# Weak solutions to the equations of quantum fluids

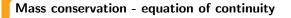
# Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078 IMU-AIMS Joint International Meeting, Tel Aviv, 16 June - 19 June 2014

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶ ◆○ ◆

### **Euler-Korteweg-Poisson system**



$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = \mathbf{0}$$

Momentum equations - Newton's second law

$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}_x(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_x p(\varrho)$$

$$= \left[ \varrho \nabla_{\mathsf{x}} \left( \mathsf{K}(\varrho) \Delta_{\mathsf{x}} \varrho + \frac{1}{2} \mathsf{K}'(\varrho) |\nabla_{\mathsf{x}} \varrho|^2 \right) \right] - \varrho \mathbf{u} + \varrho \nabla_{\mathsf{x}} \mathsf{V}$$

**Poisson equation** 

$$\Delta_{x}V=\varrho-\overline{\varrho}$$

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のへで

### **Alternative formulation**

Korteweg tensor  

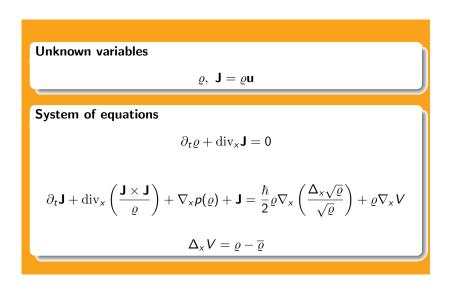
$$\begin{split} & \varrho \nabla_{\mathsf{x}} \left( \mathcal{K}(\varrho) \Delta_{\mathsf{x}} \varrho + \frac{1}{2} \mathcal{K}'(\varrho) |\nabla_{\mathsf{x}} \varrho|^2 \right) \\ & \mathcal{K}(\varrho) = \overline{\mathcal{K}} \text{ -capillarity}, \ \mathcal{K}(\varrho) = \frac{\hbar}{4\varrho} \text{ -quantum fluids} \\ \end{split}$$
Korteweg tensor in divergence form  

$$\varrho \nabla_{\mathsf{x}} \left( \mathcal{K}(\varrho) \Delta_{\mathsf{x}} \varrho + \frac{1}{2} \mathcal{K}'(\varrho) |\nabla_{\mathsf{x}} \varrho|^2 \right) = \operatorname{div}_{\mathsf{x}} \mathcal{K}(\varrho, \nabla_{\mathsf{x}} \varrho) \\ & \mathcal{K}(\varrho, \nabla_{\mathsf{x}} \varrho) = \left[ \chi(\varrho) \Delta_{\mathsf{x}} \varrho + \frac{1}{2} \chi'(\varrho) |\nabla_{\mathsf{x}} \varrho|^2 \right] \mathbb{I} - 4 \chi(\varrho) \nabla_{\mathsf{x}} \sqrt{\varrho} \otimes \nabla_{\mathsf{x}} \sqrt{\varrho} \end{split}$$

Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

Quantum fluids

### **Motivation: Quantum fluids**



Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

Quantum fluids

<ロト < 同ト < 三ト < 三ト < 三ト < ○への</p>

### **Alternative description**

#### Ansatz

$$\varrho = |\Psi|^2, \ \mathbf{J} = \hbar \Im[\overline{\psi} \nabla_x \psi]$$

#### Schrödinger equation

$$i\hbar\partial_t\psi = -rac{\hbar^2}{2}\Delta_x\psi - V\psi + a|\psi|^{\gamma-1}\psi - \overline{i\hbar\log\left(\psi/\overline{\psi}
ight)}$$

**Poisson equation** 

$$\Delta_x V = |\psi|^2, \ \overline{\varrho} = 0$$

#### Pressure

$$p(\varrho) = rac{\gamma - 1}{\gamma + 1} \varrho^{(\gamma + 1)/2}$$

Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

# Weak solutions?

#### Density

Density  $\varrho$  must be sufficiently regular

#### Vacuum zones

Density  $\varrho$  may vanish on some non-trivial subset of  $\Omega$ 

#### Singularities ?

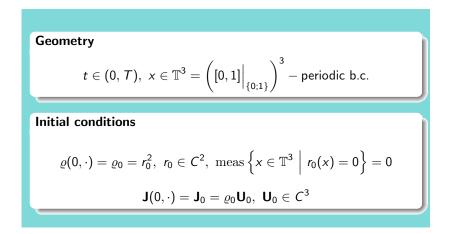
Shock waves for the momentum field  ${\bf J}$  ?

Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

Quantum fluids

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

### Boundary and initial conditions



Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

Quantum fluids

### **Reformulation, Step 1**

#### Extending the density

$$\partial_t \varrho + \operatorname{div}_x \tilde{\mathbf{J}} = 0, \ \varrho(0, \cdot) = \varrho_0$$

Flux ansatz

$$\tilde{\mathbf{J}} = \varrho(\mathbf{U}_0 - Z), \ Z = Z(t)$$

$$\partial_t \int_{\mathbb{T}^3} \mathbf{H}[\mathbf{\tilde{J}}] \, \mathrm{d}x + \int_{\mathbb{T}^3} \mathbf{H}[\mathbf{\tilde{J}}] \, \mathrm{d}x = \mathbf{0}$$

H - standard Helmholtz projection

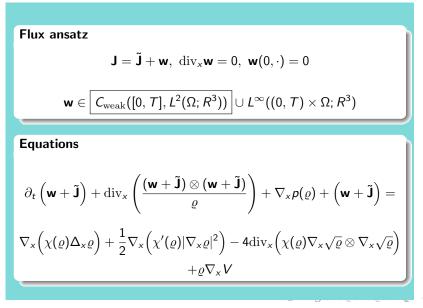
$$\max \left\{ x \in \mathbb{T}^3 \ \Big| \ \varrho(t, x) = 0 \right\} = 0 \text{ for any } t \in [0, T]$$

Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

Quantum fluids

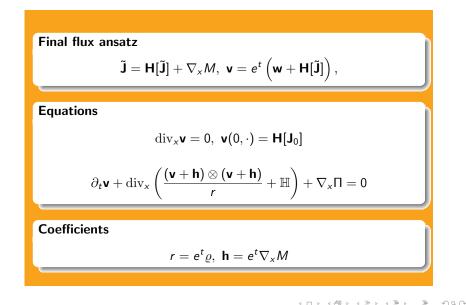
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

### **Reformulation**, Step 2



Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

### **Reformulation, Step 3**



Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

### **Driving terms**

#### **Convective term**

$$\begin{split} \mathbb{H}(t,x) &= 4e^t \left( \chi(\varrho) \nabla_x \sqrt{\varrho} \otimes \nabla_x \sqrt{\varrho} - \frac{1}{3} \chi(\varrho) |\nabla_x \sqrt{\varrho}|^2 \mathbb{I} \right) \\ & 4e^t \left( \frac{1}{3} |\nabla_x V|^2 \mathbb{I} - \nabla_x V \otimes \nabla_x V \right), \ \mathbb{H} \in R^{3 \times 3}_{0, \mathrm{sym}} \end{split}$$

#### Pressure term

$$\Pi(t,x) = e^{t} \left( p(\varrho) + \partial_{t} M + M - \chi(\varrho) \Delta_{x} \varrho \right)$$
$$-e^{t} \left( \frac{1}{2} \chi'(\varrho) |\nabla_{x} \varrho|^{2} - \frac{4}{3} \chi(\varrho) |\nabla_{x} \sqrt{\varrho}|^{2} + \overline{\varrho} V + \frac{1}{3} |\nabla_{x} V|^{2} \right) + \Lambda$$
$$\Lambda - \text{ a suitable constant}$$

Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

Quantum fluids

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへぐ

### **Convex integration**

Field equations, constitutive relations

$$\partial_t \mathbf{u} + \operatorname{div}_x \mathbb{V} = \mathbf{0}, \ \mathbb{V} = \mathbb{F}(\mathbf{u})$$

**Reformulation**, subsolutions

$$\mathbb{V} = \mathbb{F}(\mathsf{u}) \Leftrightarrow G(\mathsf{u},\mathbb{V}) = E(\mathsf{u}), E(\mathsf{u}) \leq G(\mathsf{u},\mathbb{V}) < \overline{e}(\mathsf{u})$$

E convex,  $\overline{e}$  "concave"

Oscillatory lemma, oscillatory increments

$$\begin{array}{l} \partial_t \mathbf{u}_{\varepsilon} + \operatorname{div}_x \mathbb{V}_{\varepsilon} = \mathbf{0}, \ \mathbf{u}_{\varepsilon} \boxed{\longrightarrow} \mathbf{0} \\ E(\mathbf{u} + \mathbf{u}_{\varepsilon}) \leq G\left(\mathbf{u} + \mathbf{u}_{\varepsilon}, \mathbb{V} + \mathbb{V}_{\varepsilon}\right) < \overline{e}(\mathbf{u} + \mathbf{u}_{\varepsilon} \\ \lim \inf \int E(\mathbf{u}_{\varepsilon}) \boxed{\geq} \int \left(\overline{e}(\mathbf{u}) - E(\mathbf{u})\right)^{\alpha} \end{array}$$

# Applications to incompressible flows

Incompressible Euler system - DeLellis, Székelyhidi [2008]

$$h = 0, H = 0, r = 1, \Pi = e(t, x)$$

Compressible Euler with solenoidal data - Chiodaroli [2013]

$$r = r(x), \mathbf{h} = 0, \mathbb{H} = \mathbb{H}(x), \Pi = e(t, x)$$

**Present situation** 

 $r, \mathbf{h}, \mathbb{H}, \Pi$  continuous functions of both t and x on the open set  $\{(t, x) \mid \varrho(t, x) > 0\}$ 

Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

Quantum fluids

# Basic ideas of analysis

#### Localization

Localizing the result of DeLellis and Széhelyhidi to "small" cubes by means of scaling arguments

#### Linearization

Replacing all continuous functions by their means on any of the "small" cubes

#### Covering the non-vacuum set

Applying Whitney's decomposition lemma to the non-vacuum set  $\{\varrho>0\}$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### **Existence results**

#### Good news

The problem admits global-in-time (finite energy) weak solutions of any (large) initial data

#### Bad news

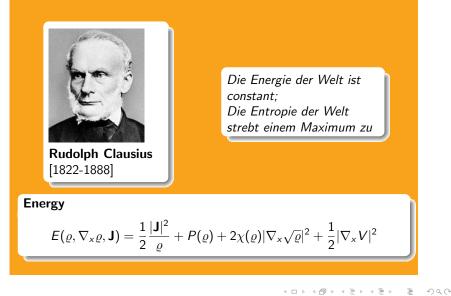
There are infinitely many solutions for given initial data

Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

Quantum fluids

<ロト < 同ト < 三ト < 三ト < 三ト < ○への</p>

# Energy



Eduard Feireisl based on collaboration with D.Donatelli and P.Marcati

# What's wrong?

#### **Energy production**

"Most" solutions constructed by convex integration produce energy!

#### Admissible solutions

Admissible solutions should conserve or at least dissipate the total energy. Admissible solutions do comply with the weak strong uniqueness principle. Weak and strong solutions emanating from the same initial data coincide as long as the latter exists.

#### Infinitely many admissible solutions

For any regular  $\rho_0$  there exists a (non-smooth)  $\mathbf{u}_0$  such that the problem has infinitely many admissible solutions.

<ロト < 同ト < 三ト < 三ト < 三ト < ○への</p>