Bounded convergence theorem for abstract Kurzweil-Stieltjes integral

Giselle Antunes Monteiro, Milan Tvrdý and Umi Mahnuna Hanung

Institute of Mathematics, Academy of Sciences of the Czech Republic

Ariel, August 2014

Preliminaries

- $-\infty<a<b<\infty, X$ is a Banach space,
- $f:[a, b] \rightarrow X$ is regulated on $[a, b]$, if $f(s+):=\lim _{\tau \rightarrow s+} f(\tau) \in X$ for $s \in[a, b), f(t-):=\lim _{\tau \rightarrow t-} f(\tau) \in X$ for $t \in(a, b]$,
- $\Delta^{+} f(s)=f(s+)-f(s), \Delta^{-} f(t)=f(t)-f(t-), \Delta f(t)=f(t+)-f(t-)$.
- $G=G([a, b], X)$ is the space of functions $f:[a, b] \rightarrow X$ regulated on $[a, b]$. (G is a Banach space with respect to the norm $\|f\|_{\infty}=\sup _{t \in[a, b]}\|f(t)\|$).
- regulated functions are uniform limits of finite step functions,
- regulated functions have at most countably many points of discontinuity.
- $B V=B V([a, b], X)=\left\{f:[a, b] \rightarrow X: \operatorname{var}_{a}^{b} f<\infty\right\}$ is the space of functions with bounded variation on $[a, b]$.
- $f:[a, b] \rightarrow X$ is a finite step function, if there is a division of $[a, b]$

$$
\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\alpha_{2}<\ldots<\alpha_{m}=\boldsymbol{b}
$$

such that f is constant on every $\left(\alpha_{j-1}, \alpha_{j}\right), j=1,2, \ldots, m$. $S=S([a, b], X)$ is the set of finite step functions on $[a, b]$.

- $\mathcal{D}=\left\{\boldsymbol{D}=\left\{\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{m}=\boldsymbol{b}\right\}\right\}$ is the set of divisions of $[\boldsymbol{a}, \boldsymbol{b}]$.
- $L(X)$ is the Banach space of linear bounded mappings $X \rightarrow X$.
- For $F:[a, b] \rightarrow L(X)$ and $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\} \in \mathcal{D}$ put

$$
V(F, D)=\sup \left\{\left\|\sum_{j=1}^{m}\left[F\left(\alpha_{j}\right)-F\left(\alpha_{j-1}\right)\right] x_{j}\right\|_{X}: x_{j} \in X,\left\|x_{j}\right\|_{x \leq 1}\right\}
$$

Then $\operatorname{SV}_{a}^{b}(F)=\sup _{D \in \mathcal{D}} V(F, D)$ is the semi-variation of F on $[a, b]$ and $S V=S V([a, b], L(X))$ is the set of $F:[a, b] \rightarrow L(X)$ with $\operatorname{SV}_{a}^{b}(F)<\infty$.

- $\|F\|_{\mathrm{SV}}=\|F(a)\|_{L(X)}+\mathrm{SV}_{a}^{b} F \Longrightarrow S V$ is a Banach space.
- For $g:[a, b] \rightarrow X$ and $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\} \in \mathcal{D}$ put

$$
V(g, D)=\sup \left\{\left\|\sum_{j=1}^{m} F_{j}\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]\right\|_{X}: F_{j} \in L(X),\left\|F_{j}\right\|_{L(X)} \leq 1\right\}
$$

and $S V_{a}^{b}(g)=\sup _{D \in \mathcal{D}} V(g, D)$.
$S V=S V([a, b], X)$ is the set of $g:[a, b] \rightarrow X$ with $S V_{a}^{b}(g)<\infty$.

- $\mathcal{D}=\left\{\boldsymbol{D}=\left\{\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{m}=\boldsymbol{b}\right\}\right\}$ is the set of divisions of $[\boldsymbol{a}, \boldsymbol{b}]$.
- $L(X)$ is the Banach space of linear bounded mappings $X \rightarrow X$.
- For $F:[a, b] \rightarrow L(X)$ and $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\} \in \mathcal{D}$ put

$$
V(F, D)=\sup \left\{\left\|\sum_{j=1}^{m}\left[F\left(\alpha_{j}\right)-F\left(\alpha_{j-1}\right)\right] G_{j}\right\|_{X}: G_{j} \in L(X),\left\|G_{j}\right\|_{L(X)} \leq 1\right\}
$$

Then $\operatorname{SV}_{a}^{b}(F)=\sup _{D \in \mathcal{D}} V(F, D)$ is the semi-variation of F on $[a, b]$ and $S V=S V([a, b], L(X))$ is the set of $F:[a, b] \rightarrow L(X)$ with $\operatorname{SV}_{a}^{b}(F)<\infty$.

- $\|F\|_{S V}=\|F(a)\|_{L(X)}+\mathrm{SV}_{a}^{b} F \Longrightarrow S V$ is a Banach space.
- For $g:[a, b] \rightarrow X$ and $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\} \in \mathcal{D}$ put

$$
V(g, D)=\sup \left\{\left\|\sum_{j=1}^{m} F_{j}\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]\right\|_{X}: F_{j} \in L(X),\left\|F_{j}\right\|_{L(X)} \leq 1\right\}
$$

and $\operatorname{SV}_{a}^{b}(g)=\sup _{D \in \mathcal{D}} V(g, D)$.
$S V=S V([a, b], X)$ is the set of $g:[a, b] \rightarrow X$ with $S V_{a}^{b}(g)<\infty$.

- $\mathcal{D}=\left\{\boldsymbol{D}=\left\{\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{m}=\boldsymbol{b}\right\}\right\}$ is the set of divisions of $[\boldsymbol{a}, \boldsymbol{b}]$.
- $L(X)$ is the Banach space of linear bounded mappings $X \rightarrow X$.
- For $F:[a, b] \rightarrow L(X)$ and $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\} \in \mathcal{D}$ put

$$
V(F, D)=\sup \left\{\left\|\sum_{j=1}^{m}\left[F\left(\alpha_{j}\right)-F\left(\alpha_{j-1}\right)\right] G_{j}\right\|_{X}: G_{j} \in L(X),\left\|G_{j}\right\|_{L(X)} \leq 1\right\}
$$

Then $\operatorname{SV}_{a}^{b}(F)=\sup _{D \in \mathcal{D}} V(F, D)$ is the semi-variation of F on $[a, b]$ and $S V=S V([a, b], L(X))$ is the set of $F:[a, b] \rightarrow L(X)$ with $\operatorname{SV}_{a}^{b}(F)<\infty$.

- $\|F\|_{\mathrm{SV}}=\|F(a)\|_{L(X)}+\mathrm{SV}_{a}^{b} F \Longrightarrow S V$ is a Banach space.
- For $g:[a, b] \rightarrow X$ and $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\} \in \mathcal{D}$ put

$$
V(g, D)=\sup \left\{\left\|\sum_{j=1}^{m} F_{j}\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]\right\|_{X}: F_{j} \in L(X),\left\|F_{j}\right\|_{L(X)} \leq 1\right\}
$$

and $S V_{a}^{b}(g)=\sup _{D \in \mathcal{D}} V(g, D)$.
$S V=S V([a, b], X)$ is the set of $g:[a, b] \rightarrow X$ with $S V_{a}^{b}(g)<\infty$.

- $\mathcal{D}=\left\{\boldsymbol{D}=\left\{\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{m}=\boldsymbol{b}\right\}\right\}$ is the set of divisions of $[\boldsymbol{a}, \boldsymbol{b}]$.
- $L(X)$ is the Banach space of linear bounded mappings $X \rightarrow X$.
- For $F:[a, b] \rightarrow L(X)$ and $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\} \in \mathcal{D}$ put

$$
V(F, D)=\sup \left\{\left\|\sum_{j=1}^{m}\left[F\left(\alpha_{j}\right)-F\left(\alpha_{j-1}\right)\right] G_{j}\right\|_{X}: G_{j} \in L(X),\left\|G_{j}\right\|_{L(X)} \leq 1\right\}
$$

Then $\operatorname{SV}_{a}^{b}(F)=\sup _{D \in \mathcal{D}} V(F, D)$ is the semi-variation of F on $[a, b]$ and $S V=S V([a, b], L(X))$ is the set of $F:[a, b] \rightarrow L(X)$ with $\operatorname{SV}_{a}^{b}(F)<\infty$.

- $\|F\|_{\mathrm{SV}}=\|F(a)\|_{L(X)}+\mathrm{SV}_{a}^{b} F \Longrightarrow S V$ is a Banach space.
- For $g:[a, b] \rightarrow X$ and $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\} \in \mathcal{D}$ put

$$
V(g, D)=\sup \left\{\left\|\sum_{j=1}^{m} F_{j}\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]\right\|_{X}: F_{j} \in L(X),\left\|F_{j}\right\|_{L(X)} \leq 1\right\}
$$

and $S V_{a}^{b}(g)=\sup _{D \in \mathcal{D}} V(g, D)$.
$S V=S V([a, b], X)$ is the set of $g:[a, b] \rightarrow X$ with $S V_{a}^{b}(g)<\infty$. But $S V=B V$

Definition of Kurzweil-Stieltjes integral

- $\mathcal{G}=\{\delta:[a, b] \rightarrow(0,1)\}$ are gauges on $[a, b]$.
- $\mathcal{P}=\left\{P=(D, \xi), D=\left\{a=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{m}=b\right\}, \xi=\left(\xi_{1}, \ldots, \xi_{m}\right) \in[a, b]^{m}, \xi_{j} \in\left[\alpha_{j-1}, \alpha_{j}\right]\right\}$ are tagged divisions of $[a, b]$.
- $P=(D, \xi) \in \mathcal{P}$ is δ-fine if $\left[\alpha_{j-1}, \alpha_{j}\right] \subset\left(\xi_{j}-\delta\left(\xi_{j}\right), \xi_{j}+\delta\left(\xi_{j}\right)\right)$ for all j.
- For $F:[a, b] \rightarrow L(X), g:[a, b] \rightarrow X, P=(D, \xi) \in \mathcal{P}$ define

$$
S(F \Delta g, P)=\sum_{j=1}^{m} F\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]
$$

Definition

$$
I=\int_{a}^{b} F d[g] \Longleftrightarrow\left\{\begin{array}{r}
\quad|S(F \Delta g, P)-I|<\varepsilon \\
\text { for every } \delta-\text { fine tagged division } P
\end{array}\right.
$$

$$
\int_{c}^{c} F d[g]=0
$$

Definition of Kurzweil-Stieltjes integral

- $\mathcal{G}=\{\delta:[a, b] \rightarrow(0,1)\}$ are gauges on $[a, b]$.
- $\mathcal{P}=\left\{P=(D, \xi), D=\left\{a=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{m}=b\right\}, \xi=\left(\xi_{1}, \ldots, \xi_{m}\right) \in[a, b]^{m}, \xi_{j} \in\left[\alpha_{j-1}, \alpha_{j}\right]\right\}$ are tagged divisions of $[a, b]$.
- $P=(D, \xi) \in \mathcal{P}$ is δ-fine if $\left[\alpha_{j-1}, \alpha_{j}\right] \subset\left(\xi_{j}-\delta\left(\xi_{j}\right), \xi_{j}+\delta\left(\xi_{j}\right)\right)$ for all j.
- For $F:[a, b] \rightarrow L(X), g:[a, b] \rightarrow X, P=(D, \xi) \in \mathcal{P}$ define

$$
S(\Delta F g, P)=\sum_{j=1}^{m}\left[F\left(\alpha_{j}\right)-F\left(\alpha_{j-1}\right)\right] g\left(\xi_{j}\right)
$$

Definition

$$
I=\int_{a}^{b} d[F] g \Longleftrightarrow\left\{\begin{array}{r}
\quad|S(\Delta F g, P)-I|<\varepsilon \\
\text { for every } \delta-\text { fine tagged division } P
\end{array}\right.
$$

$$
\int_{c}^{c} d[F] g=0
$$

Definition of Kurzweil-Stieltjes integral

- $\mathrm{RS} \subset \mathrm{KS}, X=\mathbb{R} \Longrightarrow \mathrm{KS}=\mathrm{PS}$.
- KS-integral has usual linear properties and it is additive function of intervals.
- $F:[a, b] \rightarrow L(X)$ and $g:[a, b] \rightarrow X$ are regulated \Longrightarrow

$$
\int_{a}^{b} F d[g] \text { and } \int_{a}^{b} d[F] g \text { exist whenever }
$$ one of the functions F, g is a finite step function.

- $F \in S V$ and $\int_{a}^{b} d[F] g$ exists $\Longrightarrow\left\|\int_{a}^{b} d[F] g\right\|_{X} \leq S V_{a}^{b}(F)\|g\|_{\infty}$.
- $g \in S V$ and $\int_{a}^{b} d[F] g$ exists $\Longrightarrow\left\|\int_{a}^{b} d[F] g\right\|_{X} \leq 2\|F\|_{\infty} S V_{a}^{b}(g)$.
- $F \in S V$ and $\int_{a}^{b} F d[g]$ exists $\Longrightarrow\left\|\int_{a}^{b} F d[g]\right\|_{X} \leq 2 S V_{a}^{b}(F)\|g\|_{\infty}$.
- $g \in S V$ and $\int_{a}^{b} F d[g]$ exists $\Longrightarrow\left\|\int_{a}^{b} F d[g]\right\|_{X} \leq\|F\|_{\infty} S V_{a}^{b}(g)$.

Definition of Kurzweil-Stieltjes integral

- $F(t) \equiv C \in L(X), g:[a, b] \rightarrow X \Longrightarrow \int_{a}^{b} F d[g]=C[g(b)-g(a)]$.
- $F:[a, b] \rightarrow L(X), g(t) \equiv c \in X \Longrightarrow \int_{a}^{b} F d[g]=0$.
- $g:[a, b] \rightarrow X$ semi-regulated, $\tau \in[a, b]$, and $F(t)=\chi_{[\tau, b]}(t) C$ for some $C \in L(X)$
$\Longrightarrow \int_{\tau}^{b} F d[g]=C[g(b)-g(\tau)]$.
Let $\delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { pro } x<\tau, \\ \eta & \text { pro } x=\tau\end{cases}$
and $(D, \xi)=\left(\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\},\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)\right)$ is δ-fine. Then

Definition of Kurzweil-Stieltjes integral

- $F(t) \equiv C \in L(X), g:[a, b] \rightarrow X \Longrightarrow \int_{a}^{b} F d[g]=C[g(b)-g(a)]$.
- $F:[a, b] \rightarrow L(X), g(t) \equiv c \in X \Longrightarrow \int_{a}^{b} F d[g]=0$.
- $g:[a, b] \rightarrow X$ semi-regulated, $\tau \in[a, b]$, and $F(t)=\chi_{[\tau, b]}(t) C$ for some $C \in L(X)$
$\Longrightarrow \int_{\tau}^{b} F d[g]=C[g(b)-g(\tau)]$.
Let $\delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { pro } x<\tau, \\ \eta & \text { pro } x=\tau\end{cases}$
and $(D, \xi)=\left(\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\},\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)\right)$ is δ-fine. Then

Definition of Kurzweil-Stieltjes integral

- $F(t) \equiv C \in L(X), g:[a, b] \rightarrow X \Longrightarrow \int_{a}^{b} F d[g]=C[g(b)-g(a)]$.
- $F:[a, b] \rightarrow L(X), g(t) \equiv c \in X \Longrightarrow \int_{a}^{b} F d[g]=0$.
- $g:[a, b] \rightarrow X$ semi-regulated, $\tau \in[a, b]$, and $F(t)=\chi_{[\tau, b]}(t) C$ for some $C \in L(X)$
$\Longrightarrow \int_{\tau}^{b} F d[g]=C[g(b)-g(\tau)]$.
Let $\delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { pro } x<\tau, \\ \eta & \text { pro } x=\tau\end{cases}$
and $(D, \xi)=\left(\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\},\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)\right)$ is δ-fine. Then

Definition of Kurzweil-Stieltjes integral

- $F(t) \equiv C \in L(X), g:[a, b] \rightarrow X \Longrightarrow \int_{a}^{b} F d[g]=C[g(b)-g(a)]$.
- $F:[a, b] \rightarrow L(X), g(t) \equiv c \in X \Longrightarrow \int_{a}^{b} F d[g]=0$.
- $g:[a, b] \rightarrow X$ semi-regulated, $\tau \in[a, b]$, and $F(t)=\chi_{[\tau, b]}(t) C$ for some $C \in L(X)$
$\Longrightarrow \int_{\tau}^{b} F d[g]=C[g(b)-g(\tau)]$.
Let $\delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { pro } x<\tau, \\ \eta & \text { pro } x=\tau\end{cases}$
and $(D, \xi)=\left(\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\},\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)\right)$ is δ-fine. Then

Definition of Kurzweil-Stieltjes integral

- $F(t) \equiv C \in L(X), g:[a, b] \rightarrow X \Longrightarrow \int_{a}^{b} F d[g]=C[g(b)-g(a)]$.
- $F:[a, b] \rightarrow L(X), g(t) \equiv c \in X \Longrightarrow \int_{a}^{b} F d[g]=0$.
- $g:[a, b] \rightarrow X$ semi-regulated, $\tau \in[a, b]$, and $F(t)=\chi_{[\tau, b]}(t) C$ for some $C \in L(X)$
$\Longrightarrow \int_{\tau}^{b} F d[g]=C[g(b)-g(\tau)]$.
Let $\delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { pro } x<\tau, \\ \eta & \text { pro } x=\tau\end{cases}$
and $(D, \xi)=\left(\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\},\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)\right)$ is δ-fine. Then

Integration of finite step functions

- $F(t) \equiv C \in L(X), g:[a, b] \rightarrow X \Longrightarrow \int_{a}^{b} F d[g]=c[g(b)-g(a)]$.
- $F:[a, b] \rightarrow L(X), g(t) \equiv c \in X \Longrightarrow \int_{a}^{b} F d[g]=0$.
- $g:[a, b] \rightarrow X$ semi-regulated, $C \in L(X), \tau \in[a, b], \Longrightarrow$

$$
\begin{aligned}
& \int_{a}^{b} \chi_{[\tau, b]} C d[g]=C g(b)-C g(\tau-), \quad \int_{a}^{b} \chi_{(\tau, b]} C d[g]=C g(b)-C g(\tau+) . \\
& \int_{a}^{b} \chi_{[a, \tau]} C d[g]=C g(\tau+)-C g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} C d[g]=C g(\tau-)-C g(a) .
\end{aligned}
$$

Integration of finite step functions

- $F(t) \equiv C \in L(X), g:[a, b] \rightarrow X \Longrightarrow \int_{a}^{b} F d[g]=c[g(b)-g(a)]$.
- $F:[a, b] \rightarrow L(X), g(t) \equiv c \in X \Longrightarrow \int_{a}^{b} F d[g]=0$.
- $g:[a, b] \rightarrow X$ semi-regulated, $C \in L(X), \tau \in[a, b], \Longrightarrow$

$$
\begin{aligned}
& \int_{a}^{b} \chi_{[\tau, b]} C d[g]=C g(b)-C g(\tau-), \quad \int_{a}^{b} \chi_{(\tau, b]} C d[g]=C g(b)-C g(\tau+) . \\
& \int_{a}^{b} \chi_{[a, \tau]} C d[g]=C g(\tau+)-C g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} C d[g]=C g(\tau-)-C g(a) . \\
& \int_{a}^{b} \chi_{[\tau]} C d[g]= \begin{cases}C g(a+)-C g(a) & \text { for } \tau=a, \\
C g(\tau+)-C g(\tau-)] & \text { for } \tau \in(a, b), \\
C g(b)-C g(b-)] & \text { for } \tau=b,\end{cases}
\end{aligned}
$$

Integration of finite step functions

- $F(t) \equiv C \in L(X), g:[a, b] \rightarrow X \Longrightarrow \int_{a}^{b} F d[g]=c[g(b)-g(a)]$.
- $F:[a, b] \rightarrow L(X), g(t) \equiv c \in X \Longrightarrow \int_{a}^{b} F d[g]=0$.
- $g:[a, b] \rightarrow X$ semi-regulated, $C \in L(X), \tau \in[a, b], \Longrightarrow$

$$
\begin{aligned}
& \int_{a}^{b} \chi_{[\tau, b]} C d[g]=C g(b)-C g(\tau-), \quad \int_{a}^{b} \chi_{(\tau, b]} C d[g]=C g(b)-C g(\tau+) . \\
& \int_{a}^{b} \chi_{[a, \tau]} C d[g]=C g(\tau+)-C g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} C d[g]=C g(\tau-)-C g(a) . \\
& \int_{a}^{b} \chi_{[\tau]} C d[g]= \begin{cases}C g(a+)-C g(a) & \text { for } \tau=a, \\
C g(\tau+)-C g(\tau-)] & \text { for } \tau \in(a, b), \\
C g(b)-C g(b-)] & \text { for } \tau=b,\end{cases}
\end{aligned}
$$

- $F:[a, b] \rightarrow L(X), \widetilde{x} \in X, \tau \in[a, b] \Longrightarrow$

$$
\begin{aligned}
\int_{a}^{b} F d\left[\chi_{[a, \tau]} \widetilde{x}\right] & =\int_{a}^{b} F d\left[\chi_{[a, \tau)} \widetilde{x}\right]=-F(\tau) \widetilde{x}, \\
\int_{a}^{b} F d\left[\chi_{[\tau, b]} \widetilde{x}\right] & =\int_{a}^{b} F d\left[\chi_{(\tau, b]} \widetilde{x}\right]=F(\tau) \widetilde{x}, \\
\int_{a}^{b} F d\left[\chi_{[\tau]} \widetilde{x}\right] & = \begin{cases}-F(a) \widetilde{x} & \text { for } \tau=a, \\
0 & \text { for } \tau \in(a, b), \\
F(b) \widetilde{x} & \text { for } \tau=b\end{cases}
\end{aligned}
$$

Existence of KS integrals

Schwabik

Let $F:[a, b] \rightarrow L(X)$ and $g:[a, b] \rightarrow X$.
(i) Let $F \in \mathrm{SV}, g_{k}:[a, b] \rightarrow X, \int_{a}^{b} d[F] g_{k}$ exists for all $n \in \mathbb{N}$ and $g_{k} \rightrightarrows g$ on $[a, b]$. Then

$$
\int_{a}^{b} d[F] g \text { exists and } \int_{a}^{b} d[F] g=\lim _{k \rightarrow \infty} \int_{a}^{b} d[F] g_{k}
$$

(ii) Let $F \in \mathrm{SV}$ be semi-regulated and $g \in \mathrm{G}$. Then $\int_{a}^{b} d[F] g$ exists.
(iii) Let $F \in S V$ be semi-regulated and $g \in B V$. Then $\int_{a}^{b} F d[g]$ and $\int_{a}^{b} d[F] g$ exist,

$$
\begin{aligned}
& \text { the sum } \sum_{a \leq \tau<b} \Delta^{+} F(\tau) \Delta^{+} g(\tau)-\sum_{a<\tau \leq b} \Delta^{-} F(\tau) \Delta^{-} g(\tau) \text { converges in } X \text { and } \\
& \qquad \begin{array}{rl}
b & F d[g]+\int_{a}^{b} d[F] g \\
& =F(b) g(b)-F(a) g(a)-\sum_{a \leq t<b} \Delta^{+} F(t) \Delta^{+} g(t)+\sum_{a<t \leq b} \Delta^{-} F(t) \Delta^{-} g(t) .
\end{array}
\end{aligned}
$$

Existence of KS integrals

Schwabik

Let $F:[a, b] \rightarrow L(X)$ and $g:[a, b] \rightarrow X$.
(i) Let $g \in \mathrm{SV}, F_{k}:[a, b] \rightarrow X, \int_{a}^{b} F_{k} d[g]$ exists for all $n \in \mathbb{N}$ and $F_{k} \rightrightarrows F$ on $[a, b]$. Then

$$
\int_{a}^{b} F d[g] \text { exists and } \int_{a}^{b} F d[g]=\lim _{k \rightarrow \infty} \int_{a}^{b} F_{k} d[g]
$$

(ii) Let $g \in \mathrm{SV}$ be semi-regulated and $F \in \mathrm{G}$. Then $\int_{a}^{b} F d[g]$ exists.
(iii) Let $F \in S V$ be semi-regulated and $g \in B V$. Then $\int_{a}^{b} F d[g]$ and $\int_{a}^{b} d[F] g$ exist,

$$
\begin{aligned}
& \text { the sum } \sum_{a \leq \tau<b} \Delta^{+} F(\tau) \Delta^{+} g(\tau)-\sum_{a<\tau \leq b} \Delta^{-} F(\tau) \Delta^{-} g(\tau) \text { converges in } X \text { and } \\
& \qquad \begin{array}{rl}
b & F d[g]+\int_{a}^{b} d[F] g \\
& =F(b) g(b)-F(a) g(a)-\sum_{a \leq t<b} \Delta^{+} F(t) \Delta^{+} g(t)+\sum_{a<t \leq b} \Delta^{-} F(t) \Delta^{-} g(t) .
\end{array}
\end{aligned}
$$

Let $F:[a, b] \rightarrow L(X)$ and $g:[a, b] \rightarrow X$.
(i) If $F \in G, g \in G$ and at least one of them has a bounded semi-variation on $[a, b]$, then both integrals $\int_{a}^{b} F d[g]$ and $\int_{a}^{b} d[F] g$ exist and

$$
\begin{array}{rl}
\int_{a}^{b} & F d[g]+\int_{a}^{b} d[F] g \\
& =F(b) g(b)-F(a) g(a)-\sum_{a \leq t<b} \Delta^{+} F(t) \Delta^{+} g(t)+\sum_{a<t \leq b} \Delta^{-} F(t) \Delta^{-} g(t)
\end{array}
$$

(ii) If $F \in \mathrm{BV}, g \in \mathrm{G}$,
then $\quad\left|\int_{a}^{b} d[F] g\right| \leq \operatorname{var}_{a}^{b} F\|g\|_{\infty} \quad$ and $\quad\left|\int_{a}^{b} F d[g]\right| \leq 2 \operatorname{var}_{a}^{b} F\|g\|_{\infty}$.
(iii) If $g \in \mathrm{BV}, F_{k} \in \mathrm{G}$ for $k \in \mathbb{N}$ and $F_{k} \rightrightarrows F$,
then $\quad \int_{a}^{t} d\left[F_{k}\right] g \rightrightarrows \int_{a}^{t} d[F] g$.
(iv) If $F \in \mathrm{BV}, g_{k} \in \mathrm{G}$ for $k \in \mathbb{N}$ and $g_{k} \rightrightarrows g$,
then

$$
\int_{a}^{t} F d\left[g_{k}\right] \rightrightarrows \int_{a}^{t} F d[g]
$$

Convergence theorems

ASSUME:

- $F, F_{k} \in G$ for $n \in \mathbb{N}, g \in S V[a, b]$ is semi-regulated,
- $\quad F_{k} \rightrightarrows F$.

THEN: $\quad \int_{a}^{t} F_{k} d[g] \rightrightarrows \int_{a}^{t} F d[g]$ on $[a, b]$.

Assume:

- $F \in \mathrm{SV}, g, g_{k} \in \mathrm{G}$ for $n \in \mathbb{N}$,
- $\quad g_{k} \rightrightarrows g$.

THEN: $\int_{a}^{t} F d\left[g_{k}\right] \rightrightarrows \int_{a}^{t} F d[g]$ on $[a, b]$.

Assume:

- $F, F_{k} \in G, g, g_{k} \in \mathrm{BV}$ for $n \in \mathbb{N}$,
- $\quad F_{k} \rightrightarrows F, \quad g_{k} \rightrightarrows g$,
- $\quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} g_{k}: n \in \mathbb{N}\right\}<\infty$.

THEN: $\quad \int_{a}^{t} F_{k} d\left[g_{k}\right] \rightrightarrows \int_{a}^{t} F d[g] \quad$ on $[a, b]$.

Let $A \in \mathrm{BV}$. Put $(\mathcal{A} x)(t)=\int_{a}^{t} d[A] x$ for $x \in \mathrm{G}$ and $t \in[a, b]$. Then

$$
|\mathcal{A} x| \leq \operatorname{var}_{a}^{b} A\|x\|_{\infty} \leq \operatorname{var}_{a}^{b}\|x\|_{\mathrm{BV}} \quad \text { for } x \in \mathrm{G},
$$

i.e. both $\mathcal{A}: \mathrm{G} \rightarrow \mathrm{BV}$ and $\mathcal{A}: \mathrm{BV} \rightarrow \mathrm{BV}$ are linear bounded operators.

Let $\quad A \in \mathrm{BV}$. Put $(\mathcal{A} x)(t)=\int_{a}^{t} d[A] x$ for $x \in \mathrm{G}$ and $t \in[a, b]$. Then

$$
|\mathcal{A} x| \leq \operatorname{var}_{a}^{b} A\|x\|_{\infty} \leq \operatorname{var}_{a}^{b}\|x\|_{\mathrm{BV}} \quad \text { for } x \in \mathrm{G}
$$

i.e. both $\mathcal{A}: \mathrm{G} \rightarrow \mathrm{BV}$ and $\mathcal{A}: \mathrm{BV} \rightarrow \mathrm{BV}$ are linear bounded operators.

That's nice - BUT for applications we need COMPACTNESS !!!

Let $\quad A \in \mathrm{BV}$. Put $(\mathcal{A} x)(t)=\int_{a}^{t} d[A] x$ for $x \in \mathrm{G}$ and $t \in[a, b]$. Then

$$
|\mathcal{A} x| \leq \operatorname{var}_{a}^{b} A\|x\|_{\infty} \leq \operatorname{var}_{a}^{b}\|x\|_{\mathrm{BV}} \quad \text { for } x \in \mathrm{G}
$$

i.e. both $\mathcal{A}: \mathrm{G} \rightarrow \mathrm{BV}$ and $\mathcal{A}: \mathrm{BV} \rightarrow \mathrm{BV}$ are linear bounded operators.

That's nice - BUT for applications we need COMPACTNESS !!!
Thus, let $X=\mathbb{R}^{n},\left\{x_{k}\right\} \subset \mathrm{BV}$ and $\left\|x_{k}\right\|_{\mathrm{BV}} \leq \varkappa<\infty$ for all $k \in \mathbb{N}$.

Let $\quad A \in \mathrm{BV}$. Put $(\mathcal{A} x)(t)=\int_{a}^{t} d[A] x$ for $x \in \mathrm{G}$ and $t \in[a, b]$. Then

$$
|\mathcal{A} x| \leq \operatorname{var}_{a}^{b} A\|x\|_{\infty} \leq \operatorname{var}_{a}^{b}\|x\|_{\mathrm{BV}} \quad \text { for } x \in \mathrm{G}
$$

i.e. both $\mathcal{A}: \mathrm{G} \rightarrow \mathrm{BV}$ and $\mathcal{A}: \mathrm{BV} \rightarrow \mathrm{BV}$ are linear bounded operators.

That's nice - BUT for applications we need COMPACTNESS !!!
Thus, let $X=\mathbb{R}^{n},\left\{x_{k}\right\} \subset \mathrm{BV}$ and $\left\|x_{k}\right\|_{\mathrm{BV}} \leq \varkappa<\infty$ for all $k \in \mathbb{N}$. HELLY Theorem \Longrightarrow there are $x \in B V$ and $\left\{k_{\ell}\right\} \subset \mathbb{N}$ increasing and such that

$$
\|x\|_{\mathrm{BV}} \leq 2 \varkappa \quad \text { and } \quad \lim _{\ell \rightarrow \infty} x_{k_{\ell}}(t)=x(t) \text { for } t \in[a, b] .
$$

Let $\quad A \in \mathrm{BV}$. Put $(\mathcal{A} x)(t)=\int_{a}^{t} d[A] x$ for $x \in \mathrm{G}$ and $t \in[a, b]$. Then

$$
|\mathcal{A} x| \leq \operatorname{var}_{a}^{b} A\|x\|_{\infty} \leq \operatorname{var}_{a}^{b}\|x\|_{\mathrm{BV}} \quad \text { for } x \in \mathrm{G}
$$

i.e. both $\mathcal{A}: \mathrm{G} \rightarrow \mathrm{BV}$ and $\mathcal{A}: \mathrm{BV} \rightarrow \mathrm{BV}$ are linear bounded operators.

That's nice - BUT for applications we need COMPACTNESS !!!
Thus, let $X=\mathbb{R}^{n},\left\{x_{k}\right\} \subset \mathrm{BV}$ and $\left\|x_{k}\right\|_{\mathrm{BV}} \leq \varkappa<\infty$ for all $k \in \mathbb{N}$. HELLY Theorem \Longrightarrow there are $x \in B V$ and $\left\{k_{\ell}\right\} \subset \mathbb{N}$ increasing and such that

$$
\|x\|_{\mathrm{BV}} \leq 2 \varkappa \quad \text { and } \quad \lim _{\ell \rightarrow \infty} x_{k_{\ell}}(t)=x(t) \text { for } t \in[a, b] .
$$

Denote $\quad z_{\ell}(t)=x_{k_{\ell}}(t)-x(t)$ for $\ell \in \mathbb{N}$ and $t \in[a, b]$.

Let $\quad A \in \mathrm{BV}$. Put $(\mathcal{A} x)(t)=\int_{a}^{t} d[A] x$ for $x \in \mathrm{G}$ and $t \in[a, b]$. Then

$$
|\mathcal{A} x| \leq \operatorname{var}_{a}^{b} A\|x\|_{\infty} \leq \operatorname{var}_{a}^{b}\|x\|_{\mathrm{BV}} \text { for } x \in \mathrm{G}
$$

i.e. both $\mathcal{A}: \mathrm{G} \rightarrow \mathrm{BV}$ and $\mathcal{A}: \mathrm{BV} \rightarrow \mathrm{BV}$ are linear bounded operators.

That's nice - BUT for applications we need COMPACTNESS !!!
Thus, let $X=\mathbb{R}^{n},\left\{x_{k}\right\} \subset \mathrm{BV}$ and $\left\|x_{k}\right\|_{\mathrm{BV}} \leq \varkappa<\infty$ for all $k \in \mathbb{N}$.
HELLY Theorem \Longrightarrow there are $x \in B V$ and $\left\{k_{\ell}\right\} \subset \mathbb{N}$ increasing and such that

$$
\|x\|_{\mathrm{BV}} \leq 2 \varkappa \quad \text { and } \quad \lim _{\ell \rightarrow \infty} x_{k_{\ell}}(t)=x(t) \text { for } t \in[a, b] .
$$

Denote $\quad z_{\ell}(t)=x_{k_{\ell}}(t)-x(t)$ for $\ell \in \mathbb{N}$ and $t \in[a, b]$. Then

$$
\begin{gathered}
\left|z_{\ell}(t)\right| \leq 4 \varkappa, \quad \lim _{\ell \rightarrow \infty} z_{\ell}(t)=0 \quad \text { for } t \in[a, b] \quad \text { and } \\
V\left(\mathcal{A} z_{\ell}, D\right)=\sum_{j=1}^{m}\left|\left(\mathcal{A} z_{\ell}\right)\left(\alpha_{j}\right)-\left(\mathcal{A} z_{\ell}\right)\left(\alpha_{j-1}\right)\right|=\sum_{j=1}^{m}\left|\int_{\alpha_{j-1}}^{\alpha_{j}} d[A] z_{k}\right| \leq \sum_{j=1}^{m} \int_{\alpha_{j-1}}^{\alpha_{j}} d\left[\operatorname{var}_{a}^{s} A\right]\left|z_{\ell}(s)\right| \\
\leq \int_{a}^{b} d\left[\operatorname{var}_{a}^{s} A\right]\left|z_{\ell}(s)\right| \quad \text { for } D=\left\{\alpha_{0}, \alpha_{2}, \ldots, \alpha_{m}\right\} \in \mathcal{D}[a, b] \text { and } \ell \in \mathbb{N} .
\end{gathered}
$$

Let $\quad A \in \mathrm{BV}$. Put $(\mathcal{A} x)(t)=\int_{a}^{t} d[A] x$ for $x \in \mathrm{G}$ and $t \in[a, b]$. Then

$$
|\mathcal{A} x| \leq \operatorname{var}_{a}^{b} A\|x\|_{\infty} \leq \operatorname{var}_{a}^{b}\|x\|_{\mathrm{BV}} \text { for } x \in \mathrm{G}
$$

i.e. both $\mathcal{A}: \mathrm{G} \rightarrow \mathrm{BV}$ and $\mathcal{A}: \mathrm{BV} \rightarrow \mathrm{BV}$ are linear bounded operators.

That's nice - BUT for applications we need COMPACTNESS !!!
Thus, let $X=\mathbb{R}^{n},\left\{x_{k}\right\} \subset \mathrm{BV}$ and $\left\|x_{k}\right\|_{\mathrm{BV}} \leq \varkappa<\infty$ for all $k \in \mathbb{N}$.
HELLY Theorem \Longrightarrow there are $x \in B V$ and $\left\{k_{\ell}\right\} \subset \mathbb{N}$ increasing and such that

$$
\|x\|_{\mathrm{BV}} \leq 2 \varkappa \quad \text { and } \quad \lim _{\ell \rightarrow \infty} x_{k_{\ell}}(t)=x(t) \text { for } t \in[a, b] .
$$

Denote $\quad z_{\ell}(t)=x_{k_{\ell}}(t)-x(t)$ for $\ell \in \mathbb{N}$ and $t \in[a, b]$. Then

$$
\left|z_{\ell}(t)\right| \leq 4 \varkappa, \quad \lim _{\ell \rightarrow \infty} z_{\ell}(t)=0 \quad \text { for } t \in[a, b] \quad \text { and }
$$

$V\left(\mathcal{A} z_{\ell}, D\right)=\sum_{j=1}^{m}\left|\left(\mathcal{A} z_{\ell}\right)\left(\alpha_{j}\right)-\left(\mathcal{A} z_{\ell}\right)\left(\alpha_{j-1}\right)\right|=\sum_{j=1}^{m}\left|\int_{\alpha_{j-1}}^{\alpha_{j}} d[A] z_{k}\right| \leq \sum_{j=1}^{m} \int_{\alpha_{j-1}}^{\alpha_{j}} d\left[\operatorname{var}_{a}^{s} A\right]\left|z_{\ell}(s)\right|$

$$
\leq \int_{a}^{b} d\left[\operatorname{var}_{a}^{s} A\right]\left|z_{\ell}(s)\right| \quad \text { for } D=\left\{\alpha_{0}, \alpha_{2}, \ldots, \alpha_{m}\right\} \in \mathcal{D}[a, b] \text { and } \ell \in \mathbb{N}
$$

Hence

$$
\operatorname{var}_{a}^{b}\left(\mathcal{A} z_{\ell}\right) \leq \int_{a}^{b} d\left[\operatorname{var}_{a}^{s} A\right]\left|z_{\ell}(s)\right| \quad \text { for } \ell \in \mathbb{N}
$$

Let $\quad A \in \mathrm{BV}$. Put $(\mathcal{A} x)(t)=\int_{a}^{t} d[A] x$ for $x \in \mathrm{G}$ and $t \in[a, b]$. Then

$$
|\mathcal{A} x| \leq \operatorname{var}_{a}^{b} A\|x\|_{\infty} \leq \operatorname{var}_{a}^{b}\|x\|_{\mathrm{BV}} \text { for } x \in \mathrm{G}
$$

i.e. both $\mathcal{A}: \mathrm{G} \rightarrow \mathrm{BV}$ and $\mathcal{A}: \mathrm{BV} \rightarrow \mathrm{BV}$ are linear bounded operators.

That's nice - BUT for applications we need COMPACTNESS !!!
Thus, let $X=\mathbb{R}^{n},\left\{x_{k}\right\} \subset \mathrm{BV}$ and $\left\|x_{k}\right\|_{\mathrm{BV}} \leq \varkappa<\infty$ for all $k \in \mathbb{N}$.
HELLY Theorem \Longrightarrow there are $x \in B V$ and $\left\{k_{\ell}\right\} \subset \mathbb{N}$ increasing and such that

$$
\|x\|_{\mathrm{BV}} \leq 2 \varkappa \quad \text { and } \quad \lim _{\ell \rightarrow \infty} x_{k_{\ell}}(t)=x(t) \text { for } t \in[a, b] .
$$

Denote $\quad z_{\ell}(t)=x_{k_{\ell}}(t)-x(t)$ for $\ell \in \mathbb{N}$ and $t \in[a, b]$. Then

$$
\left|z_{\ell}(t)\right| \leq 4 \varkappa, \quad \lim _{\ell \rightarrow \infty} z_{\ell}(t)=0 \quad \text { for } t \in[a, b] \quad \text { and }
$$

$V\left(\mathcal{A} z_{\ell}, D\right)=\sum_{j=1}^{m}\left|\left(\mathcal{A} z_{\ell}\right)\left(\alpha_{j}\right)-\left(\mathcal{A} z_{\ell}\right)\left(\alpha_{j-1}\right)\right|=\sum_{j=1}^{m}\left|\int_{\alpha_{j-1}}^{\alpha_{j}} d[A] z_{k}\right| \leq \sum_{j=1}^{m} \int_{\alpha_{j-1}}^{\alpha_{j}} d\left[\operatorname{var}_{a}^{s} A\right]\left|z_{\ell}(s)\right|$

$$
\leq \int_{a}^{b} d\left[\operatorname{var}_{a}^{s} A\right]\left|z_{\ell}(s)\right| \quad \text { for } D=\left\{\alpha_{0}, \alpha_{2}, \ldots, \alpha_{m}\right\} \in \mathcal{D}[a, b] \text { and } \ell \in \mathbb{N}
$$

Hence

$$
\operatorname{var}_{a}^{b}\left(\mathcal{A} z_{\ell}\right) \leq \int_{a}^{b} d\left[\operatorname{var}_{a}^{s} A\right]\left|z_{\ell}(s)\right| \quad \text { for } \ell \in \mathbb{N}
$$

TO HAVE $\left\|\mathcal{A} z_{\ell}\right\|_{\mathrm{BV}} \rightarrow 0$ as $\ell \rightarrow 0$ WE NEED $\quad \int_{a}^{b} d\left[\operatorname{var}_{a}^{s} A\right]\left|z_{\ell}(s)\right| \rightarrow 0$ as $\ell \rightarrow 0$.

BOUNDED CONVERGENCE THEOREM (for $X=\mathbb{R}$)

(i) AsSUME:

- $F \in \mathrm{BV}, g, g_{k} \in \mathrm{G}$ for $k \in \mathbb{N}$,
- $g_{k}(t) \rightarrow g(t)$ on $[a, b]$,
- $\left\|g_{k}\right\|_{\infty} \leq K<\infty$ for $k \in \mathbb{N}$.

THEN: $\int_{a}^{b} d[F] g_{k} \rightarrow \int_{a}^{b} d[F] g$.
(ii) ASSUME:

- $g \in \mathrm{BV}, \quad F, F_{k} \in \mathrm{G}$ for $k \in \mathbb{N}$,
- $\quad F_{k}(t) \rightarrow F(t)$ on $[a, b]$,
- $\left\|F_{k}\right\|_{\infty} \leq K<\infty$ for $k \in \mathbb{N}$.

THEN: $\quad \int_{a}^{b} F_{k} d[g] \rightarrow \int_{a}^{b} F d[g]$.
LEBESGUE INTEGRAL: Lebesgue Dominated Convergence Theorem RIEMANN or STIELTJES INTEGRAL: Arzelà-Osgood Theorem.

Available proofs can not be extended to the abstract setting !!
Moreover, deep Arzelà's lemma is needed.

BOUNDED CONVERGENCE THEOREM

(i) Assume:

- $F \in \mathrm{BV}, g, g_{k} \in \mathrm{G}$ for $k \in \mathbb{N}$,
- $\quad g_{k}(t) \rightarrow g(t)$ on $[a, b]$,
- $\left\|g_{k}\right\|_{\infty} \leq \gamma^{*}<\infty$ for $k \in \mathbb{N}$.

THEN: $\int_{a}^{b} d[F] g_{k} \rightarrow \int_{a}^{b} d[F] g$.
(ii) Assume:

- $g \in \mathrm{BV}, \quad F, F_{k} \in \mathrm{G}$ for $k \in \mathbb{N}$,
- $\quad F_{k}(t) \rightarrow F(t)$ on $[a, b]$,
- $\left\|F_{k}\right\|_{\infty} \leq \varkappa^{*}<\infty$ for $k \in \mathbb{N}$.

THEN: $\int_{a}^{b} F_{k} d[g] \rightarrow \int_{a}^{b} F d[g]$.
LEMMA (Arzelà) Let $\left\{\left\{J_{k, j}\right\}: k \in \mathbb{N}, j \in U_{k}\right\}$ be the set of subintervals of $[a, b]$ such that: for each $k \in \mathbb{N}$, the set of indices U_{k} is finite, the intervals from $\left\{J_{k, j}: j \in U_{k}\right\}$ are mutually disjoint and

$$
\sum_{j \in U_{k}}\left|J_{k, j}\right|>c>0
$$

Then there exist sequences of indices $\left\{k_{\ell}\right\}$ and $\left\{j_{\ell}\right\}$ such that

$$
j_{\ell} \in U_{k_{\ell}} \text { for } \ell \in \mathbb{N} \text { and } \bigcap_{\ell \in \mathbb{N}} J_{k_{\ell}, j_{\ell}} \neq \emptyset .
$$

- $J \subset \mathbb{R}$ is an interval if $\alpha, \beta \in J, \alpha<\beta, \alpha<x<\beta \Longrightarrow x \in J \quad(\{a\}=[a])$.
- For intervals $J \subset[a, b]$, sets $D=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right\}$ such that

$$
\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m} \quad \text { and } \quad \alpha_{j} \in J \text { for } j=0,1, \ldots, m
$$

are divisions of $J . \quad \mathcal{D}(J)$ is the set of all divisions of J.

- For $f: J \rightarrow X \quad$ var $f=\sup \{V(f, D): D \in \mathcal{D}(J)\} \quad$ is its variation over J, $\operatorname{var}_{\emptyset} f=\operatorname{var}_{[c]} f=0$ for any $c \in[a, b]$.
- A bounded subset E of \mathbb{R} is an elementary set if it is a finite union of intervals. For $A \subset \mathbb{R}, \mathcal{E}(A)$ is the set of all elementary subsets of A.
- A collection of intervals $\left\{J_{k}: k=1,2, \ldots, m\right\}$, is a minimal decomposition of E if $E=\bigcup_{k=1}^{m} J_{k}$, while $J_{k} \cup J_{\ell}$ is not an interval whenever $k \neq \ell$.
- For $f:[a, b] \rightarrow X$ and an elementary subset E of $[a, b]$ with a minimal decomposition $\left\{J_{k}: k=1, \ldots, m\right\}$, we define $\operatorname{var}(f, E)=\sum_{k=1}^{m} \operatorname{var}_{J_{k}} f$.

Proposition

Let $c, d \in[a, b], c<d$. Then

- $\operatorname{var}_{[c, d]} f=\operatorname{var}_{c}^{d} f, \quad \quad \operatorname{var}_{[c, d)} f=\lim _{\delta \rightarrow 0+} \operatorname{var}_{c}^{d-\delta} f=\sup _{t \in[c, d)} \operatorname{var}_{c}^{t} f$,
- $\operatorname{var}_{(c, d)} f=\lim _{\delta \rightarrow 0+} \operatorname{var}_{c+\delta}^{d-\delta} f, \quad \operatorname{var}_{(c, d]} f=\lim _{\delta \rightarrow 0+} \operatorname{var}_{c+\delta}^{d} f=\sup _{t \in(c, d]} \operatorname{var}_{t}^{d} f$.
- If $f \in B V((c, d), X)$ and $f(c+), f(d-)$ exist, then $f \in B V([c, d], X)$ and

$$
\operatorname{var}_{c}^{d} f=\operatorname{var}_{(c, d)} f+\left\|\Delta^{+} f(c)\right\|_{X}+\left\|\Delta^{-} f(d)\right\|_{X}
$$

KS integral over elementary sets

DEFINITION

Let $F:[a, b] \rightarrow L(X), g:[a, b] \rightarrow X$ and let $E \in \mathcal{E}([a, b])$. Then we define

$$
\int_{E} d[F] g=\int_{a}^{b} d[F]\left(g \chi_{E}\right) \quad \text { and } \quad \int_{E} F d[g]=\int_{a}^{b}\left(F \chi_{E}\right) d[g]
$$

provided the integrals on the right-hand sides exist.

Propositions

- Let $E_{1}, E_{2} \in \mathcal{E}([a, b]), E_{1} \cap E_{2}=\emptyset, F:[a, b] \rightarrow L(X), g:[a, b] \rightarrow X$ and let the integrals $\int_{E_{j}} d[F] g, j=1,2$, exist. Then

$$
\int_{E_{1} \cup E_{2}} d[F] g=\int_{E_{1}} d[F] g+\int_{E_{2}} d[F] g
$$

- Let $J=(c, d)$ and let $\int_{J} d[F] g$ exists. Then

$$
\left\|\int_{(c, d)} d[F] g\right\|_{X} \leq\left(\operatorname{var}_{(c, d)} F\right)\left(\sup _{t \in(c, d)}\|g(t)\|_{x}\right)
$$

- Let $J=[c, d)$, and let $\int_{J} d[F] g$ and $F(c-)$ exist. Then

$$
\left\|\int_{[c, d)} d[F] g\right\|_{X} \leq\left(\operatorname{var}_{[c, d)}\right) F\left(\sup _{t \in[c, d)}\|g(t)\|_{x}\right)+\left\|\Delta^{-} F(c)\right\|_{L(X)}\|g(c)\|_{x} .
$$

Bounded Convergence Theorem

BOUNDED CONVERGENCE THEOREM

(i) Assume:

- $F \in \mathrm{BV}, \quad g_{k} \in \mathrm{G}$ for $k \in \mathbb{N}$,
- $g_{k}(t) \rightarrow 0$ on $[a, b]$,
- $\left\|g_{k}\right\|_{\infty} \leq K<\infty$ for $k \in \mathbb{N}$.

THEN: $\int_{a}^{b} d[F] g_{k} \rightarrow 0$.

LEMMA (Arzelà) Let $\left\{\left\{J_{k, j}\right\}: k \in \mathbb{N}, j \in U_{k}\right\}$ be the set of subintervals of [a, b] such that: for each $k \in \mathbb{N}$, the set of indices U_{k} is finite, the intervals from $\left\{J_{k, j}: j \in U_{k}\right\}$ are mutually disjoint and

$$
\sum_{j \in U_{k}}\left|J_{k, j}\right|>c>0
$$

Then there exist sequences of indices $\left\{k_{\ell}\right\}$ and $\left\{j_{\ell}\right\}$ such that

$$
j_{\ell} \in U_{k_{\ell}} \text { for } \ell \in \mathbb{N} \text { and } \bigcap J_{k_{\ell}, j_{\ell}} \neq \emptyset \text {. }
$$

Bounded Convergence Theorem

Lewin (1986)

Let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset .
$$

Put

$$
\alpha_{n}=\sup \left\{m(E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.

Bounded Convergence Theorem

Lewin (1986)

Let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset .
$$

Put

$$
\alpha_{n}=\sup \left\{m(E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0
$$

LEMMA

Let $f \in \mathrm{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

$$
A_{n+1} \subset A_{n} \quad \text { and } \bigcap A_{n}=\emptyset .
$$

Put

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0 .
$$

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E\right.$ elementary subset of $\left.A_{n}\right\}$ for $n \in \mathbb{N}$.
Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof.

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

$$
\text { Then } \quad \lim _{n \rightarrow \infty} \alpha_{n}=0
$$

Proof. $\left\{\alpha_{n}\right\}$ is decreasing.

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$.

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that $\alpha_{n}>\varepsilon$ for every $n \in \mathbb{N}$.

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} .
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right)
$$

LEMMA

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$.

LEMMA

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$. We show that $H_{n} \neq \emptyset$.

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right)
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$. We show that $H_{n} \neq \emptyset$. Obviously, $\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n} \quad$ for any elementary subset F of $A_{n} \backslash E_{n}$.

LEMMA

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$. We show that $H_{n} \neq \emptyset$. Obviously, $\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n}$ for any elementary subset F of $A_{n} \backslash E_{n}$. Thus, $\operatorname{var}(f, F)<\frac{\varepsilon}{2^{n}}$ and since any elementary subset E of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$,

LEMMA

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$. We show that $H_{n} \neq \emptyset$. Obviously, $\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n}$ for any elementary subset F of $A_{n} \backslash E_{n}$. Thus, $\operatorname{var}(f, F)<\frac{\varepsilon}{2^{n}}$ and since any elementary subset E of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} \text {. }
$$

LEMMA

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} \text {. }
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$. We show that $H_{n} \neq \emptyset$. Obviously, $\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n}$ for any elementary subset F of $A_{n} \backslash E_{n}$. Thus, $\operatorname{var}(f, F)<\frac{\varepsilon}{2^{n}}$ and since any elementary subset E of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} \text {. }
$$

As $\alpha_{n}>\varepsilon$, this means that there is an elementary subset E of H_{n} with $\operatorname{var}(f, E)>\varepsilon$.

LEMMA

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} .
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$. We show that $H_{n} \neq \emptyset$. Obviously, $\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n}$ for any elementary subset F of $A_{n} \backslash E_{n}$. Thus, $\operatorname{var}(f, F)<\frac{\varepsilon}{2^{n}}$ and since any elementary subset E of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} \text {. }
$$

As $\alpha_{n}>\varepsilon$, this means that there is an elementary subset E of H_{n} with $\operatorname{var}(f, E)>\varepsilon$. Therefore, $H_{n} \neq \emptyset$.

LEMMA

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} .
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} .
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right)
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$. We show that $H_{n} \neq \emptyset$. Obviously, $\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n}$ for any elementary subset F of $A_{n} \backslash E_{n}$. Thus, $\operatorname{var}(f, F)<\frac{\varepsilon}{2^{n}}$ and since any elementary subset E of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} \text {. }
$$

As $\alpha_{n}>\varepsilon$, this means that there is an elementary subset E of H_{n} with $\operatorname{var}(f, E)>\varepsilon$. Therefore, $H_{n} \neq \emptyset$.
$\left\{H_{n}\right\}$ is a sequence of non-empty, closed and bounded sets such that $H_{n+1} \subseteq H_{n}$.

LEMMA

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} .
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right)
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$. We show that $H_{n} \neq \emptyset$. Obviously, $\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n}$ for any elementary subset F of $A_{n} \backslash E_{n}$. Thus, $\operatorname{var}(f, F)<\frac{\varepsilon}{2^{n}}$ and since any elementary subset E of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} \text {. }
$$

As $\alpha_{n}>\varepsilon$, this means that there is an elementary subset E of H_{n} with $\operatorname{var}(f, E)>\varepsilon$. Therefore, $H_{n} \neq \emptyset$.
$\left\{H_{n}\right\}$ is a sequence of non-empty, closed and bounded sets such that $H_{n+1} \subseteq H_{n}$.
By Cantor's intersection theorem we get $\bigcap_{n} H_{n} \neq \emptyset$.

LEMMA

Let $f \in \operatorname{BV}([a, b], X)$ be continuous on $[a, b]$ and let $\left\{A_{n}\right\}$ be a sequence of bounded subsets of $[a, b]$ such that

Put

$$
A_{n+1} \subset A_{n} \text { and } \bigcap A_{n}=\emptyset
$$

$$
\alpha_{n}=\sup \left\{\operatorname{var}(f, E): E \text { elementary subset of } A_{n}\right\} \text { for } n \in \mathbb{N} \text {. }
$$

Then $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0$.
Proof. $\left\{\alpha_{n}\right\}$ is decreasing. Assume that $\alpha_{n} \nrightarrow 0$. Then, there is $\varepsilon>0$ such that

$$
\alpha_{n}>\varepsilon \text { for every } n \in \mathbb{N} .
$$

Hence, for each $n \in \mathbb{N}$, there is an elementary subset E_{n} of A_{n} such that

$$
\alpha_{n}-\frac{\varepsilon}{2^{n}}<\operatorname{var}\left(f, E_{n}\right) .
$$

Define $H_{n}=\bigcap_{j=1}^{n} E_{j}$ for $n \in \mathbb{N}$. Then $H_{n} \subset A_{n}$. We show that $H_{n} \neq \emptyset$. Obviously, $\operatorname{var}(f, F)+\operatorname{var}\left(f, E_{n}\right)=\operatorname{var}\left(f, F \cup E_{n}\right) \leq \alpha_{n}$ for any elementary subset F of $A_{n} \backslash E_{n}$. Thus, $\operatorname{var}(f, F)<\frac{\varepsilon}{2^{n}}$ and since any elementary subset E of $A_{n} \backslash H_{n}$ can be written as

$$
E=\left(E \backslash E_{1}\right) \cup\left(E \backslash E_{2}\right) \cup \ldots \cup\left(E \backslash E_{n}\right),
$$

where $E \backslash E_{j}$ are elementary subsets of $A_{j} \backslash E_{j}$ for $j=1, \ldots, n$, we get

$$
\operatorname{var}(f, E)<\varepsilon \text { for every elementary subset } E \text { of } A_{n} \backslash H_{n} \text {. }
$$

As $\alpha_{n}>\varepsilon$, this means that there is an elementary subset E of H_{n} with $\operatorname{var}(f, E)>\varepsilon$. Therefore, $H_{n} \neq \emptyset$.
$\left\{H_{n}\right\}$ is a sequence of non-empty, closed and bounded sets such that $H_{n+1} \subseteq H_{n}$.
By Cantor's intersection theorem we get $\bigcap_{n} H_{n} \neq \emptyset$. This contradicts our assumption $\bigcap_{n} A_{n}=\emptyset$.
Hence, $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

Sketch of the proof of Bounded Convergence Theorem

Let $\quad\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.

Sketch of the proof of Bounded Convergence Theorem

Let $\quad\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{varr}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$.

Sketch of the proof of Bounded Convergence Theorem

Let $\quad\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$. LEMMA $\Longrightarrow \alpha_{n} \searrow 0$.

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{vara}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$. LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\quad\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $\quad U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$.
LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\quad\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
For $t \in U_{n}$ we have

$$
\left\|g_{n}(t)\right\|>\left\|h_{n}(t)\right\|-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F} \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}=\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}
$$

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$.
LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\quad\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
For $t \in U_{n}$ we have

$$
\left\|g_{n}(t)\right\|>\left\|h_{n}(t)\right\|-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F} \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}=\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}, \quad \text { i.e. } t \in A_{n}
$$

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{vara}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$.
LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\quad\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $\quad U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
For $t \in U_{n}$ we have

$$
\left\|g_{n}(t)\right\|>\left\|h_{n}(t)\right\|-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F} \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}-\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}=\frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}, \quad \text { i.e. } t \in A_{n}
$$

i.e. $\quad U_{n} \subset A_{n}$.

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$. LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $\quad U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
We have $\quad U_{n} \subset A_{n}$

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$. LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $\quad U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
We have $U_{n} \subset A_{n}$ and hence, by (1),

$$
\begin{aligned}
\left\|\int_{a}^{b} d[F] h_{n}\right\| & \leq\left\|\int_{U_{n}} d[F] h_{n}\right\|+\left\|\int_{V_{n}} d[F] h_{n}\right\| \leq \operatorname{var}\left(F, U_{n}\right)\left\|h_{n}\right\| U_{n}+\operatorname{var}\left(F, V_{n}\right)\left\|h_{n}\right\| v_{n} \\
& \leq \frac{\varepsilon}{6 K}(K+K)+\operatorname{var}_{a}^{b} F \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}=\frac{2}{3} \varepsilon
\end{aligned}
$$

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$. LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $\quad U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
We have

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$. LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
We have $\left\|\int_{a}^{b} d[F] h_{n}\right\|<\frac{2}{3} \varepsilon$.

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$. LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\quad\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $\quad U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
We have $\left\|\int_{a}^{b} d[F] h_{n}\right\|<\frac{2}{3} \varepsilon$. Therefore,

$$
\left\|\int_{a}^{b} d[F] g_{n}\right\| \leq\left\|\int_{a}^{b} d[F] h_{n}\right\|+\left\|\int_{a}^{b} d[F]\left(h_{n}-g_{n}\right)\right\| \leq \frac{2}{3} \varepsilon+\left(\operatorname{var}_{a}^{b} F\right) \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}<\varepsilon .
$$

Sketch of the proof of Bounded Convergence Theorem

Let $\left\|g_{n}\right\| \leq K<\infty$ for $n \in \mathbb{N}$ and $g_{n}(t) \rightarrow 0$ on $[a, b]$.
a) $\operatorname{var}_{a}^{b} F=0 \Longrightarrow \int_{a}^{b} d[F] g_{n}=\int_{a}^{b} d[F] g=0$ for all $n \in \mathbb{N}$.
b) Let $\operatorname{var}_{a}^{b} F \neq 0, \varepsilon>0$ and $A_{n}=\left\{t \in[a, b]: \exists m \geq n\right.$ such that $\left.\left\|g_{n}(t)\right\| \geq \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.

Then $\quad A_{n+1} \supset A_{n}, \bigcap_{n} A_{n}=\emptyset$ and $\alpha_{n}=\sup \left\{\operatorname{var}(F, E): E\right.$ elementary subset of $\left.A_{n}\right\}$. LEMMA $\Longrightarrow \alpha_{n} \searrow 0$. Hence $\exists N \in \mathbb{N}$ such that $\alpha_{n}<\frac{\varepsilon}{6 K}$ for $n \geq N$, i.e.

$$
\begin{equation*}
\operatorname{var}(F, E)<\frac{\varepsilon}{6 K} \quad \text { for any elementary subset } E \text { of } A_{n} \text { and any } n \geq N \tag{1}
\end{equation*}
$$

Let $n \geq N$ be given and let h_{n} be such that $\quad\left\|h_{n}-g_{n}\right\|<\min \left\{K, \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}\right\}$.
Denote $\quad U_{n}=\left\{t \in[a, b]:\left\|h_{n}(t)\right\| \geq \frac{\varepsilon}{3 \operatorname{var}_{a}^{b} F}\right\} \quad$ and $\quad V_{n}=[a, b] \backslash U_{n}$.
We have $\left\|\int_{a}^{b} d[F] h_{n}\right\|<\frac{2}{3} \varepsilon$. Therefore,

$$
\left\|\int_{a}^{b} d[F] g_{n}\right\| \leq\left\|\int_{a}^{b} d[F] h_{n}\right\|+\left\|\int_{a}^{b} d[F]\left(h_{n}-g_{n}\right)\right\| \leq \frac{2}{3} \varepsilon+\left(\operatorname{var}_{a}^{b} F\right) \frac{\varepsilon}{6 \operatorname{var}_{a}^{b} F}<\varepsilon .
$$

References

- G.A. Monteiro, U.M. Hanung and M. Tvrdý. Bounded convergence theorem for abstract Kurzweil-Stieltjes integral, preprint.

References

- G.A. Monteiro, U.M. Hanung and M. TVrdý. Bounded convergence theorem for abstract Kurzweil-Stieltjes integral, preprint.
- G.A. Monteiro and M. Tvrdý. On Kurzweil-Stieltjes integral in Banach space. Math. Bohem. 137 (2012), 365-381.
- J. W. Lewin. A Truly Elementary Approach to the Bounded Convergence Theorem. Amer. Math. Monthly 93(5) (1986), 395-397.
- Š. Schwabik. Abstract Perron-Stieltjes integral. Math. Bohem. 121(1996), 425-447.

References

- G.A. Monteiro, U.M. Hanung and M. Tvrdý. Bounded convergence theorem for abstract Kurzweil-Stieltjes integral, preprint.
- G.A. Monteiro and M. Tvrdý. On Kurzweil-Stieltjes integral in Banach space. Math. Bohem. 137 (2012), 365-381.
- J. W. Lewin. A Truly Elementary Approach to the Bounded Convergence Theorem. Amer. Math. Monthly 93(5) (1986), 395-397.
- Š. Schwabik. Abstract Perron-Stieltjes integral. Math. Bohem. 121(1996), 425-447.
- G.A. Monteiro and M. Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete Contin. Dyn. Syst. 33 (1) (2013), 283-303, doi: 10.3934/dcds.2013.33.283.
- Š. Schwabik. Generalized Ordinary Differential Equations. World Scientific, 1992.
- Š. SchWABIK. Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457.
- Š. SchWABIK. Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions. Math. Bohem. 125 (2000), 431-454.

References

- G.A. Monteiro, U.M. Hanung and M. Tvrdý. Bounded convergence theorem for abstract Kurzweil-Stieltjes integral, preprint.
- G.A. Monteiro and M. Tvrdý. On Kurzweil-Stieltjes integral in Banach space. Math. Bohem. 137 (2012), 365-381.
- J. W. Lewin. A Truly Elementary Approach to the Bounded Convergence Theorem. Amer. Math. Monthly 93(5) (1986), 395-397.
- Š. Schwabik. Abstract Perron-Stieltjes integral. Math. Bohem. 121(1996), 425-447.
- G.A. Monteiro and M. Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete Contin. Dyn. Syst. 33 (1) (2013), 283-303, doi: 10.3934/dcds.2013.33.283.
- Š. Schwabik. Generalized Ordinary Differential Equations. World Scientific, 1992.
- Š. SchWABIK. Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457.
- Š. SchWABIK. Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions. Math. Bohem. 125 (2000), 431-454.
- R.M. Dudley and R. Norvaiša. Concrete functional calculus. Springer Monographs in Mathematics. Springer, New York, 2011.
- CH.S. HönIg. Volterra Stieltjes-Integral Equations. North Holland \& American Elsevier, Mathematics Studies 16, Amsterdam \& New York, 1975.
- R.M. McLeod. The generalized Riemann integral. Carus Monograph, No.2, Mathematical Association of America, Washington, 1980.
- Š. Schwabik, M. Tvrdý, O. Vejvoda. Differential and Integral Equations: Boundary Value Problems and Adjoint. Academia and Reidel. Praha and Dordrecht, 1979 [http://dml.cz/handle/10338.dmlcz/400391].

