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Another advantage of a mathematical statement is that it is so definite
that it might be definitely wrong. . . Some verbal statements have not
this merit.
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1 Introduction

Despite the concerted effort of generations of excellent mathematicians, the
fundamental problems in partial differential equations related to continuum
fluid mechanics remain largely open. Solvability of the Navier-Stokes sys-
tem describing the motion of an incompressible viscous fluid is one in the
sample of millenium problems proposed by Clay Institute, see [5]. In con-
trast with these apparent theoretical difficulties, the Navier-Stokes system
became a well established model serving as a reliable basis of investigation in
continuum fluid mechanics, including the problems involving turbulence phe-
nomena. An alternative approach to problems in fluid mechanics is based
on the concept of weak solutions. As a matter of fact, the balance laws,
expressed in classical fluid mechanics in the form of partial differential equa-
tions, have their origin in integral identities that seem to be much closer
to the modern weak formulation of these problems. Leray [8] constructed
the weak solutions to the incompressible Navier-Stokes system as early as
in 1930, and his “turbulent solutions” are still the only ones available for

2



investigating large data and/or problems on large time intervals. Recently,
the real breakthrough is the work of Lions citeLI4 who generalized Leray’s
theory to the case of barotropic compressible viscous fluids (see also Vaigant
and Kazhikhov [13]). The quantities playing a crucial role in the descrip-
tion of density oscillations as the effective viscous flux were identified and
used in combination with a renormalized version of the equation of continu-
ity to obtain first large data/large time existence results in the framework of
compressible viscous fluids.

The main goal of the this lecture series is present the mathematical theory
of compressible barotropic fluids in the framework of Lions [9], together with
the extensions developed in [6]. We focus on the crucial question of stability
of a family of weak solutions that is the core of the abstract theory, with
implications to numerical analysis and the associated real world applications.
For the sake of clarity of presentation, we discuss first the case, where the
pressure term has sufficient growth for large value of the density yielding
sufficiently strong energy bonds. We also start with the simplest geometry of
the physical space, here represented by a cube, on the boundary of which the
fluid satisfies the slip boundary conditions. As is well-known, such a situation
may be reduced to studying the purely spatially periodic case, where the
additional difficulties connected with the presence of boundary conditions is
entirely eliminated.

2 Mathematical model

As the main goal of this lecture series is the mathematical theory, we avoid
a detailed derivation of the mathematical model of a compressible viscous
fluid. Remaining on the platform of continuum fluid mechanics, we suppose
that the motion of a compressible barotropic fluid is described by means of
two basic fields :

the mass density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .% = %(t, x),
the velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u = u(t, x),

functions of the time t ∈ R and the spatial position x ∈ R3.

2.1 Mass conservation

Let us recall the classical argument leading to the mathematical formulation
of the physical principle of mass conservation, see Chorin and Marsden [2].
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Consider a volume B ⊂ R3 containing a fluid of density %. The change of the
total mass of the fluid contained in B during a time interval [t1, t2], t1 < t2
is given as ∫

B
%(t2, x) dx−

∫
B
%(t1, x) dx.

One of the basic laws of physics incorporated in continuum mechanics as
the principle of mass conservation asserts that mass is neither created nor
destroyed. Accordingly, the change of the fluid mass in B is only because of
the mass flux through the boundary ∂B, here represented by %u · n, where
n denotes the outer normal vector to ∂B:∫

B
%(t2, x) dx−

∫
B
%(t1, x) dx = −

∫ t2

t1

∫
∂B
%(t, x)u(t, x) · n(x) dSx dt. (2.1)

One should remember formula (2.1) since it contains all relevant piece
of information provided by physics. The following discussion is based on
mathematical arguments based on the (unjustified) hypotheses of smoothness
of all field in question. To begin, apply Gauss-Green theorem to rewrite (2.1)
in the form:∫

B
%(t2, x) dx−

∫
B
%(t1, x) dx = −

∫ t2

t1

∫
B

divx

(
%(t, x)u(t, x)

)
dx dt.

Furthermore, fixing t1 = t and performing the limit t2 → t1 we may use
the mean value theorem to obtain∫

B
∂t%(t, x) dx = lim

t2→t

1

t2 − t

∫
B
%(t2, x) dx−

∫
B
%(t, x) dx (2.2)

= − lim
t2→t

1

t2 − t

∫ t2

t1

∫
B

divx

(
%(t, x)u(t, x)

)
dx dt

= −
∫

B
divx

(
%(t, x)u(t, x)

)
dx.

Finally, as relation (2.2) should hold for any volume element B, we may
infer that

∂t%(t, x) + divx

(
%(t, x)u(t, x)

)
= 0. (2.3)

Relation (2.3) is a first order partial differential equation called equation of
continuity.
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2.2 Balance of momentum

Using arguments similar to the preceding part, we derive balance of momen-
tum in the form

∂t

(
%(t, x)u(t, x)

)
+divx

(
%(t, x)u(t, x)⊗u(t, x)

)
= divxT(t, x)+ %(t, x)f(t, x),

(2.4)
or, equivalently (cf. (2.3),

%(t, x)
[
∂tu(t, x) + u(t, x) · ∇xu(t, x)

]
= divxT(t, x) + %(t, x)f(t, x),

where the tensor T is the Cauchy stress and f denotes the (specific) external
force acting on the fluid.

We adopt the standard mathematical definition of fluids in the form of
Stokes’ law

T = S− pI,

where tnS is the viscous stress and p is a scalar function termed pressure.
In addition, we suppose that the viscous stress is a linear function of the
velocity gradient, specifically S obeys Newton’s rheological law

S = S(∇xu) = µ
(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI, (2.5)

with the shear viscosity coefficient µ and the bulk viscosity coefficient η, here
assumed constant, µ > 0, η ≥ 0.

In order to close the system, we suppose the fluid is barotropic, mean-
ing the pressure p is an explicitly given function of the density p = p(%).
Accordingly,

divxT = µ∆u + (λ+ µ)∇xdivxu−∇xp(%), µ > 0, λ ≥ −2

3
µ,

and equations (2.3), (2.4) can be written in a concise form as

Navier-Stokes system

∂t%+ divx(%u) = 0, (2.6)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = µ∆u + (λ+ µ)∇xdivxu + %f . (2.7)
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The system of equations (2.6), (2.7) should be compared with a “more
famous” incompressible Navier-Stokes system, where the density is constant,
say % ≡ 1, while (2.6), (2.7) “reduces” to

divxu = 0, (2.8)

∂tu + divx(u⊗ u) +∇xp = µ∆u + f . (2.9)

Unlike in (2.7), the pressure p in (2.9) is an unknown function determined
(implicitly) by the fluid motion! The pressure in the incompressible Navier-
Stokes system has non-local character and may depend on the far field be-
havior of the fluid system.

2.3 Spatial domain and boundary conditions

In the real world applications, the fluid is confined to a bounded spatial do-
main Ω ⊂ R3. The presence of the physical boundary ∂Ω and the associated
problem of fluid-structure interaction represent a source of substantial diffi-
culties in the mathematical analysis of fluids in motion. In order to avoid
technicalities, we suppose that the motion is space-periodic, specifically,

%(t, x) = %(t, x+ a), u(t, x) = u(t, x+ a) for all t, x,

where the period vector a ∈ R3 is given. Equivalently, we may assume that
Ω is a flat torus,

Ω = [0, a1]|{0,a1} × [0, a2]|{0,a2} × [0, a3]|{0,a3}.

The space-periodic boundary conditions have a nice physical interpreta-
tion in fluid mechanics, see Ebin [4]. Indeed, if we restrict ourselves to the
classes of functions defined on the torus Ω and satisfying the extra geometric
restrictions:

%(t, x) = %(t,−x), ui(t, ·, xi, ·) = −ui(t, ·,−xi, ·), i = 1, 2, 3,

ui(t, ·, xj, ·) = ui(t, ·,−xj, ·) for i 6= j,

and, similarly,

fi(t, ·, xi, ·) = −fi(t, ·,−xi, ·), fi(t, ·, xj, ·) = fi(t, ·,−xj, ·) for i 6= j,

we can check that
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• the equations (2.6), (2.7) are invariant with respect to the above trans-
formations;

• the velocity field u satisfies the so-called complete slip conditions

u · n = 0, [Sn]× n = 0 (2.10)

on the boundary of the spatial block [0, a1]× [0, a2]× [0, a3].

We remark that the most commonly used boundary conditions for viscous
fluids confined to a general spatial domain Ω (not necessarily a flat torus)
are the no-slip

u|∂Ω = 0.

As a matter of fact, the problem of the choice of correct boundary conditions
in the real world applications is rather complex, some parts of the boundaries
may consist of a different fluid in motion, or the fluid domain is not a priori
known (free boundary problems). The interested reader may consult Priezjev
and Troian [11] for relevant discussion.

2.4 Initial conditions

Given the initial state at a reference time t0, say t0 = 0, the time evolution of
the fluid is determined as a solution of the Navier-Stokes system (2.6), (2.7).
It is convenient to introduce the initial density

%(0, x) = %0(x), x ∈ Ω, (2.11)

together with the initial distribution of the momentum,

(%u)(0, x) = (%u)0(x), x ∈ Ω, (2.12)

as, strictly speaking, the momentum balance (2.7) is an evolutionary equation
for %u rather than u. Such a difference will become clear in the so-called weak
formulation of the problem discussed in the forthcoming section.

3 Weak solutions

A vast class of non-linear evolutionary problems arising in mathematical
fluid mechanics is not known to admit classical (differentiable, smooth) solu-
tions for all choices of data and on an arbitrary time interval. On the other
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hand, most of the real world problems call for solutions defined in-the-large
approached in the numerical simulations. In order to perform a rigorous
analysis, we have to introduce a concept of generalized or weak solutions,
for which derivatives are interpreted in the sense of distributions. It rn rep-
resented by viscosity should provide a strong regularizing effect. Another
motivation, at least in the case of the compressible Navier-Stokes system
(2.6), (2.7), is the possibility to study the fluid dynamics emanating from
irregular initial state, for instance, the density %0 may not be continuous.
As shown by Hoff [7], the singularities incorporated initially will “survive”
in the system at any time; thus the weak solutions are necessary in order to
describe the dynamics.

3.1 Equation of continuity - weak formulation

We consider equation (2.6) on the space-time cylinder (0, T ) × Ω, where
Ω is the flat torus introduced in Section 2.3. Multiplying (2.6) on ϕ ∈
C∞c ((0, T ) × Ω), integrating the resulting expression over (0, T ) × Ω, and
performing by-parts integration, we obtain∫ T

0

∫
Ω

(
%(t, x)∂tϕ(t, x) + %(t, x)u(t, x) · ∇xϕ(t, x)

)
dx dt = 0. (3.1)

Definition 3.1 We say that a pair of functions %, u is a weak solution
to equation (2.6) in the space-time cylinder (0, T )×Ω if %, %u are locally
integrable in (0, T )× Ω and the integral identity (3.1) holds for any test
function ϕ ∈ C∞c ((0, T )× Ω).

3.1.1 Weak-strong compatibility

It is easy to see that any classical (smooth) solution of equation (2.6) is also a
weak solution. Similarly, any weak solution that is continuously differentiable
satisfies (2.6) pointwise. Such a property is called weak-strong compatibility.
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3.1.2 Weak continuity

Up to now, we have left apart the problem of satisfaction of the initial con-
dition (2.11). Obviously, some kind of weak continuity is needed for (2.11)
to make sense. To this end, we make an extra hypothesis, namely,

%u ∈ L1(0, T ;L1(Ω;R3)). (3.2)

Taking

ϕ(t, x) = ψ(t)φ(x), ψ ∈ C∞c (0, T ), φ ∈ C∞c (Ω)

as a test function in (3.1) we may infer, by virtue of (3.2), that the function

t 7→
∫
Ω
%(t, x)φ(x) dx is absolutely continuous in [0, T ] (3.3)

for any φ ∈ C∞c (Ω). In particular, the initial condition (2.11) may be satisfied
in the sense that

lim
t→0+

∫
Ω
%(t, x)φ(x) dx =

∫
Ω
%0(x)φ(x) dx for any φ ∈ C∞c (Ω).

Now, take

ϕε(t, x) = ψε(t)ϕ(t, x), ϕ ∈ C∞c ([0, T ]× Ω),

where ψε ∈ C∞c (0, τ),

0 ≤ ψε ≤ 1, ψε ↗ 1[0,τ ] as ε→ 0.

Taking ϕε as a test function in (3.1) and letting ε → 0, we conclude,
making use of (3.3), that∫

Ω
%(τ, x)ϕ(τ, x) dx−

∫
Ω
%0(x)ϕ(0, x) dx (3.4)

=
∫ τ

0

∫
Ω

(
%(t, x)∂tϕ(t, x) + %(t, x)u(t, x) · ∇xϕ(t, x)

)
dx dt

for any τ ∈ [0, T ] and any ϕ ∈ C∞c ([0, T ]× Ω).
Formula (3.4) can be alternatively used a definition of weak solution to

problem (2.6), (2.11). It is interesting to compare (3.4) with the original
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integral formulation of the principle of mass conservation stated in (2.1). To
this end, we take

ϕε(t, x) = φε(x),

with φε ∈ C∞c (B) such that

0 ≤ φε ≤ 1, φε ↗ 1B as ε→ 0.

It is easy to see that∫
Ω
%(τ, x)ϕε(τ, x) dx−

∫
Ω
%0(x)ϕε(0, x) dx→

∫
B
%(τ, x) dx−

∫
B
%0(x) dx as ε→ 0,

which coincides with the expression on the left-hand side of (2.1). Conse-
quently, the right-hand side of (3.4) must posses a limit and we set∫ τ

0

∫
Ω
%(t, x)u(t, x) · ∇xφε(x) dx dt→ −

∫ τ

0

∫
∂B
%(t, x)u(t, x) · n dSx dt.

In other words, the weak solutions possess a normal trace on the boundary
of the cylinder (0, τ)×B that satisfies (2.1), see Chen and Frid [1] for more
elaborate treatment of the normal traces of solutions to conservation laws.

3.1.3 Total mass conservation

Taking ϕ = 1 for t ∈ [0, τ ] in (3.4) we obtain∫
Ω
%(τ, x) dx =

∫
Ω
%0(x) dx = M0 for any τ ≥ 0, (3.5)

meaning, the total mass M0 of the fluid is a constant of motion.

3.2 Balance of momentum - weak formulation

Similarly to the preceding part, we introduce a weak formulation of the bal-
ance of momentum (2.7):

10



Definition 3.2 The functions %, u represent a weak solution to the mo-
mentum equation (2.7) in the set (0, T )× Ω if the integral identity∫ T

0

∫
Ω

(
(%u)(t, x)∂tϕ(t, x) + (%u⊗ u)(t, x) : ∇xϕ(t, x)

+p(%)(t, x)divxϕ(t, x)
)

dx dt (3.6)

=
∫ T

0

∫
Ω

(
µ∇xu(t, x) : ∇xϕ(t, x)

+(λ+ µ)divxu(t, x)divxϕ(t, x)− %(t, x)f(t, x) · ϕ(t, x)
)

dx dt

is satisfied for any test function ϕ ∈ C∞c ((0, T )× Ω;R3).

Of course, we have tacitly assume that all quantities appearing in (3.6)
are at least locally integrable in (0, T ) × Ω. In particular, as (3.6) contains
explicitely ∇xu, we have to assume integrability of this term. As we shall see
in the following section, one can expect, given the available a priori bounds,
∇xu to be square integrable, specifically,

u ∈ L2(0, T ;W 1,2(Ω;R3).

If Ω ⊂ R3 is a (bounded) domain with a non-void boundary, we can
enforce several kinds of boundary conditions by means of the properties of
the test functions. Thus, for instance, the no-slip bundary conditions

u|∂Ω = 0, (3.7)

require the integral identity (3.6) to be satisfied for any compactly supported
test function ϕ, while

u ∈ L2(0, T ;W 1,2
0 (Ω;R3)),

where W 1,2
0 (Ω;R3) is the Sobolev space obtained as the closure of C∞c (Ω;R3)

in the W 1,2−norm.
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4 A priori bounds

A priori bounds are natural constraints imposed on the set of (hypothetical)
smooth solutions by the data as well as by the differential equations satis-
fied. A priori bounds determine the function spaces framework the (weak)
solutions are looked for. By definition, they are formal, derived under the
principal hypothesis of smoothness of all quantities in question.

4.1 Total mass conservation

.
The fluid density % satisfies the equation of continuity that may be written

in the form
∂t%+ u · ∇x% = −%divxu (4.1)

This is a transport equation with the characteristic field defined

d

dt
X(t, x0) = u(t,X), X(0, x0) = x0.

Accordingly, (4.1) can be written as

d

dt
%(t,X(t, ·)) = −%(t,X(t, ·))divxu(t,X(t, ·)).

Consequently, we obtain

inf
x∈Ω

%(0, x) exp
(
−t‖divxu‖L∞((0,T )×Ω)

)
(4.2)

≤ %(t, x) ≤

≤ sup
x∈Ω

%(0, x) exp
(
t‖divxu‖L∞((0,T )×Ω)

)
for any t ∈ [0, T ].

Unfortunately, the bounds established in (4.2) depend on the norm ‖divxu‖L∞

on which we have no information. Thus we may infer only that

%(t, x) ≥ 0. (4.3)

Relation (4.3) combined with the total mass conservation (3.5) yield

‖%(t, ·)‖L1(Ω) = ‖%0‖L1(Ω), %(0, ·) = %0. (4.4)
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4.2 Energy balance

Taking the scalar product of the momentum equation (2.4) with u we deduce
the kinetic energy balance equation

∂t

(
1

2
%|u|2

)
+divx

(
1

2
%|u|2u

)
+divx(p(%)u)−p(%)divxu−divx(Su)+S : ∇xu

(4.5)
= %f · u.

Our goal is to integrate (4.5) by parts in order to deduce a priori bounds.
Imposing the no-slip boundary condition

u|∂Ω = 0,

we get

d

dt

∫
Ω

(
1

2
%|u|2

)
dx−

∫
Ω
p(%)divxu dx+

∫
Ω

S : ∇xu dx =
∫
Ω
%f · u dx,

where, in accordance with (2.7),

S : ∇xu = µ|∇xu|2 + 3(λ+ µ)|divxu|2 ≥ c|∇xu|2, c > 0, (4.6)

provided λ+ 2/3µ > 0.
Seeing that∫

Ω
%f · u dx ≤

∫
Ω
|f |√%√%|u| dx ≤ 1

2
‖f‖L∞((0,T )×Ω)

(∫
Ω
% dx+

∫
Ω
%|u|2 dx

)
we focus on the integral ∫

Ω
p(%)divxu dx.

Multiplying the equation of continuity (4.1) by b′(%) we obtain the renor-
malized equation of continuity

∂tb(%) + divx(b(%)u) +
(
b′(%)%− b(%)

)
divxu = 0. (4.7)

Consequently, in particular, the choice

b(%) = P (%) ≡ %
∫ %

1

p(z)

z2
dz
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leads to
b′(%)%− b(%) = p(%).

Thus

−
∫
Ω
p(%)divxu dx =

d

dt

∫
Ω
P (%) dx,

and we deduce the total energy balance

d

dt

∫
Ω

(
1

2
%|u|2 + P (%)

)
dx+

∫
Ω

S : ∇xu dx =
∫
Ω
%f · u dx. (4.8)

We conclude with

Energy estimates:

sup
t∈[0,T ]

‖√%u(t, ·)‖L2(Ω;R3) ≤ c(E0, T ), (4.9)

sup
t∈[0,T ]

∫
Ω
P (%)(t, ·) dx ≤ c(E0, T ), (4.10)

∫ T

0
‖u(t, ·)‖2

W 1,2
0 (Ω;R3)

dt ≤ c(E0, T ), (4.11)

where E0 denotes the initial energy

E0 =
∫
Ω

(
1

2
%0|u0|2 + P (%0)

)
dx.

4.3 Pressure estimates

A seemingly direct way to pressure estimates is to “compute” the pressure
in the momentum balance (2.7):

p(%) = −∆−1divx∂t(%u)−∆−1divxdivx(%u⊗u)+∆−1divxdivxS+∆−1divx(%f),

where ∆−1 is an “inverse” of the Laplacean. In order to justify this formal
step, we use the so-called Bogovskii operator B ≈ div−1

x .
We multiply equation (2.7) by

B[%] = B
[
b(%)− 1

|Ω|

∫
Ω
b(%) dx

]
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and integrate by parts to obtain∫ T

0

∫
Ω
p(%)b(%) dx dt (4.12)

=
1

|Ω|

∫ T

0

∫
Ω
p(%) dx

∫
Ω
b(%) dx dt+

∫ T

0

∫
Ω

S : ∇xB[%] dx dt

−
∫ T

0

∫
Ω
%u⊗ u : ∇xB[%] dx−

∫ T

0

∫
Ω
%u · ∂tB[%] dx dt∫

Ω
(%u ·B[%](τ, ·)− %0u0 ·B[%0]) dx.

Furthermore, we have
∂tB[%] (4.13)

= −B
[
divx(b(%)u) +

(
b′(%)%− b(%)

)
divxu−

1

|Ω|

∫
Ω

(
b′(%)%− b(%)

)
divxu

)
dx

]
.

We recall the basic properties of the Bogovskii operator:

Bogovskii operator:

divxB[h] = h for any h ∈ Lp(Ω),
∫
Ω
h dx = 0, 1 < p <∞, B[h]|∂Ω = 0.

(4.14)

‖B[h]‖W 1,p
0 (Ω;R3) ≤ c(p)‖h‖Lp(Ω), 1 < p <∞, (4.15)

‖B[h]‖Lq(Ω) ≤ ‖g‖Lq(Ω;R3) (4.16)

for h ∈ Lp(Ω), h = divxg, g · n|∂Ω = 0, 1 < q <∞.

5 Complete weak formulation

A complete weak formulation of the (compressible) Navier-Stokes system
takes into account both the renormalized equation of continuity and the
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energy inequality. Here and hereafter we assume that Ω ⊂ R3 is a bounded
domain with Lipschitz boundary. For the sake of definiteness, we take the
pressure in the form

p(%) = a%γ, with a > 0 and γ > 3/2. (5.1)

Later, we restrict ourselves to the case when γ is “sufficiently” large.

5.1 Equation of continuity

Let us introduce a class of (nonlinear) functions b such that

b ∈ C1[0,∞), b(0) = 0, b′(r) = 0 whenever r ≥Mb. (5.2)

We say that %, u is a (renormalized) solution of the equation of continuity
(2.3), supplemented with the initial condition,

%(0, ·) = %0,

if % ∈ Cweak([0, T ];Lγ(Ω)), % ≥ 0, u ∈ L2(0, T ;W 1,2
0 (Ω;R3)), and the integral

identity

∫ T

0

∫
Ω

(
(%+ b(%)) ∂tϕ+(%+ b(%))u ·∇xϕ+(b(%)− b′(%)%) divxuϕ

)
dx dt

(5.3)

= −
∫
Ω
%0ϕ(0, ·) dx

is satisfied for any ϕ ∈ C∞c ([0,∞) × Ω) and any b belonging to the class
specified in (5.2).

In particular, taking b ≡ 0 we deduce the standard weak formulation of
(2.3) in the form

∫
Ω

(
%(τ, ·)ϕ(τ, ·)− %0ϕ(0, ·)

)
dx = (5.4)∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dx dt

for any τ ∈ [0, T ] and any ϕ ∈ C∞c ([0, T ]× Ω).
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Note that (5.4) actually holds on the whole physical space R3 provided
%, u were extended to be zero outside Ω.

5.2 Momentum equation

In addition to the previous assumptions we suppose that

%u ∈ Cweak([0, T ];Lq(Ω;R3)) for a certain q > 1, p(%) ∈ L1((0, T )× Ω).

The weak formulation of the momentum equation reads:

∫
Ω

(
%u(τ, ·) · ϕ(τ, ·)− (%u)0 · ϕ(0, ·)

)
dx (5.5)

=
∫ τ

0

∫
Ω

(
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu : ∇xϕ+ (λ+ µ)divxudivxϕ− %f · ϕ

)
dx dt

for any τ ∈ [0, T ] and for any test function ϕ ∈ C∞c ([0, T ]× Ω;R3).

Note that (5.5) already includes the satisfaction of the initial condition

%u(0, ·) = (%u)0

5.3 Energy inequality

The weak solutions are not known to be uniquely determined by the initial
data. Therefore it is desirable to introduce as much physically grounded
conditions as allowed by the construction of the weak solutions. One of them
is
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Energy inequality:

∫
Ω

(
1

2
%|u|2 + P (%)

)
(τ, ·) dx+

∫ τ

0

∫
Ω
µ|∇xu|2 + (λ+ µ)|divxu|2 dx dt

(5.6)

≤
∫
Ω

(
1

2%0

|(%u)0|2 + P (%0)

)
dx+

∫ τ

0

∫
Ω
%f · u dx dt

for a.a. τ ∈ (0, T ), where

P (%) = %
∫ %

1

p(z)

z2
dz.

Some remarks are in order. To begin, given the specific choice of the
pressure p(%) = a%γ and the fact that the total mass of the fluid is a constant
of motion, the function P (%) in (5.6) can be taken as

P (%) =
a

γ − 1
%γ.

Next, we need a kind od compatibility condition between %0 and (%u)0

provided we allow the initial density to vanish on a nonempty set:

(%u)0 = 0 a.a. on the “vacuum” set {x ∈ Ω | %0(x) = 0}. (5.7)

6 Weak sequential stability

The problem of weak sequential stability may be stated as follows:
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Weak sequential stability:

Given a family {%ε,uε}ε>0 of weak solutions of the compressible Navier-
Stokes system, emanating from the initial data

%ε(0, ·) = %0,ε, (%u)(0, ·) = (%u)0,ε,

we want to show that

%ε → %, uε → u as ε→ 0

in a certain sense and at least for suitable subsequences, where %, u is
another weak solution of the same system.

Although showing weak sequential stability does not provide an explicit
proof of existence of the weak solutions, its verification represents one of the
prominents steps towards a rigorous existence theory for a given system of
equations.

6.1 Uniform bounds

To begin the analysis, we need uniform bounds in terms of the data. To this
end, we choose the initial data in such a way that∫

Ω

(
1

2%0,ε

|(%u)0|2 + P (%0,ε)

)
dx ≤ E0, (6.1)

where the constant E0 is independent of ε. Moreover, the main and most
difficult steps of the proof of weak sequential stability remain basically the
same under the simplifying assumption

f ≡ 0.

In accordance with the energy inequality (5.6), we get

sup
t∈(0,T )

‖%ε(t, ·)‖Lγ(Ω) ≤ c (6.2)

and
ess sup

t∈(0,T )

‖√%εuε(t, ·)‖L2(Ω;R3)) ≤ c, (6.3)
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together with ∫ T

0
‖u(t, ·)‖2

W 1,2(Ω;R3) dt ≤ c, (6.4)

where the symbol c stands for a generic constant independent of ε.
Interpolating (6.2), (6.3), we get

‖%εuε‖Lq(Ω;R3) = ‖√%ε
√
%εuε‖Lq(Ω;R3) ≤ ‖√%ε‖L2γ(Ω)‖

√
%εuε‖L2(Ω;R3),

with

q =
2γ

γ + 1
> 1 provided γ > 1.

We conclude that

supt∈[0,T ]‖%εuε(t, ·)‖Lq(Ω;R3), q =
2γ

γ + 1
. (6.5)

Next, applying a similar treatment to the convective term in the momen-
tum equation, we have

‖%εuε ⊗ uε‖Lq(Ω;R3×3) = ‖%εuε‖L2γ/(γ+1)(Ω;R3)‖uε‖L6(Ω;R3), with q =
6γ

4γ + 3
.

Using the standard embedding relation

W 1,2(Ω) ↪→ L6(Ω), (6.6)

we may therefore conclude that∫ T

0

∫
Ω
‖%εuε ⊗ uε‖2

Lq(Ω;R3×3) dx dt ≤ c, q =
6γ

4γ + 3
. (6.7)

Note that
6γ

4γ + 3
> 1 as long as γ >

3

2
.

Finally, we have the pressure estimates established in the previous part:∫ T

0

∫
Ω
p(%ε)%

α
ε dx dt = a

∫ T

0

∫
Ω
%γ+α

ε dx dt ≤ c for α =
2

3
γ − 1. (6.8)

20



6.2 Limit passage

In view of the uniform bounds established in the previous section, we may
assume that

%ε → % weakly-(*) in L∞(0, T ;Lγ(Ω)), (6.9)

uε → u weakly in L2(0, T ;W 1,2
0 (Ω;R3)) (6.10)

passing to suitable subsequences as the case may be. Moreover, since %ε

satisfies the equation of continuity (5.4), (6.9) may be strengthened to

%ε → % in Cweak([0, T ];Lγ(Ω)). (6.11)

Let us recall that, in view of (6.9), relation (6.11) simply means{
t 7→

∫
Ω
%ε(t, ·)ϕ dx

}
→
{
t 7→

∫
Ω
%(t, ·)ϕ dx

}
in C[0, T ]

for any ϕ ∈ C∞c (Ω).

6.3 Compactness of the convective term

Our next goal is to establish convergence of the convective terms. Recall
that, in view of the estimate (6.5), we may suppose that

%εuε → %u weakly-(*) in L∞(0, T ;L2γ/(γ+1)(Ω;R3))

and even
%εuε → %u in Cweak([0, T ] : L2γ/(γ+1)(Ω;R3)), (6.12)

where the bar denotes (and will always denote in the future) a weak limit of
a composition.

Our goal is to show that
%u = %u.

This can be observed in several ways. Seeing that

W 1,2
0 (Ω) ↪→↪→ Lq(Ω) compactly for 1 ≤ q < 6,

we deduce that

Lp(Ω) ↪→↪→ W−1,2(Ω) compactly whenever p >
6

5
. (6.13)

In particular, relation (6.12) yields

%εuε → %u in C([0, T ];W−1,2(Ω))),

which, combined with (6.10), gives rise to the desired conclusion

%u = %u.
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6.3.1 Compactness via Div-Curl lemma

Div-Curl lemma, developed by Murat and Tartar [10], [12], represents an
efficient tool for handling compactness in non-linear problems, where the
classical Rellich-Kondraschev argument is not applicable.

Div-Curl lemma:

Lemma 6.1 Let B ⊂ RM be an open set. Suppose that

vn → v weakly in Lp(B;R3),

wn → w weakly in Lq(B;R3)

as n→∞, where
1

p
+

1

q
=

1

r
< 1.

Let, moreover,

{div[v]}∞n=1 be precompact in W−1,s(B),

{curl[w]}∞n=1 be precompact in W−1,s(B,RM×M)

for a certain s > 1.

Then
vn ·wn → v ·w weakly in Lr(B).

We give the proof only for a very special case that will be needed in the
future, namely, we assume that

divvn = 0, wn = ∇xΦn,
∫

RM
Φn dy = 0. (6.14)

Moreover, given the local character of the weak convergence, it is enough
to show the result for B = RM . By the same token, we may assume that
all functions are compactly supported. We recall that a (scalar) sequence
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{gn}∞n=1 is precompact in W−1,s(RM) if

gn = div[hn], with {hn}∞n=1 precompact in Ls(RM ;RM).

Now, it follows from the standard compactness arguments that

Φn → Φ (strongly) in Lq(RM), ∇xΦ = v.

Taking ϕ ∈ C∞c (RM) we have∫
RM

vn ·wnϕ dy =
∫

RM
vn · ∇xΦnϕ dy

= −
∫

RM
vn · ∇xϕΦn dy → −

∫
RM

v · ∇xϕΦ dy

=
∫

RM
v ·wϕ dy,

which completes the proof under the symplifying hypothesis (6.14).
Now, compactness of the product term %εuε can be viewed by a direct

application of Div-Curl lemma in the space-time R4, with the choice

vε = [%ε, %εuε], wε = [uj,ε, 0, 0, 0], j = 1, 2, 3.

6.4 Passing to the limit - step 1

Now, combining (6.12), compactness of the embedding (6.13), and the fact
that γ > 3/2, we may infer that

%εuε⊗uε → %u⊗u weakly in Lq((0, T )×Ω;R3) for a certain q > 1. (6.15)

Summing up the previous discussion we deduce that the limit functions
%, u satisfy the equation of continuity∫

Ω

(
%(τ, ·)ϕ(τ, ·)− %0ϕ(0, ·)

)
dx (6.16)

=
∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dx dt

for any τ ∈ [0, T ] and any ϕ ∈ C∞c ([0, T ] × Ω), together with a relation for
the momentum ∫

Ω

(
%u(τ, ·) · ϕ(τ, ·)− (%u)0 · ϕ(0, ·)

)
dx (6.17)
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=
∫ τ

0

∫
Ω

(
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu : ∇xϕ+ (λ+ µ)divxudivxϕ

)
dx dt

for any test function ϕ ∈ C∞c ([0, T ]× Ω;R3).
Here, we have also to assume at least weak convergence of the initial data,

specifically,
%0,ε → %0 weakly in Lγ(Ω), (6.18)

(%u)0,ε → (%u)0 weakly in L1(Ω;R3).

Thus it remains to show the crucial relation

p(%) = p(%)

or, equivalently,
%ε → % a.a. in (0, T )× Ω. (6.19)

This will be carried over in a series of steps specified in the remaining part
of this section.

6.5 Strong convergence of the densities

In order to simplify presentation and to highlight the leading ideas, we assume
that

γ > 5,

in particular
%ε → % in Cweak(0, T ;Lγ(Ω)), γ > 5.

6.5.1 Renormalized equation

We start with the renormalized equation (5.3) with b(%) = % log(%)− %:∫ T

0

∫
Ω

(
(%ε log(%ε) ∂tψ + %εdivxuεψ

)
dx dt = −

∫
Ω
%0,ε log(%0,ε) dx (6.20)
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for any ψ ∈ C∞c [0, T ), ψ(0) = 1. Clearly, relation (6.20) can be deduced from
(5.3) by means of Lebesgue convergence theorem.

Passing to the limit for ε→ 0 in (6.20) and making use of (6.18) we get∫ T

0

∫
Ω

( (
% log(%)

)
∂tψ + %divxuψ

)
dx dt = −

∫
Ω
%0 log(%0) dx. (6.21)

Our next goal is to show that the limit functions %, u, besides (6.16),
satisfy also its renormalized version. To this end, we use the procedure
proposed by DiPerna and Lions [3], specifically, we regularize (6.16) by a
family of regularizing kernels κδ(x) to obtain:

∂t%δ + divx(%δu) = divx(%δu)− [divx(%u)]δ,

with
vδ = κδ ∗ v, where ∗ stands for spatial convolution.

We easily deduce that

∂tb(%δ) + divx(b(%δ)u) +
(
b′(%δ)%δ − b(%δ)

)
divxu

= b′(%δ)
(
divx(%δu)− [divx(%u)]δ

)
.

Taking the limit δ → 0 and using Friedrich’s lemma, we get∫ T

0

∫
Ω

(
% log(%)∂tψ + %divxuψ

)
dx dt = −

∫
Ω
%0 log(%0) dx;

whence, in combination with (6.21),∫ T

0

∫
Ω

(
% log(%)− % log(%)

)
∂tψ +

(
%divxu− %divxu

)
ψ
)

dx dt = 0. (6.22)

Assume, for a moment, that we can show∫ τ

0

∫
Ω
%divxu dx dt ≥

∫ τ

0

∫
Ω
%divxu dx t for any τ > 0, (6.23)

which, together with lower semi-continuity of convex functionals, yields

% log(%) = % log(%). (6.24)

In order to continue, we need the following (standard) result:
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Lemma 6.2 Suppose that

%ε → % weakly in L3(Ω),

where
% log(%) = % log(%).

Then
%ε → % in L1(Ω).

Proof:
Suppose that

0 < δ ≤ %, %ε ≤M.

Consequently, because of convexity of z 7→ z log(z), we have

%ε log(%ε)− % log(%) = (log(%)− 1) (%ε − %) + α(M)|%ε − %|2, α(δ) > 0,

therefore∫
{δ<%}

|%ε−%|2 dx dt ≤
∫
{δ<%,%ε<M}

|%ε−%|2 dx dt+
∫
{δ<%,%ε≥M}

|%ε−%|2 dx dt

≤
∫
{δ<%,%ε<M}

|%ε − %|2 dx dt+ h(M), h(M) → 0 as M →∞.

Thus we conclude that

%ε → % a.a. on the set {% > δ} for any δ > 0.

Now, since
%ε → % a.a. on the set {% = 0}

and
|{0 < % < δ}| → 0 as δ → 0,

we obtain the desired conclusion.
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Q.E.D.

In accordance with the previous discussion, the proof of strong (pointwise)
convergence of {%ε}ε>0 reduces to showing (6.23). This will be done in the
next section.

6.5.2 The effective viscous flux

The effective viscous flux

(2µ+ λ)divxu− p(%)

is a remarkable quantity that enjoys better regularity and compactness prop-
erties than its components separately. To see this, we start with the momen-
tum equation ∫

Ω

(
%εuε(τ, ·) · ϕ(τ, ·)− (%u)0,ε · ϕ(0, ·)

)
dx (6.25)

=
∫ τ

0

∫
Ω

(
%εuε · ∂tϕ+ %εuε ⊗ uε : ∇xϕ+ p(%ε)divxϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xuε : ∇xϕ+ (λ+ µ)divxuεdivxϕ− %εf · ϕ

)
dx dt,

together with its weak limit∫
Ω

(
%u(τ, ·) · ϕ(τ, ·)− (%u)0 · ϕ(0, ·)

)
dx (6.26)

=
∫ τ

0

∫
Ω

(
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu : ∇xϕ+ (λ+ µ)divxudivxϕ− %f · ϕ

)
dx dt.

Our goal is to take

ϕ = ϕε = φ∇x∆
−1[1Ω%ε], φ ∈ C∞c (Ω)

as a test function in (6.25), and

ϕ = φ∇x∆
−1[1Ω%], φ ∈ C∞c (Ω).
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Here, ∆−1 represents the inverse of the Laplacean on R3, specifically,

∂xj
∆−1[v] = Fξ→x

[
iξj
|ξ|2

Fx→ξ[v]

]

Since Ω ⊂ R3 is a bounded domain, we have

∇x∆
−1[1Ω%ε] bounded in L∞(0, T ;W 1,γ

0 (Ω;R3)), γ > 3.

Moreover, as 1Ω%ε as well as 1Ω% satisfy the equation of continuity on the
whole physical space R3 provided uε, u were extended to be zero outside Ω,
we have

∂t∇x∆
−1[1Ω%ε] = −∇x∆

−1divx[%εuε], ∂t∇x∆
−1[1Ω%] = −∇x∆

−1divx[%u].

Step 1:
As

%ε → % ∈ Cweak([0, T ];Lγ(Ω)),

we have, in accordance with the standard Sobolev embedding relation

W 1,γ(Ω) ↪→↪→ C(Ω),

∇x∆
−1[1Ω%ε] → ∇x∆

−1[1Ω%] in C([0, T ]× Ω).

In particular, we deduce from (6.25), (6.26),

lim
ε→0

∫ τ

0

∫
Ω

(
%εuε · ∂tϕε + %εuε ⊗ uε : ∇xϕε + p(%ε)divxϕε

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xuε : ∇xϕε + (λ+ µ)divxuεdivxϕε

)
dx dt

=
∫ τ

0

∫
Ω

(
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu : ∇xϕ+ (λ+ µ)divxudivxϕ

)
dx dt,

with
ϕ = φ∇x∆

−1[1Ω%],

meaning

lim
ε→0

∫ τ

0

∫
Ω
φp(%ε)%ε − p(%ε)∇xφ · ∇x∆

−1[1Ω%ε] dx dt (6.27)
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− lim
ε→0

∫ τ

0

∫
Ω
φ
(
µ∇xuε : ∇2

x∆
−1[1Ω%ε] + (λ+ µ)divxuε%ε

)
dx dt

− lim
ε→0

∫ τ

0

∫
Ω

(
µ∇xuε · ∇φ · ∇x∆

−1[1Ω%ε] + (λ+ µ)divxuε∇xϕ · ∇x∆
−1[1Ω%ε]

)
dx dt

=
∫ τ

0

∫
Ω
φp(%)%− p(%)∇xφ · ∇x∆

−1[%] dx dt

−
∫ τ

0

∫
Ω
φ
(
µ∇xu : ∇2

x∆
−1[1Ω%] + (λ+ µ)divxu%

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu · ∇φ · ∇x∆

−1[1Ω%] + (λ+ µ)divxu∇xϕ · ∇x∆
−1[1Ω%]

)
dx dt

+ lim
ε→0

∫ τ

0

∫
Ω

(
φ%εuε · ∇x∆

−1[divx(%εuε)]− %εuε ⊗ uε : ∇x

(
φ∇x∆

−1[1Ω%ε]
))

dx dt

−
∫ τ

0

∫
Ω

(
φ%u · ∇x∆

−1[divx(%u)]− %u⊗ u : ∇x

(
φ∇x∆

−1[1Ω%]
))

dx dt.

Step 2:

We have∫
Ω
φ∇xuε : ∇2

x∆
−1[1Ω%ε] dx =

∫
Ω
φ

3∑
i,j=1

(
∂xj

ui
ε[∂xi

∆−1∂xj
][1Ω%ε]

)
dx

=
∫
Ω

3∑
i,j=1

(
∂xj

(φui
ε)[∂xi

∆−1∂xj
][1Ω%ε]

)
dx−

∫
Ω

3∑
i,j=1

(
∂xj

φui
ε[∂xi

∆−1∂xj
][1Ω%ε]

)
dx

=
∫
Ω
φdivxuε%ε dx−

∫
Ω
∇xφ ·u%ε dx−

∫
Ω

3∑
i,j=1

(
∂xj

φui
ε[∂xi

∆−1∂xj
][1Ω%ε]

)
dx.

Consequently, going back ot (6.27) and dropping the compact terms, we
obtain

lim
ε→0

∫ τ

0

∫
Ω
φ
(
p(%ε)%ε − (λ+ 2µ)divxuε%ε

)
dx dt (6.28)∫ τ

0

∫
Ω
φ
(
p(%)%− (λ+ 2µ)divxu%

)
dx dt

= lim
ε→0

∫ τ

0

∫
Ω
φ
(
%εuε · ∇x∆

−1[divx(%εuε)]− %εuε ⊗ uε : ∇x∆
−1∇x[1Ω%ε]

)
dx dt

−
∫ τ

0

∫
Ω

(
φ%u · ∇x∆

−1[divx(%u)]− %u⊗ u : ∇x∆
−1∇x[1Ω%]

)
dx dt.
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Step 3

Our ultimate goal is to show that the right-hand side of (6.28) vanishes.
To this end, we write

%εuε · ∇x∆
−1[divx(%εuε)]− %εuε ⊗ uε : ∇x∆

−1∇x[1Ω%ε]

= uε ·
(
%ε∇x∆

−1[divx(%εuε)]− %εuε · ∇x∆
−1∇x[1Ω%ε]

)
.

Consider the bilinear form

[v,w] =
3∑

i,j=1

(
viRi,j[w

j]− wiRi,j[v
j]
)
, Ri,j = ∂xi

∆−1∂xj
,

where we may write

3∑
i,j=1

(
viRi,j[w

j]− wiRi,j[v
j]
)

3∑
i,j=1

(
(vi −Ri,j[v

j])Ri,j[w
j]− (wi −Ri,j[w

j])Ri,j[v
j]
)

= U ·V −W · Z,

where

U i =
∑
j=1

(vi −Ri,j[v
j]), W i =

∑
j=1

(wi −Ri,j[w
j]), divxU = divxW = 0,

and

V i = ∂xi

 3∑
j=1

∆−1∂xjwj

 , Zi = ∂xi

 3∑
j=1

∆−1∂xjvj

 , i = 1, 2, 3.

Thus a direct application of Div-Curl lemma (Lemma 6.1) yields

[vε,wε] → [v,w] weakly in Ls(R3)

whenever vε → v weakly in Lp(R3; r3), wε → w weakly in Lq(R3;R3),

and
1

p
+

1

q
=

1

s
< 1.
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Seeing that

%ε → % in Cweak([0, T ];Lγ(Ω)), %εuε → u in Cweak([0, T ];L2γ/(γ+1)(Ω))

we conclude that

1Ω%ε(t, ·)∇x∆
−1[divx(%εuε)(t, ·)]− (%εuε)(t, ·) · ∇x∆

−1∇x[1Ω%ε(t, ·)] (6.29)

→
%(t, ·)∇x∆

−1[divx(%u)(t, ·)]− (%u)(t, ·) · ∇x∆
−1∇x[1Ω%(t, ·)]

in Ls(Ω) for all t ∈ [0, T ],

with

s =
2γ

γ + 3
>

6

5
since γ > 5.

Thus we conclude that the convergence in (6.29) takes place in the space

Lq(0, T ;W−1,2(Ω)) for any 1 ≤ q <∞;

whence, going back to (6.28), we conclude

lim
ε→0

∫ τ

0

∫
Ω
φ
(
p(%ε)%ε − (λ+ 2µ)divxuε%ε

)
dx dt (6.30)∫ τ

0

∫
Ω
φ
(
p(%)%− (λ+ 2µ)divxu%

)
dx dt.

As a matter of fact, using exactly same method and localizing also in the
space variable, we could prove that

p(%)%− (λ+ 2µ)divxu% = p(%)%− (λ+ 2µ)divxu%, (6.31)

which is the celebrated relation on “weak continuity” of the effective viscous
pressure discoverd by Lions [9].

Since p is a non-decreasing function of %ε, we have∫ τ

0

∫
Ω
φ
(
p(%ε)− p(%)

)
(%ε − %) dx dt ≥ 0;

where relation (6.30) yield the desired conclusion (6.23), namely∫ τ

0

∫
Ω

(
divxu%− divxu%

)
dx dt ≥ 0.

Thus we get (6.24); whence

%ε → % a.a. in (0, T )× Ω. (6.32)
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