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ON THE LOW MACH NUMBER LIMIT OF COMPRESSIBLE FLOWS IN
EXTERIOR MOVING DOMAINS

EDUARD FEIREISL, ONDREJ KREML, VACLAV MACHA AND SARKA NECASOVA

ABSTRACT. We study the incompressible limit of solutions to the compressible barotropic
Navier-Stokes system in the exterior of a bounded domain undergoing a simple translation.
The problem is reformulated using a change of coordinates to fixed exterior domain. Using
the spectral analysis of the wave propagator, the dispersion of acoustic waves is proved by the
means of the RAGE theorem. The solution to the incompressible Navier-Stokes equations is
identified as a limit.

Institute of Mathematics of the Academy of Sciences of the Czech Republic
Zitna 25, 115 67 Praha 1, Czech Republic

1. INTRODUCTION
We study the compressible barotropic Navier-Stokes equations

Oro+divg(ou) = 0 (1.1)
O(ou) +divg(pu®@u) + Vep(o) = divyS(Vzu), (1.2)

with o(¢, z) denoting the density of the fluid and u(¢, x) denoting the velocity of the fluid being
the unknowns of the system. The pressure p(p) is a given function and S(V,u) denoting the
viscous stress tensor is given by

2
S(Vyu) = p <V$u + (V,u)! — 3 div, u]I) + ndivy ul, >0, n>0. (1.3)

We consider the system (1.1)-(1.2) in the exterior of a bounded domain undergoing a
translation. Therefore we introduce the following notation. Let 7' > 0 and let m(¢) : [0,T] —
R3 be a given smooth function satisfying m(0) = 0. Let moreover ¥y C R3 be a fixed bounded
domain of the class C2. We define 3; := {z € R3,x — m(t) € $p}. Let us denote moreover
Q; := R3\ ; and the space-time cylinder Q; := {(s,z) € [0,t] x R}, 2 € Q4}. The system
(1.1)-(1.2) has to be satisfied in @ := Q.

We denote by I'; the boundary of the domain Q; and denote I' := {(¢,z) € (0,T) x R,z €
I';}. Moreover for (t,z) € I' let v(¢,z) be a unit outer normal to @ in space-time. Finally,
we write v(t,x) = (14(t,x),n(t,x)). We complement the system (1.1)-(1.2) with boundary
conditions expressing impermeability of the boundary and complete slip of the fluid on the
boundary

u-n=-v, [S(Vzu)-njxn=0, onl. (1.4)

Key words and phrases. compressible Navier-Stokes system, incompressible limit, moving domain, exterior
domain.
All authors acknowledge the support of the GACR (Czech Science Foundation) project GA13-00522S in
the general framework of RVO: 67985840.
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Moreover we prescribe the behavior of the fluid at infinity

0—0>0, u—=0 as |z]— o0 (1.5)
The pressure p € C[0,00) N C*(0, 00) is assumed to fulfill
/
3
p(0) =0, p'(0)>0forall p>0, lim d (Ql) = Pso > 0 for a certain v > —. (1.6)
o0—00 o717 2

In the regime, where the speed of sound dominates the characteristic speed of the fluid,
the system (1.1)-(1.2) can be rescaled using dimensionless quantities. Assuming the Mach
number to be of order ¢, whereas all other dimension numbers to be of order 1, we obtain the
scaled Navier-Stokes system

oo +divyou = 0 (1.7)
1
O(ou) + div,(ou ® u) + ?pr(g) = div, S(Vzu). (1.8)

We consider a family of weak solutions (ge,uc) to the system (1.7)-(1.8) with boundary
conditions (1.4)-(1.5) emanating from the initial data

Q€(07 ) = 00, = o+ 5@((]%5)7 1,15(0, ) = Up,e, (19)

where
1 1 .
||IQ(()72||L2(QO) + ||Q(()12HLO<>(QO) < ¢, uge — ug weakly in L?(Qq; R?). (1.10)
Our aim is to prove that in a certain sense the weak solutions of the system (1.7)-(1.8)
converge to weak solutions of the incompressible Navier-Stokes system:

00U +0div, (U U) + V, II = div,S(V,U), (1.11)
div, U = 0, (1.12)
together with boundary conditions (1.4) and initial condition
U(0,-) = H(ug) in Qo,

where H denotes the Helmholtz projection to the space of solenoidal functions in .

Although the problem is very simple in the sense that the underlying rigid object under-
goes only translations and the fluid slips on its boundary, the authors are not aware of any
rigorous mathematical result on the low Mach number limit for the il prepared initial data
(1.9), (1.10). Originated by the pioneering result of Lions [14] on the existence of large data
weak solutions for the compressible Navier-Stokes system, Desjardins et al. [4], [5] Lions
and Masmoudi [15] (see also the surveys Danchin [3], Masmoudi [16], Schochet [18] and the
references cited therein) employed the framework of weak solutions to singular incompressible
limits for problems confined to fixed spatial domains. Similar problems on a bounded time
dependent domain, with prescribed boundary motion, have been studied only recently in [8].

Similarly to [7], in order to show compactness of the convective term in the momentum
equation, we use the dispersive estimates for the underlying acoustic equation. To this end,
the problem is transformed to a fixed spatial domain giving rise to a perturbed acoustic
equation, for which the desired decay estimates follow from the energy bounds combined with
an application of the celebrated RAGE theorem.

The paper is organized as follows. In Section 2, we collect some preliminary material
concerning the weak solutions of both primitive and target system and state our main result.
Section 3 contains the basic estimates derived directly from the associated energy balance. As
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a consequence, we deduce weak convergence of the solutions of the scaled system in Section
4. The acoustic equation is derived in Section 5, and the dispersive estimates obtained in
Section 6. The proof of the main result is then completed in Section 7.

2. PRELIMINARIES AND MAIN RESULT

2.1. Weak solutions of the primitive system. We start with a simple Lemma.

Lemma 2.1. There exists a function V : Q — R3 such that V € C1([0, T], W12N W (,))
satisfying
div, V=0 in@
V=-yn onl. (2.1)
and V(t,x) =0 for all t € [0,T] and |z| > R for sufficiently large R.

Proof. For any R > 0 denote Bf, := {z,|z| > R}. Take R > 0 such that the set Bf, C Q; for
all t € [0,T]. Observing that for all ¢ € [0, 7] it holds

m/(t) -n =1 on Iy, A m/(t) -ndS =0,
¢
we can define V (¢, z) as the Bogovskii solution (see Bogovskii [1], Galdi [11, Chapter 3]) to
the problem
div, V(t,-) =0 in QN Bg
V(t,)=—-vm onl,
V(t,-)=0 on Bf. (2.2)
O

Note that in particular (u —V)-n =0 on I'. Now we are ready to define weak solutions
to the primitive system.

Definition 2.2. We say that a couple (p,u) is a weak solution to the compressible Navier-
Stokes system (1.7)-(1.8) with boundary conditions (1.4)-(1.5) and initial conditions (1.9)
if

(1) 0—0¢€ LOO(Oa T, (L2 + LV)(Qt))v uc L2(07 T, WLQ(Qt))

(2) The continuity equation (1.7) is satisfied in a weak sense and in a renormalized form,i.e.

/Q (o(t) + b)) (. ) da — / (00 + b(20.)) (0, ) da

Qo

- / (0 +b(2))3up + (0 + b(@))u - Vagp + (b(0) — V(0)0) divy ug) dudt  (23)

holds for all t € [0,T], all ¢ € C°(Q), such that ¢(T,-) = 0 in Qp, and any b €
C1[0, 00) such that b(0) = 0 and b/(r) = 0 for large r.
(3) Balance of linear momentum is satisfied in a weak sense, i.e.

/ (ou)(t) - o(t) da — / (0cu0,) - 9(0) de
Q4

Qo

1
:/ <gu “Opp+o(u®u) : Ve + E—Qp(g) divy ¢ —S(Vzu) : Vﬂp) dz dt (2.4)
t
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holds for all ¢ € [0, 7] and all p € Cpy, := {p € C°(Q),p-n=0o0n I'}.
(4) Energy inequality holds, i.e.

/ [ oluf’ + = (P(Q)—P/(Q)(Q—Q)—P(9)>] (t,-)dz+ [ S(Veu): Voudedt
oY

Q¢
< [ [gmehunc + 5 (Plen) - P@en ~ 2 - P@)| dot [ (0w Vit
/ pocuge - V(0,-)dx +/ (S(Vzu) : V,V—pu®u:V,V-pu-0,V)dedt, (2.5)

Qo

e}

where

P(@)Zg/lgp(j) dz.

z

The following existence result of weak solutions to the compressible Navier-Stokes system
in moving domains was proved in [8].

Theorem 2.3. Lete > 0. There exists a weak solution (o, u.) to the system (1.7)-(1.8) with
boundary conditions (1.4)-(1.5) and initial conditions (1.9) in the sense of Definition 2.2.

Strictly speaking, the result of [8] covers the case of a bounded physical space, however, the
extension to the exterior problem is straightforward, see Sykora [19].

Now we define weak solutions to the target system, the incompressible Navier—Stokes equa-
tions.

Definition 2.4. We say that U is a weak solution to (1.11)-(1.12) in @ if

(1) U € L(0,T, L () N L*(0, T, WH*())

(2) div, U =0 a.a. in (0,7) x

3) U n=V:nonTl

(4) For all p € C°([0,T) x ), divy o =0, ¢ -n=0on I, it holds

| @005+ 02U V): Vi) doa
Q

:/ S(V;U) : Vypdadt +/ oUp - ¢(0,-) dz (2.6)
Q Qo

We are now ready to state the main theorem.

Theorem 2.5. Let m(t) € C?*([0,T]). Let (0-,u:) be a sequence of weak solutions to the
compressible Navier-Stokes system (1.7)—(1.8) with boundary conditions (1.4)—(1.5) and initial
conditions (1.9). Then, at least for a suitable subsequence

ess suPse (.1 [10e(t, ) — Bll (2417 < Ce (2.7)

u. — Uin L*K)

for any compact K C Q, where U is a weak solution to the incompressible Navier-Stokes
system (1.11)—(1.12) with initial data Uy = H]uy].

The rest of the paper is devoted to the proof of Theorem 2.5.
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3. UNIFORM ESTIMATES
Following [10] , we introduce the essential part
[feless = f€1{§<ga<2§}’

and the residual part
[fz—:]res = fz—: - [fz—:]ess
for any measurable function f. in Q.
The following estimates are nowadays standard and can be derived from the energy in-
equality (2.5), see [10]:

9 = ©
€ JessllLoo(0,1,02(2))
2
H[QE]’/‘ES”LOO(O,T7L’Y(Qt)) < 0577 (32)
1Wresll e rrr 00y < O™ (3.3)
Furthermore, from (3.2) and (3.3) we derive
H[QE_Q} <Ced (3.4)
& lresllLoo(o,1,L9(2))

for any 1 < ¢ < min{~,2}. Clearly, the relations (3.1), (3.4) imply (2.7).
Finally, using a version of Korn’s inequality we obtain

Huf-:HL2(0,T,W1*2(Qt)) < G
Ivesuelr=rr2@) < C.

where the constant C' does not depend on €.

4. WEAK CONVERGENCE

It is convenient to prolong the quantities defined on €; to the whole space R3. Therefore
we define g := 9 on R3\ () for all t € [0,T]. To extend the velocity we use the standard
extension operator E; : W2(Q;) — WH2(R3) which is uniformly bounded with respect to
t € [0,7]. With this convention we conclude from the uniform estimates in Section 3 that

0. =2 in L>=(0,T,L7(R?)) (4.1)
0 —>0 inC(0,T,L"(R%), rell,n) (4.2)
Eu. — U weakly in L?(0, T, WH3(R3)). (4.3)

Moreover we get for any set [T7,T2] x K C @ with compact K
2
o-u. — U weakly” in L°(Ty, Ty, L311 (K)). (4.4)

This allows us to proceed to the limit with all terms in (2.4) except for the convective term,
for which we only have
0eu: ®u, > pu®u  weakly in LY(Th, T, LYK)), (4.5)

for a certain ¢ > 1. Here we use the assumption v > % and the notation f(v) for a weak limit
of the sequence f(ve).
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In the rest of this paper we prove that
u. — U strongly in L*(K), (4.6)

for every K C () compact. This immediately implies the desired convergence of the convective
term and finishes the proof of Theorem 2.5.

5. LIGHTHILL ACOUSTIC ANALOGY

We reformulate the system (1.7)-(1.8) in the form of the Lighthill acoustic analogy. To this
end we define

re = (5.1
€
V. :=p.u. — 0oV (5 2)

and these quantities fulfill

eOire +divy, V. =0 (5.3)

£, Ve + 9 (0)Vare = e(div, Fy + Fy + V. F3),

where

F1 =S(Vyue) — 0-u: ® ue (5.5)

Fo = —00/V

1
Fy = 5 (ple) = p'(@)(e- = 2) — (2)) - (5.7)

Next, we make the change of coordinates y = x — m(t) and rewrite the system (5.3)—(5.4)
from the time dependent domain @ = (0,7") x €; to the fixed domain @ = (0,7) x Q.

Denoting f(t,y) = f(t,y + m(t)) for any scalar, vector or tensor-valued quantity f, the
Lighthill acoustic analogy (cf. Lighthill [12], [13]) takes a form

g0y + divy (V. —m/(t)erz) = 0 (5.8)
eV + P D)V, — edivy (V. @m/(t) = ¢ (divy Fy+ Fo+ vyﬁg) . (5.9

Morevorer, we denote W, = (Ve —m/(t)erz). Then we rewrite (5.8)—(5.9) further to

07 + divy, W. = 0 (5.10)
cOW. + 1/ (B)V, e = (divy(I~F1 + V. @m/ (1) + Fy + V, Fs — em” (t)F= + en (t) div,, vaa)
(5.11)

Note in particular that such defined Wa satisfies also the boundary condition WE -n=0on
0€. The weak formulation of (5.10)—-(5.11) reads

T —_—
/ / ereOip + We - Vyo dydt = —/ e )p(0,) dy (5.12)
0 Qo Qo
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for all p € C°([0,T) x Q) and
T —
/ / eW, - Opp + P/ (0)re divy ¢ dy dt
0 Qo
= | (eatune = V(0. + o = ' (0)) (0.) dy
0

T ~ ~ — ~ ~
+5/ / (F14+Veam!(t) +em/(t) @ W) : Vyo — (Fo —em” (6)72) - o + Fydivy ¢ dydt
0 Qo
(5.13)

for all o € C2°([0,T) x ) such that ¢ -n =0 on Q.

5.1. Helmholtz projection and Neumann Laplacian. For any v € LP(€) we denote by
H(v) its Helmholtz projection, more precisely

H(v) = v — V,0, (5.14)

where © such that V,© € LP(€) is a unique solution of the problem

AO = divy v, g—gzv-n on 09, [O] =0 as |y| — oo (5.15)
n
which in weak formulation reads
V0 -Vypdy = / v-Vypdy forall o € C°(Qp). (5.16)
Qo QO

Neumann Laplacian operator Ay plays a crucial role in the following analysis. We recall
that —Ay is a nonnegative self-adjoint operator on L?(£)) with domain

D(—Ay) = {w e W*?*(Q),Vyw-n=0 on 9} . (5.17)

5.2. Compactness of the solenoidal part. Our aim is to prove that for ¢ € C2°([0, T]x Qo)
with ¢ - n =0 on 0 it holds,
{t — W. - gody} — {t — W . gpdy] strongly in L*(0,T), (5.18)

Qo Q0

with W := (U — V).

Using the Helmholtz decomposition in € we split ¢ = H(yp) + H*(y¢). Due to estimates
from section 3 we have that fQO We(t, -) - H(p) dy is bounded independently of ¢ and e.
Further, due to (5.11) and an Aubin-Lions argument we conclude

[t — W. - H(p) dy] — [t — W . gody] strongly in L*(0,T), (5.19)
Qo

Qo

In the rest of this paper we discuss the gradient part of the velocity.
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6. CONVERGENCE OF THE GRADIENT PART OF VELOCITY

We introduce the acoustic potential W, as the gradient part of the quantity WE, more
precisely

W. = H(W,) + V,7.. (6.1)

Observe that V,Ay ¢ with ¢ € C2([0,T) x Qo) is an admissible test function in equation
(5.13). Using this test function and having in mind the relation

A V¥, - Vyp dy = A W. Vyp dy  for all ¢ € C°(Qy) (6.2)
0 0

we obtain from (5.12)—(5.13)
! (1)
/ / er0ip + V¥, - Vyp dydt = —/ £0p,.¢(0,-) dy (6.3)
0o Jao Q
for all p € C2°([0,T) x Q) and
T
/ / eV 0k +p'(Q)retp dydt
0o Jao
- _ = _ 2 (1) o -1
== | (cat0. = V(0.9) + el wae —m'(0))) - T, A7 (0. dy
0
T ~ ~ —
—1—5/ / (F1+ Ve@m/(t) +em/(t) @ We) : VoA e dydt
0o Jao
T N -
—s/ / (Fo —em” (t)7:) - Vy AN ¢ + Fap dydt =: g[he, ¢ (6.4)
0o Jao
for all € C°([0,T) x Qo).

6.1. Uniform bounds revisited. It is easy to observe that all uniform bounds from Section
3 transfer from the time dependent domain (0,7") x € to fixed domain (0,7") x €y. Moreover
we deduce easily

||[ffe]esS”Loo(O’T7L2(Q0)) S C (65)
2—gq

H[?€]T‘BS||LOO(O’T7L¢1(QO)) S Cea (66)

for any 1 < ¢ < min{v,2}. Moreover we have

|1V/&eosv/22
[V es V55

<
L>(0,T,L2(0))

< Cev (6.8)
L>(0,T,L9(Q0))

forqzﬁ.
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6.2. Estimate of forcing term. First, we estimate the terms I~F1 and ﬁg in the same manner

as in [7, Section 4]. Observing that

; S(Vyu.) : V;Afvlgp dy‘
0

<CIS(Vyue)ll 2, ”VZAle‘:D}}Lz(QO)

<CIS(Vy ) 2y (1l 220y + =200l 20y )

(6.9)

the Riesz representation theorem yields the existence of functions F;. € L*((0,T) x ) for

1 =1, 2 such that

T T
/ S(Vyle) : VyARe dydt = / / Fiep+ Fac(—An) "o dydt.
0 Qo 0 Qo
Similarly we proceed with the convective term. Here we write

| e viagedy
Qo

_ /Q (Belessie ®Te - V2ARLp dy + / VEres VR © T : V2ARLp dy.
0

Qo

We estimate the essential part as follows

[ @i s T3y

0

< H[§€]€SSﬁEHL2(QO) ”ﬁEHLG(QO) HvaR;l(,OHL3(QO)

< @eless iell 2 ) 1 2oy (Il z2(a0) + 1AM 0] 130y )

Using the interpolation inequality we easily have

HMpm@SC@Mmm@+Whmm)SCOWMMM+HPAMV%(

and similarly

|82 ¢ll 30 < € (H<—AN>%0HL2(QO> +||—am 72

LQ(QO)>

and thus there exist functions F; . € L2((0,T) x ) for i = 3, ...,6 such that
T
| [ et ot viags ay
0 Jao

T 6 .
_ / / N F(—An)? 2 dydt.
0 Q

0 =3

L2(QO)>

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)
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For the residual part of the convective term we proceed as follows
/ [\/ Z)z-:]res Esﬁz-: & uz—: : V2A ® dy‘
Qo

<||Vadevar|,,

N el 6 0) [ Vo AN @]

L7 (Q0)
/= =~ ~ ~1
< ‘[ OcresV/ 0cle La(9) ”ua”LG(QO) (HQOHLT(QO) + H(_AN) 90‘ Lr(QO)> ) (6.16)
where ¢ = % and
vrl 11
—+ -4+ -=1. .1
o + 5 + " (6.17)

Note that r > 3, so we estimate the arising norms of the test function

10120y < € (190 200) + V20l 120y < € (Il 22(01) + 1(=AN)¢N 20y (6:18)

and similarly

H(_AN)_1Q0| L™(Q0) <C <||(_AN)_1SOHL2(QO) + HQDHLZ(QO)) : (619)

This again yields the existence of functions F; . € L?((0,T) x ) for i = 7,...,9 such that
T
/ / [\/ 56]7"68 Egﬁs & ﬁg : va]_VlgO dy dt
0o Jo

T
= [ [ Fre-An)e+ Fup+ Facl-Aw) e dyat (6.20)
Qo
Next, we estimate in a similar manner the pressure term ﬁg. Since it holds

/Q L @) - P @@ -2 - p@) e dy

2
o €

<

L (@) - 1 @@ —2) - pl@)

11l oo (20) (6.21)
L1(0)

we have to estimate the L> norm of ¢ in terms of L? norms of powers of (—Ay)p. We have
11l Loy < CUVYLN Loy + 12lloi0) < CUVEON a0y + 1Yol L2(0)  (6:22)

and again we use the inequality

Vol 20y < CUIRI L2 () + I(=AN)¢l 12(0y) (6.23)

together with

)2 (6.24)

1940l 2(0p) = [[ (=20

to conclude that there exist functions F; . € L?((0,T) x QO) for i = 10,...,12 such that
o, -
|| % 6@ v @@ -2 - p)  dya
0 Jo €

T
:/ / Fio-(—AN)@ + Fii-(—An) 20 + Fia o dy dt. (6.25)
o Jao
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It is easy to estimate the term f‘g as follows

—a X -1 7 -1
/Qo 00,V -V, Ay ¢ dy‘ <C HatVHB(QO) HVyAN <pHL2(QO) (6.26)

and

19085 ¢l 2 = [ (232 (6.27)

thus there exists a function Fi3 € L2((0,T x €p)) such that

T " T
/ / 20V -V, A e dydt = / / Fis(—An)Y%¢ dy dt. (6.28)
0 Qo 0 Qo

L2(Q0)

Summing up, we proved up to now the existence of functions G.; € L2(0,T, L*()),
i€{l,...,5} such that

T . . . i
/ / Fi: VAR 0 —Fy VA3 o + Fyp dydt = Z / Ges(—AN) T [g]. (6.29)
0 Qo

Moreover, there exists ¢ € R independent of ¢ and 4 fulﬁlhng

5
> IGeillz2om r2(00)) < € (6.30)
i=1
_ Now we estimate the extra terms due to the translation of the domain. Again we first split
V. to the essential and residual part

Ve = [Ea]essﬁe + [Ee]resﬁe - E{},

H [\/Z}Tes \/Z)TEGEHLOO(O,T,LCI(QH) <c

and remind that

for ¢ = ﬁ and

| [\/E]ess \/Eﬁs Lo (0,7,22(0)) < €

Consequently, we estimate the term \~75 ®@m!(t) as follows. The essential part is treated easily

/Qo VBeless /20 @ m'(0) VZA;VHP dy‘ =¢ H\/@e“ 0ctle L2(Q0) N FSOHL%%)
< [Vakav/aw o (1ol + 155"l 0, (6:31)

and the term @\N/' ® m/(t) is estimated in the same way, because it also belongs to the space
L?(0,T,L?*(p)). The residual part is estimated similarly as in the case of the convective
term.

Vadres /B0 @ m' (1) : VIR dy‘ < O | Ve Vet
0

< |Vabevam|,, o (el + 120"l q,) (6.32)

with 1/¢g+1/¢' = 1. Since v > 3/2, ¢’ < 6 therefore we estimate the arising norms of the test
function in the same manner as in (6.18) and (6.19).

La(Q0) Hvy N SOHLq (0)
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Next term we want to estimate is em/(t) ® W.. Since W, = V, — m’(t)er., we use the
estimates (6.31)—(6.32) to handle the part including V.. Therefore we have to estimate 7.
Again we split 7. to the essential part and the residual part

?a = [/FE]ESS + [Fs]re&

and estimate them separately. The essential part belongs to L>(0, T, L?(£))) and its estimate
is straightforward, whereas for the residual part we use the estimate (6.6) and estimate it in
a similar manner as in (6.32).

It remains to estimate the term m”(t)er.. Again splitting it to essential and residual part
we have

m/,(t) [Teless - VyAngpdy‘ <C ||[?€]688||L2(Qo) ‘(_AN)I/QQD’ 9 ) (6.33)
Qo L2(20)
where we used (6.24), whereas
% m” () [7e]res - Vij_\rlSOdy‘ <C H[FS]eSSHLg(QO) Hvy(_AN)SOHLG(QO)
<C [[Fekssl g ) [V2B8)0 gy < € MFelessl g g, (0=l 20y + Iz ) -
(6.34)
Therefore we can finally write
5 T -
e = [ [ Gust-an) o dya (6.35)
i=1 70 Qo
with G ; satisfying
5
> IGeillz2om,r2(00)) < € (6.36)
i=1
6.3. Solution to wave equation. The system (6.3)—(6.4) can be understood as
e0re — (—AN)Y. = 0 (6.37)
eV, +p'(0)r: = che, (6.38)
keeping in mind also the boundary condition
Vy¥.-n=0 on 0. (6.39)

We establish the following notation

(i) =ty ) o-(3)

and then the solution to (6.37)-(6.38) is obtained by means of the Duhamel’s formula

! 1
tA </ eiSAgb(s) ds> + e =ty (6.40)
0

o |=

we(t) =€~
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Hereinafter we write e (t) :=e TOHVEAN and e_(t) := i From (6.40) we get in particular

0.(0) = PO (e (0) = er(0)T(0) + 5 (e4(0) + e (0) 00)
4 W /O (e—(5) — e4.(5)) he(s) ds

+ i (e+(t) + 6—(t))/0 (e4(s) +e—(s)) he(s)ds.  (6.41)

We achieve the desired strong convergence of the velocities using the RAGE theorem (see
[2, Section 5.4], [17, Theorem XI.115])

Theorem 6.1. Let A be a self-adjoint operator and let C be a bounded operator such that
C(A+1i)~! is compact. Then

T
/ e‘AﬁCPCe_‘Aﬁ dt -0 ase— 0, (6.42)
0

where Pgo is the projection onto the orthogonal complement of the eigenvectors of A.

Further we proceed as in [6]. We apply (6.42) to A = \/p(2)v—AN, C = x*G(—Ay) with
X € CX(R? X RY), G € C(0,00), 0 < G < 1. We get for X,Y € L%()

T
/0 (e-(MX*G(=AN)er ()X, Y) dt < w(e)l1X]| 200 1Y Il 22(00)

with w(e) — 0 as ¢ — 0. Here (-,-) denotes the standard scalar product in L?(Qq). For
Y = G(—Ap)[X] it holds

T
| NG anes@XII3a < w1 X (6.43)
We may apply (6.43) to the right hand side of (6.41). Thus

T — 2
/0 WP EEAN) (0 4y o 1))a0)

dt < w(e)|7=(0)]I3 = w(e)] o213,

2i —AN 9
T|1 G-ay) , ? ,
[ e+ ) -an)H0)| dt <w@I VO3
0 (—AN)2 9

and, finally,

A 5

1ex 0% e O)e—() £ er () D x(-Aw)

=1

i—1

2 G<_AN)G57i

dsdt
2

T 5
<w(e) [ YU} dt. (640
0 =1
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Putting these estimates together and choosing x such that y = 1 on an arbitrary compact
set K C Qp, we get

TETGNS L A <w<><||w05||2+||goeu2+ / ZHGHHZ)

and finally
IG(=AN)Cel|T2(0.) i) = 0 as € = 0. (6.45)

7. PROOF OF THE STRONG CONVERGENCE
We are now able to conclude that (4.6) holds. Indeed, we have
/ W. ody= | W. H(p)dy+ [ W.-H"(p) dy (7.1)
Qo Qo Qo

We already showed in section 5.2 that

[t — / W. - H(yp) dy] — [t — / W - H(yp) dy] strongly in L?(0,T). (7.2)
Qo Qo
Finally,
W HY () dy = [ Wodiv, B (p) dy
Qo Qo
— [ G(—an). div, H (4) dy + / (I = G(—AN)U. div, H (o) dy,  (73)

Qo Q0

where

G(—AN)T. div, H (p) dy — 0,
Qo

due to (6.45) and
/ (I — G(—~AN))¥,. div, H (¢) dy — 0,
Qo

since I — G(—An) — 0as G /1 on (0,00).
From (7.1), (7.2) and (7.3) it follows that

[t—> Wgwpdy} — {t—> W-gody} in L?(0,7).

Qo Qo

Using change of variables and estimates (3.1), (3.4) we may conclude
[t%/ us-gpdx}—>[t—> U-(pdx} in L2(0,T).
Qt Qt

This, together with (4.3), implies (4.6).
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