be as above. Suppose that $\lambda_p(\Omega) > C$. We shall show that φ satisfies (2.2). Since $|\Phi'(r)| \leq 2/\delta$ by the definition of Φ , we have $|\nabla \varphi| \leq 4/\delta$. This inequality and Lemmas 3.6 and 3.5 show that

$$\int_{\Omega} |\nabla u|^{p-2} u^2 |\nabla \varphi|^2 dx \leq 16 \delta^{-2} \lambda_p^{-2/p} ||\nabla u||_p^p$$

$$\leq 16 \delta^{-2} \lambda_p^{-2/p} k \int_{B(x_0, \delta/2)} |\nabla u|^p dx.$$

By Lemma 3.4, we choose $g_0 \in G$ satisfying (3.4). Since u is G invariant, the last integral is estimated as

$$\int_{B(x_0,\delta/2)} |\nabla u|^p \, \mathrm{d}x = \int_{B(g_0x_0,\delta/2)} |\nabla u|^p \, \mathrm{d}x \leqslant c_0^{-2} \int_{B(g_0x_0,\delta/2)} |\nabla u|^p \varphi^2 \, \mathrm{d}x.$$

Combining the two above inequalities, we have

$$\int_{\Omega} |\nabla u|^{p-2} u^2 |\nabla \varphi|^2 \,\mathrm{d}x \leqslant 16 \delta^{-2} \lambda_p^{-2/p} k c_0^{-2} \int_{B(g_0x_0,\delta/2)} |\nabla u|^p \varphi^2 \,\mathrm{d}x.$$

Since $\lambda_p(\Omega) > C$, we obtain (2.2). Since $\varphi \in H^1_0(\Omega_1, H)$ by Lemma 3.3, $v := (1 + \varepsilon \varphi)u$ belongs to $H^1_0(\Omega, H)$. By Proposition 2.3, we conclude that $R_H \leqslant R(v) < R(u) = R_G$. The proof is complete.

References

[1]	T. Bhattacharya: A proof of the Faber-Krahn inequality for the first eigenvalue of the	
	p-Laplacian. Ann. Mat. Pura Appl., IV. Ser. 177 (1999), 225–240.	zbl MR
[2]	A. Borel: Le plan projectif des octaves et les sphères comme espaces homogènes. C. R.	
	Acad. Sci., Paris 230 (1950), 1378–1380. (In French.)	zbl MR
[3]	R. Kajikiya: Least energy solutions of the Emden-Fowler equation in hollow thin sym-	
	metric domains. J. Math. Anal. Appl. 406 (2013), 277–286.	${ m MR}$
[4]	R. Kajikiya: Multiple positive solutions of the Emden-Fowler equation in hollow thin	
	symmetric domains. Calc. Var. Partial Differ. Equ. To appear.	
[5]	R. Kajikiya: Partially symmetric solutions of the generalized Hénon equation in sym-	
	metric domains. Topol. Methods Nonlinear Anal. To appear.	
[6]	A. Kristály: Asymptotically critical problems on higher-dimensional spheres. Discrete	
	Contin. Dyn. Syst. 23 (2009), 919–935.	zbl MR
[7]	<i>P. Lindqvist</i> : On the equation $\operatorname{div}(\nabla u ^{p-2}\nabla u) + \lambda u ^{p-2}u = 0$. Proc. Am. Math. Soc.	
	109 (1990), 157–164.	zbl MR
[8]	D. Montgomery, H. Samelson: Transformation groups of spheres. Ann. Math. (2) 44	
	(1943), 454–470.	zbl MR
[9]	L. S. Pontryagin: Topological Groups. Transl. from the Russian, (3rd ed.), Classics of	
_	Soviet Mathematics, Gordon and Breach, New York, 1986.	zbl MR

Author's address: Ryuji Kajikiya, Department of Mathematics, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan, e-mail: kajikiya@ms.saga-u.ac.jp.