Seminář odd. 26 Tenkých vrstev a nanostruktur

Fyzikální ústav AVČR, Cukrovarnická 10, Praha 6

datum: 13. 5. 2014 úterý čas: 10:00 místnost: knihovna, budova A, 1.p. TÉMA

STM contrast: The role of the tip

Krisztian Palotas

Budapest University of Technology and Economics, Department of Theoretical Physics, Budapest, Hungary

Understanding scanning tunnelling microscopy (STM) image contrast is of crucial importance in surface science and related technologies. I present different STM tip effects on the contrast in a number of technologically relevant surfaces resulting from first principles calculations. Interestingly, even flat metallic surfaces can show complicated contrast changes depending on the scanning tip and on the tip-sample distance. I show examples for W(110), where orbital-dependent tunnelling [1,2] plays a role, and emphasize the interplay of orbital-dependent tunnelling [1] and spin-polarization effects on constant-current STM images of the Fe(110) surface. Here, the atomic contrast inversion is found to be sensitive to the spin-polarization and the orbital character of the STM tip [3]. Moreover, I present a method to predict the bias-dependent magnetic contrast in surfaces having complex (non-collinear) magnetic order [4]. Finally, taking the highly oriented pyrolytic graphite (HOPG) surface, I demonstrate that the tip orientation has a considerable effect on the simulated STM image contrast [5]. By comparing STM topographic data between experiment [6] and large scale simulations, we can determine particular tip orientations that are most likely present in the STM experiment.

The simulations are performed using the three-dimensional Wentzel-Kramers-Brillouin tunnelling model based on ab initio electronic structure data [7].

References:

- [1] K. Palotas et al., Phys. Rev. B 86, 235415 (2012).
- [2] G. Mandi et al., J. Phys.: Condens. Matter 25, 445009 (2013).
- [3] G. Mandi and K. Palotas, Appl. Surf. Sci., accepted (2014) arXiv:1309.4696.
- [4] K. Palotas, Phys. Rev. B 87, 024417 (2013).
- [5] G. Mandi et al., submitted (2014).
- [6] G. Teobaldi et al., Phys. Rev. B 85, 085433 (2012).
- [7] K. Palotas et al., Front. Phys., published online, DOI: 10.1007/s11467-013-0354-4 (2013).

odborný garant: Ing. Pavel Jelínek, PhD.