A topological approach to periodic oscillations related to the Liebau phenomenon

Milan Tvrdý
jointly with

José Angel Cid, Gennaro Infante, Miroslawa Zima

Institute of Mathematics
Academy of Sciences of the Czech Republic

Ariel, August 2014

A topological approach to periodic oscillations related to the Liebau phenomenon

Milan Tvrdý
jointly with

José Angel Cid, Gennaro Infante, Miroslawa Zima

Institute of Mathematics
Academy of Sciences of the Czech Republic

Ariel, August 2014

1. VALVELESS PUMPING

(Liebau phenomena)

In 1954 G. Liebau showed experimentally that a periodic compression made on an asymmetric part of a fluid-mechanical model could produce the circulation of the fluid without the necessity of a valve to ensure a preferential direction of the flow.

In 1954 G. Liebau showed experimentally that a periodic compression made on an asymmetric part of a fluid-mechanical model could produce the circulation of the fluid without the necessity of a valve to ensure a preferential direction of the flow.

DEFINITION

Let $T>0, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and let $e: \mathbb{R} \rightarrow \mathbb{R}$ be nonconstant and T-periodic. Then the equation

$$
x^{\prime \prime}=g\left(x, x^{\prime}, e(t)\right)
$$

generates a T-periodically forced pump if it has a T-periodic solution x such that

$$
g(\bar{x}, 0, \bar{e}) \neq 0
$$

```
i.e. the mean value }\overline{x}\mathrm{ of }x\mathrm{ is not an equilibrium of }\mp@subsup{x}{}{\prime\prime}=g(x,\mp@subsup{x}{}{\prime},\overline{e})\mathrm{ .
```


G. Propst (2006)

$$
A_{P} \ell(t)+A_{T} h(t) \equiv V_{0} \quad \Longrightarrow \quad h(t) \equiv \frac{1}{A_{T}}\left(V_{0}-A_{P} \ell(t)\right)
$$

Momentum balance with Poiseuille's law and Bernoulli's equation

G. Propst (2006)

$\rho \quad$... density of the liquid (constant)
$p(t) \quad \ldots T$ - periodic pressure
$g \quad \ldots$ acceleration of gravity
$r_{0} \quad .$. friction coefficient
$\zeta \quad$... junction coefficient
$A_{P} / A_{T} \quad \ldots$ cross sections of pipe/tank
V_{0}
$w=-\ell^{\prime}$
... constant total volume of liquid
... velocity in the pipe

$$
A_{P} \ell(t)+A_{T} h(t) \equiv V_{0} \quad \Longrightarrow \quad h(t) \equiv \frac{1}{A_{T}}\left(V_{0}-A_{P} \ell(t)\right)
$$

Momentum balance with Poiseuille's law and Bernoulli's equation \Longrightarrow

$$
\ell \ell^{\prime \prime}+a \ell \ell^{\prime}+b\left(\ell^{\prime}\right)^{2}+c \ell=e(t)
$$

where

$$
\begin{aligned}
& T>0, \quad a=\frac{r_{0}}{\rho} \geq 0, \quad b=\left(1+\frac{\zeta}{2}\right) \geq 3 / 2 \\
& e(t)=\frac{g V_{0}}{A_{T}}-\frac{p(t)}{\rho} \text { is } T \text {-periodic, } \quad 0<c=\frac{g A_{p}}{A_{T}}<1
\end{aligned}
$$

First observations

This leads to singular periodic problem:
(1) $u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$,
$T>0, \quad a=\frac{r_{0}}{\rho} \geq 0, b=\left(1+\frac{\zeta}{2}\right) \geq 3 / 2, \quad 0<c=\frac{g A_{p}}{A_{T}}<1, e(t)=\frac{g V_{0}}{A_{T}}-\frac{p(t)}{\rho}$.

First observations

This leads to singular periodic problem:
(1) $\quad u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$,

$$
T>0, a=\frac{r_{0}}{\rho} \geq 0, b=\left(1+\frac{\zeta}{2}\right) \geq 3 / 2, \quad 0<c=\frac{g A_{p}}{A_{T}}<1, e(t)=\frac{g V_{0}}{A_{T}}-\frac{p(t)}{\rho} .
$$

Multiplying the equation by u and integrating over $[0, T]$ gives

THEOREM 1

(1) has a positive solution only if $\bar{e} \geq 0$ (i.e. $\left.\bar{p} \leq \rho g \frac{V_{0}}{A_{T}}\right)$.

This leads to singular periodic problem:

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

$$
T>0, a=\frac{r_{0}}{\rho} \geq 0, b=\left(1+\frac{\zeta}{2}\right) \geq 3 / 2,0<c=\frac{g A_{p}}{A_{T}}<1, e(t)=\frac{g V_{0}}{A_{T}}-\frac{p(t)}{\rho} .
$$

Multiplying the equation by u and integrating over $[0, T]$ gives

THEOREM 1

(1) has a positive solution only if $\bar{e} \geq 0$ (i.e. $\left.\bar{p} \leq \rho g \frac{V_{0}}{A_{T}}\right)$.

THEOREM 2

If (1) has a positive solution, then it generates a T-periodically forced pump.

Examples

(E) $u^{\prime \prime}+k u=\frac{b}{u^{\lambda}}+e(t), u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \quad\left(b>0, \lambda>0, k \geq 0, e \in L_{1}[0, T]\right)$ has a solution if:

- $k=0, \lambda \geq 1, \bar{e}<0 \quad[$ LLazer \& Soliminin],
- $k \neq\left(n \frac{\pi}{T}\right)^{2}$ for all $n \in \mathbb{N}, \lambda \geq 1, e \in C \quad$ [del Pino, Manásevich \& Montero]
- $0<k<\left(\frac{\pi}{T}\right)^{2}, \lambda \geq 1, e \in L_{\infty} \quad$ [Omari \& Ye],
- $k=0, \quad \bar{e}<0, \quad e_{*}:=\inf _{t \in[0, T]}^{\operatorname{ess}} e(t)>-\left(\frac{1}{T^{2} \lambda b}\right)^{\frac{\lambda}{\lambda+1}}(\lambda+1) b$,
$0<k<\left(\frac{\pi}{T}\right)^{2}, \quad e_{*}:=\inf _{t \in[0, T]}^{\operatorname{ess}} e(t)>-\left(\frac{\pi^{2}-T^{2} k}{T^{2} \lambda b}\right)^{\frac{\lambda}{\lambda+1}}(\lambda+1) b$
[supplementary results by Torres, Hakl \& Torres, Chu \& Franco et al.],
$k=\left(\frac{\pi}{T}\right)^{2}, \quad \inf _{t \in[0, T]}^{\operatorname{ess}} e(t)>0 \quad$ [Rachúnková, Tvrdý \& Vrkoč],
[supplementary results by Bonheure \& De Coster, Chu \& Torres et al.]

2. EXISTENCE OF A PERIODIC SOLUTION

Existence of a periodic solution

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

THEOREM 3

ASSUME:

- $a \geq 0, \quad b>1, \quad c>0$,
- e is continuous and T-periodic on $\mathbb{R}, e_{*}>0$,
- $\frac{(b+1) c^{2}}{4 e_{*}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$.

THEN: (1) has a positive solution.

Existence of a periodic solution

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

THEOREM 3

ASSUME:

- $a \geq 0, \quad b>1, \quad c>0$,
- e is continuous and T-periodic on $\mathbb{R}, e_{*}>0$,
- $\frac{(b+1) c^{2}}{4 e_{*}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$.

THEN: (1) has a positive solution.

DEFINITION

A T-periodic function $\sigma_{1} \in C^{2}[0, T]$ is a lower function for

$$
u^{\prime \prime}+a u^{\prime}=f(t, u), \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
$$

if

$$
\sigma_{1}^{\prime \prime}(t)+\mathbf{a} \sigma_{1}^{\prime}(t) \geq f\left(t, \sigma_{1}(t)\right) \quad \text { for } t \in[0, T]
$$

while an upper function is defined analogously, but with reversed inequality.

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

STEP 1: $u:[0, T] \rightarrow \mathbb{R}$ is a positive solution of (1) iff $x=u^{1 / \mu}$ is a positive solution of
(2) $\quad x^{\prime \prime}+a x^{\prime}(t)=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$,
where

$$
0<\mu=\frac{1}{b+1}<\frac{2}{5}, r(t)=\frac{e(t)}{\mu}>0, s(t)=\frac{c}{\mu}>0,0<\alpha=1-2 \mu,<\beta=1-\mu<1 .
$$

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

STEP 1: $u:[0, T] \rightarrow \mathbb{R}$ is a positive solution of (1) iff $x=u^{1 / \mu}$ is a positive solution of

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T), \tag{2}
\end{equation*}
$$

where

$$
0<\mu=\frac{1}{b+1}<\frac{2}{5}, r(t)=\frac{e(t)}{\mu}>0, s(t)=\frac{c}{\mu}>0,0<\alpha=1-2 \mu,<\beta=1-\mu<1 .
$$

STEP 2: There are constant lower and upper functions σ_{1} and σ_{2} of (2) such that

$$
0<\sigma_{2}<x_{0}=\left(r_{*} / s^{*}\right)^{1 /(\beta-\alpha)}<x_{1}=\left(r^{*} / s_{*}\right)^{1 /(\beta-\alpha)}<\sigma_{1} .
$$

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

STEP 1: $u:[0, T] \rightarrow \mathbb{R}$ is a positive solution of (1) iff $x=u^{1 / \mu}$ is a positive solution of

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{2}
\end{equation*}
$$

where

$$
0<\mu=\frac{1}{b+1}<\frac{2}{5}, r(t)=\frac{e(t)}{\mu}>0, s(t)=\frac{c}{\mu}>0,0<\alpha=1-2 \mu,<\beta=1-\mu<1 .
$$

STEP 2: There are constant lower and upper functions σ_{1} and σ_{2} of (2) such that

$$
0<\sigma_{2}<x_{0}=\left(r_{*} / s^{*}\right)^{1 /(\beta-\alpha)}<x_{1}=\left(r^{*} / s_{*}\right)^{1 /(\beta-\alpha)}<\sigma_{1} .
$$

Step 3: We show that there is $\delta_{0} \in\left(0, \sigma_{2}\right)$ such that

$$
\begin{aligned}
& r(t) x^{\alpha}-s(t) x^{\beta}<0 \text { for } t \in[0, T], x \in\left(0, \delta_{0}\right) \\
& -\left(\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}\right) x+r(t) x^{\alpha}-s(t) x^{\beta}<0 \quad \text { for } t \in[0, T], x \geq \delta_{0}
\end{aligned}
$$

and

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

STEP 1: $u:[0, T] \rightarrow \mathbb{R}$ is a positive solution of (1) iff $x=u^{1 / \mu}$ is a positive solution of

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T), \tag{2}
\end{equation*}
$$

where

$$
0<\mu=\frac{1}{b+1}<\frac{2}{5}, r(t)=\frac{e(t)}{\mu}>0, s(t)=\frac{c}{\mu}>0,0<\alpha=1-2 \mu,<\beta=1-\mu<1 .
$$

STEP 2: There are constant lower and upper functions σ_{1} and σ_{2} of (2) such that

$$
0<\sigma_{2}<x_{0}=\left(r_{*} / s^{*}\right)^{1 /(\beta-\alpha)}<x_{1}=\left(r^{*} / s_{*}\right)^{1 /(\beta-\alpha)}<\sigma_{1} .
$$

Step 3: We show that there is $\delta_{0} \in\left(0, \sigma_{2}\right)$ such that

$$
\begin{aligned}
& r(t) x^{\alpha}-s(t) x^{\beta}<0 \text { for } t \in[0, T], x \in\left(0, \delta_{0}\right) \\
& -\left(\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}\right) x+r(t) x^{\alpha}-s(t) x^{\beta}<0 \text { for } t \in[0, T], x \geq \delta_{0}
\end{aligned}
$$

and

STEP 4: We choose $\delta \in\left(0, \delta_{0}\right)$, put $\lambda^{*}=\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$,

$$
\tilde{f}(t, x)= \begin{cases}r(t) \delta^{\alpha}-s(t) \delta^{\beta}-\lambda^{*}(x-\delta) & \text { for } x<\delta \\ r(t) x^{\alpha}-s(t) x^{\beta} & \text { for } x \geq \delta\end{cases}
$$

and consider auxiliary problem

$$
\text { (Aux) } \quad x^{\prime \prime}+a x^{\prime}(t)=\widetilde{f}(t, x), \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

STEP 1: $u:[0, T] \rightarrow \mathbb{R}$ is a positive solution of (1) iff $x=u^{1 / \mu}$ is a positive solution of

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T), \tag{2}
\end{equation*}
$$

where

$$
0<\mu=\frac{1}{b+1}<\frac{2}{5}, r(t)=\frac{e(t)}{\mu}>0, s(t)=\frac{c}{\mu}>0,0<\alpha=1-2 \mu,<\beta=1-\mu<1 .
$$

STEP 2: There are constant lower and upper functions σ_{1} and σ_{2} of (2) such that

$$
0<\sigma_{2}<x_{0}=\left(r_{*} / s^{*}\right)^{1 /(\beta-\alpha)}<x_{1}=\left(r^{*} / s_{*}\right)^{1 /(\beta-\alpha)}<\sigma_{1} .
$$

Step 3: We show that there is $\delta_{0} \in\left(0, \sigma_{2}\right)$ such that

$$
\begin{aligned}
& r(t) x^{\alpha}-s(t) x^{\beta}<0 \text { for } t \in[0, T], x \in\left(0, \delta_{0}\right) \\
& -\left(\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}\right) x+r(t) x^{\alpha}-s(t) x^{\beta}<0 \text { for } t \in[0, T], x \geq \delta_{0}
\end{aligned}
$$

and

STEP 4: We choose $\delta \in\left(0, \delta_{0}\right)$, put $\lambda^{*}=\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$,

$$
\tilde{f}(t, x)= \begin{cases}r(t) \delta^{\alpha}-s(t) \delta^{\beta}-\lambda^{*}(x-\delta) & \text { for } x<\delta \\ r(t) x^{\alpha}-s(t) x^{\beta} & \text { for } x \geq \delta\end{cases}
$$

and consider auxiliary problem

$$
\text { (Aux) } \quad x^{\prime \prime}+a x^{\prime}(t)=\widetilde{f}(t, x), \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$

Method of non-ordered lower and upper functions (BONHEURE \& De COSTER)
\Longrightarrow (Aux) has a solution x.

Sketch of the proof

STEPS 1-4:
(1) $\quad u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$, \|

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=r(t) x^{\alpha}-s(t) x^{\beta} 0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T), \tag{2}
\end{equation*}
$$

where

$$
0<\mu=\frac{1}{b+1}<\frac{2}{5}, r(t)=\frac{e(t)}{\mu}>0, s(t)=\frac{c}{\mu}>0,0<\alpha=1-2 \mu,<\beta=1-\mu<1 .
$$

We have a solution x to

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=\widetilde{f}(t, x), \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{Aux}
\end{equation*}
$$

where

$$
\tilde{f}(t, x)= \begin{cases}r(t) \delta^{\alpha}-s(t) \delta^{\beta}-\lambda^{*}(x-\delta) & \text { for } x<\delta \\ r(t) x^{\alpha}-s(t) x^{\beta} & \text { for } x \geq \delta\end{cases}
$$

STEP 5: Put $v=x-\delta$. Then

$$
v^{\prime \prime}(t)+a v^{\prime}(t)+\lambda^{*} v(t)=h(t) \text { for } t \in[0, T], \quad v(0)=v(T), v^{\prime}(0)=v^{\prime}(T)
$$

where (by Step 3) $\quad h(t):=\lambda^{*}(x(t)-\delta)-\tilde{f}(t, x(t)) \geq 0$ on $[0, T]$.

Sketch of the proof

STEPS 1-4:

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=r(t) x^{\alpha}-s(t) x^{\beta} 0, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T), \tag{2}
\end{equation*}
$$

where

$$
0<\mu=\frac{1}{b+1}<\frac{2}{5}, r(t)=\frac{e(t)}{\mu}>0, s(t)=\frac{c}{\mu}>0,0<\alpha=1-2 \mu,<\beta=1-\mu<1
$$

We have a solution x to

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=\tilde{f}(t, x), \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{Aux}
\end{equation*}
$$

where

$$
\tilde{f}(t, x)= \begin{cases}r(t) \delta^{\alpha}-s(t) \delta^{\beta}-\lambda^{*}(x-\delta) & \text { for } x<\delta \\ r(t) x^{\alpha}-s(t) x^{\beta} & \text { for } x \geq \delta\end{cases}
$$

STEP 5: Put $v=x-\delta$. Then

$$
v^{\prime \prime}(t)+a v^{\prime}(t)+\lambda^{*} v(t)=h(t) \text { for } t \in[0, T], \quad v(0)=v(T), v^{\prime}(0)=v^{\prime}(T)
$$

where (by Step 3) $\quad h(t):=\lambda^{*}(x(t)-\delta)-\tilde{f}(t, x(t)) \geq 0$ on $[0, T]$.
Antimaximum principle (OMARI \& TROMBETTA or HAKL \& ZAMORA) $\Longrightarrow v \geq 0$, i.e. $x \geq \delta \square$

Existence of a periodic solution

$$
\begin{equation*}
u^{\prime \prime}+a u^{\prime}=r(t) u^{\alpha}-s(t) u^{\beta}, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T) \tag{2}
\end{equation*}
$$

THEOREM 4

Assume:

- $a \geq 0, \quad b>1, \quad c>0, \quad 0<\alpha<\beta<1$,
- $r_{*}>0, s_{*}>0$,
- there is $\delta_{0}>0$ such that

$$
r(t) u^{\alpha}-s(t) u^{\beta}<0 \quad \text { for } t \in[0, T], x \in\left(0, \delta_{0}\right)
$$

and

$$
-\left(\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}\right) x+r(t) x^{\alpha}-s(t) x^{\beta}<0 \quad \text { for } t \in[0, T], x \geq \delta_{0}
$$

THEN: (2) has a positive solution.

3. ASYMPTOTIC STABILITY

Asymptotic stability

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=f(t, x), \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{3}
\end{equation*}
$$

Lemma (Omari \& Njoku, 2003)
ASSUME: $\quad a>0$,

- σ_{1} is a strict lower function, σ_{2} is a strict upper function of (3) and $\sigma_{2}<\sigma_{1}$ on $[0, T]$.
- $\frac{\partial}{\partial x} f(t, x) \geq-\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4} \quad$ for $t \in[0, T], x \in\left[\sigma_{2}(t), \sigma_{1}(t)\right]$,
- there is a continuous $\gamma:[0, T] \rightarrow[0, \infty)$ such that $\bar{\gamma}>0$ and

$$
\frac{\partial}{\partial x} f(t, x) \leq-\gamma(t) \quad \text { for } t \in[0, T], x \in\left[\sigma_{2}(t), \sigma_{1}(t)\right]
$$

Then (3) has at least one asymptotically stable T-periodic solution x fulfilling

$$
\sigma_{2} \leq x \leq \sigma_{1} \quad \text { on }[0, T]
$$

THEOREM 5

ASSUME: $a>0, f(t, x)=r(t) x^{\alpha}-s(t) x^{\beta}$,

- r, s are continuous and positive on $[0, T], 0<\alpha<\beta<1$,
- $\beta s^{*}\left(\frac{s^{*}}{r_{*}}\right)^{(1-\beta) /(\beta-\alpha)}-\alpha r_{*}\left(\frac{s_{*}}{r^{*}}\right)^{(1-\alpha) /(\beta-\alpha)}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$,
- $\frac{\alpha}{\beta} \frac{r^{*}}{s_{*}}<\frac{r_{*}}{s^{*}}$.

THEN: (3) has at least one asymptotically stable positive solution.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}(t)=f(t, x) \tag{3}
\end{equation*}
$$

$$
x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$

THEOREM 5

ASSUME: $a>0, f(t, x)=r(t) x^{\alpha}-s(t) x^{\beta}$,

- r, s are continuous and positive on $[0, T], 0<\alpha<\beta<1$,
- $\beta s^{*}\left(\frac{s^{*}}{r_{*}}\right)^{(1-\beta) /(\beta-\alpha)}-\alpha r_{*}\left(\frac{s_{*}}{r^{*}}\right)^{(1-\alpha) /(\beta-\alpha)}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$,
- $\frac{\alpha}{\beta} \frac{r^{*}}{s_{*}}<\frac{r_{*}}{s^{*}}$.

THEN: (3) has at least one asymptotically stable positive solution.
(1) $\quad u^{\prime \prime}+a u^{\prime}=\frac{1}{u}\left(e(t)-b\left(u^{\prime}\right)^{2}\right)-c, \quad u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$

COROLLARY

(1) has at least one asymptotically stable positive solution if

$$
\frac{c^{2}\left(b\left(e^{*}\right)^{2}-(b-1)\left(e_{*}\right)^{2}\right)}{e_{*}\left(e^{*}\right)^{2}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4} \quad \text { and } \quad \frac{e^{*}-e_{*}}{e^{*}}<\frac{1}{b} .
$$

4. APPLICATION OF KRASNOSELSKII COMPRESION/EXPANSION THEOREM

$$
\begin{equation*}
\left[a \geq 0,0<m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}\right] \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}+m^{2} x=0, x(0)-x(T), x^{\prime}(0)=x^{\prime}(T) \quad\left[a \geq 0,0<m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}\right] \tag{4}
\end{equation*}
$$

has Green's function $G_{m}(t, s)$ such that

- $G_{m}(t, s)>0$ for all $t, s \in[0, T]$,
- there exists $c_{m} \in(0,1)$ such that $G_{m}(s, s) \geq c_{m} G_{m}(t, s)$ for all $t, s \in[0, T]$,

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}+m^{2} x=0, x(0)-x(T), x^{\prime}(0)=x^{\prime}(T) \quad\left[a \geq 0,0<m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}\right] \tag{4}
\end{equation*}
$$

has Green's function $G_{m}(t, s)$ such that

- $G_{m}(t, s)>0$ for all $t, s \in[0, T]$,
- there exists $c_{m} \in(0,1)$ such that $G_{m}(s, s) \geq c_{m} G_{m}(t, s)$ for all $t, s \in[0, T]$,

Put $\quad(F x)(t)=\int_{0}^{T} G_{m}(t, s)\left[r(s) x^{\alpha}(s)-s(t) x^{\beta}(s)+m^{2} x(s)\right] d s$

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}+m^{2} x=0, x(0)-x(T), x^{\prime}(0)=x^{\prime}(T) \quad\left[a \geq 0,0<m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}\right] \tag{4}
\end{equation*}
$$

has Green's function $G_{m}(t, s)$ such that

- $G_{m}(t, s)>0$ for all $t, s \in[0, T]$,
- there exists $c_{m} \in(0,1)$ such that $G_{m}(s, s) \geq c_{m} G_{m}(t, s)$ for all $t, s \in[0, T]$,

Put $\quad(F x)(t)=\int_{0}^{T} G_{m}(t, s)\left[r(s) x^{\alpha}(s)-s(t) x^{\beta}(s)+m^{2} x(s)\right] d s$
Then x is a solution to
(2) $\quad x^{\prime \prime}+a x^{\prime}=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$
iff $\quad x=F x$.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}+m^{2} x=0, x(0)-x(T), x^{\prime}(0)=x^{\prime}(T) \quad\left[a \geq 0,0<m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}\right] \tag{4}
\end{equation*}
$$

has Green's function $G_{m}(t, s)$ such that

- $G_{m}(t, s)>0$ for all $t, s \in[0, T]$,
- there exists $c_{m} \in(0,1)$ such that $G_{m}(s, s) \geq c_{m} G_{m}(t, s)$ for all $t, s \in[0, T]$,

Put $\quad(F x)(t)=\int_{0}^{T} G_{m}(t, s)\left[r(s) x^{\alpha}(s)-s(t) x^{\beta}(s)+m^{2} x(s)\right] d s$
Then x is a solution to
(2) $\quad x^{\prime \prime}+a x^{\prime}=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)$
iff $\quad x=F x$.

Krasnoselskii Fixed Point Theorem

Let P be a cone in X, Ω_{1} and Ω_{2} be bounded open sets in X such that $0 \in \Omega_{1}$ and $\bar{\Omega}_{1} \subset \Omega_{2}$. Let $F: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ be a completely continuous operator such that one of the following conditions holds:

- $\|F x\| \geq\|x\|$ for $x \in P \cap \partial \Omega_{1}$ and $\|F x\| \leq\|x\|$ for $x \in P \cap \partial \Omega_{2}$,
- $\|F x\| \leq\|x\|$ for $x \in P \cap \partial \Omega_{1}$ and $\|F x\| \geq\|x\|$ for $x \in P \cap \partial \Omega_{2}$.

Then F has a fixed point in the set $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{2}
\end{equation*}
$$

- $G_{m}(t, s)>0$ for all $t, s \in[0, T]$, there exists $c_{m} \in(0,1)$ such that $G_{m}(s, s) \geq c_{m} G_{m}(t, s)$ for all $t, s \in[0, T]$, Put
- $P=\left\{x \in C[0, T]: x(t) \geq 0\right.$ on $[0, T]$ and $x(t) \geq c_{m}\|x\|$ on $\left.[0, T]\right\}$,
- $\Omega_{1}=\left\{x \in C[0, T]:\|x\|<R_{1}\right\}, \quad \Omega_{2}=\left\{x \in C[0, T]:\|x\|<R_{2}\right\}$.

$$
\begin{equation*}
x^{\prime \prime}+a x^{\prime}=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T) \tag{2}
\end{equation*}
$$

- $G_{m}(t, s)>0$ for all $t, s \in[0, T]$,
- there exists $c_{m} \in(0,1)$ such that $G_{m}(s, s) \geq c_{m} G_{m}(t, s)$ for all $t, s \in[0, T]$,

Put

- $P=\left\{x \in C[0, T]: x(t) \geq 0\right.$ on $[0, T]$ and $x(t) \geq c_{m}\|x\|$ on $\left.[0, T]\right\}$,
- $\Omega_{1}=\left\{x \in C[0, T]:\|x\|<R_{1}\right\}, \quad \Omega_{2}=\left\{x \in C[0, T]:\|x\|<R_{2}\right\}$.

THEOREM 6

Assume: $a \geq 0, r, s \in C[0, T], 0<\alpha<\beta<1$,
there exist $m>0$ and $0<R_{1}<R_{2}$ such that $m^{2}<\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}$,

$$
\begin{array}{ll}
r(t) x^{\alpha}-s(t) x^{\beta}+m^{2} x \geq 0 & \text { for } t \in[0, T], x \in\left[c_{m} R_{1}, R_{2}\right] \\
r(t) x^{\alpha}-s(t) x^{\beta}+m^{2} x \geq m^{2} R_{1} & \text { for } t \in[0, T], x \in\left[c_{m} R_{1}, R_{1}\right] \\
r(t) x^{\alpha}-s(t) x^{\beta}+m^{2} x \leq m^{2} R_{2} & \text { for } t \in[0, T], x \in\left[c_{m} R_{2}, R_{2}\right]
\end{array}
$$

THEN: (2) has a positive solution $x \in\left[c_{m} R_{1}, R_{2}\right]$.

Application of Krasnoselskii compresion/expansion theorem

(2)

$$
x^{\prime \prime}+a x^{\prime}=r(t) x^{\alpha}-s(t) x^{\beta}, \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$

COROLLARY=THEOREM 3

ASSUME:

- $a \geq 0, \quad b>1, \quad c>0$,
- e is continuous and T-periodic on $\mathbb{R}, e_{*}>0$,
- $\frac{(b+1) c^{2}}{4 e_{*}}<\left(\frac{\pi}{T}\right)^{2}+\frac{a^{2}}{4}$.

THEN: (1) has a positive solution.

Remark

Compare conditions:

- Theorem 3: there is $\delta>0$ such that

$$
\left(\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}\right) x-f(t, x) \geq\left(\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}\right) \delta \quad \text { for } t \in[0, T], x \geq \delta
$$

- Theorem 6: there is $m \in\left(0,\left(\frac{\pi}{T}\right)^{2}+\left(\frac{a}{2}\right)^{2}\right)$, such that

$$
m^{2} x-f(t, x) \geq 0 \quad \text { for } t \in[0, T], x \in\left[c_{m} R_{1}, R_{2}\right]
$$

REFERENCES

References

- J.A. Cid, G. Infante, M. Tvrdý and M. Zima: Topological approach to periodic oscillations related to the Liebau phenomenon, arXiv:1408.0130 [math.CA].
- J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank flow configuration with friction. Physica D 273-274 (2014), 28-33.

References

- J.A. Cid, G. Infante, M. Tvrdý and M. Zima: Topological approach to periodic oscillations related to the Liebau phenomenon, arXiv:1408.0130 [math.CA].
- J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank flow configuration with friction. Physica D 273-274 (2014), 28-33.
- G. Liebau: Über ein ventilloses Pumpprinzip. Naturwissenschaften 41 (1954), 327.
- G. Propst: Pumping effects in models of periodically forced flow configurations. Physica D 217 (2006), 193-201.
- J.A. Cid, G. Infante, M. Tvrdý and M. Zima: Topological approach to periodic oscillations related to the Liebau phenomenon, arXiv:1408.0130 [math.CA].
- J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank flow configuration with friction. Physica D 273-274 (2014), 28-33.
- G. Liebau: Über ein ventilloses Pumpprinzip. Naturwissenschaften 41 (1954), 327.
- G. Propst: Pumping effects in models of periodically forced flow configurations. Physica D 217 (2006), 193-201.
- D. Bonheure and C. De Coster. Forced singular oscillators and the method of lower and upper solutions, Topological Methods in Nonlinear Analysis 22 (2003), 297-317.
- F.I. Njoku \& P. Omari. Stability properties of periodic solutions of a Duffing equation in the presence of lower and upper solutions. Appl. Math. Comput. 135 (2003), 471-490.
- P. Omari \& M. Trombetta. Remarks on the lower and upper solutions method for the second and third-order periodic boundary value problems. Appl. Math. Comput. 50 (1992), 1-21.
- I. Rachůnková, M. Tvrdý and I. Vrkoč. Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems. J. Differential Equations 176 (2001), 445-469.
- J.A. Cid, G. Infante, M. Tvrdý and M. Zima: Topological approach to periodic oscillations related to the Liebau phenomenon, arXiv:1408.0130 [math.CA].
- J.A. Cid, G. Propst and M. Tvrdý: On the pumping effect in a pipe/tank flow configuration with friction. Physica D 273-274 (2014), 28-33.
- G. Liebau: Über ein ventilloses Pumpprinzip. Naturwissenschaften 41 (1954), 327.
- G. Propst: Pumping effects in models of periodically forced flow configurations. Physica D 217 (2006), 193-201.
- D. Bonheure and C. De Coster. Forced singular oscillators and the method of lower and upper solutions, Topological Methods in Nonlinear Analysis 22 (2003), 297-317.
- F.I. Njoku \& P. Omari. Stability properties of periodic solutions of a Duffing equation in the presence of lower and upper solutions. Appl. Math. Comput. 135 (2003), 471-490.
- P. Omari \& M. Trombetta. Remarks on the lower and upper solutions method for the second and third-order periodic boundary value problems. Appl. Math. Comput. 50 (1992), 1-21.
- I. Rachůnková, M. Tvrdý and I. Vrkoč. Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems. J. Differential Equations 176 (2001), 445-469.
- I. Rachůnková, S. Staněk \& M. Tvrdý. Solvability of Nonlinear Singular Problems for Ordinary Differential Equations.
Hindawi [Contemporary Mathematics and Its Applications, Vol.5], 2009. ISBN: 9789774540400 (Paperback), ISBN: 9789774540967 (PDF)

JoAn Miró. The man with a pipe. 1925.

Gustave Courbat. The man with a pipe. 1849.

James McNeill Whistler. The man with a pipe. 1859.

Paul Cézanne. The man with a pipe. 1892.

Pablo Picasso. The man with a pipe. 1915.

Royalty Free Stock Photo. The man with a pipe. 1954.

Pray for peace of Jeruzalem.

