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Preliminaries

−∞ < a < b < ∞, X is a Banach space,

f : [a, b] → X is regulated on [a, b], if

f (s+):= lim
τ→s+

f (τ)∈X for s∈ [a, b), f (t−):= lim
τ→t−

f (τ)∈X for t ∈ (a, b],

∆+f (s)= f (s+)− f (s), ∆−f (t) = f (t)− f (t−), ∆f (t) = f (t+)− f (t−).

G = G([a, b], X ) is the space of functions f : [a, b]→X regulated on [a, b].

(G is a Banach space with respect to the norm ‖f‖∞= sup
t ∈ [a,b]

‖f (t)‖).

regulated functions are uniform limits of finite step functions,
regulated functions have at most countably many points of
discontinuity.

BV = BV ([a, b], X ) =
{

f : [a, b]→X : var b
a f <∞

}
is the space of functions

with bounded variation on [a, b].

f : [a, b]→X is a finite step function, if there is a division of [a, b]
a =α0 <α1 <α2 < . . . <αm = b

such that f is constant on every (αj−1, αj), j = 1, 2, . . . , m.
S = S([a, b], X ) is the set of finite step functions on [a, b].



Semi-variation

D=
{

D = {a=α0<α1< . . . <αm=b}
}

is the set of divisions of [a, b].

L(X ) is the Banach space of linear bounded mappings X →X .

For F :[a, b]→L(X ) and D = {α0, α1, . . . , αm}∈D put

V (F , D) = sup
{∥∥∥ m∑

j=1

[
F (αj)−F (αj−1)

]
xj

∥∥∥
X

: xj ∈ X , ‖xj‖X≤1
}

.

Then SV b
a (F ) = sup

D∈D
V (F , D) is the semi-variation of F on [a, b] and

SV = SV ([a, b], L(X )) is the set of F : [a, b]→L(X ) with SVb
a(F )<∞.

‖F‖SV=‖F (a)‖L(X)+SVb
a F =⇒ SV is a Banach space.

For g :[a, b]→X and D = {α0, α1, . . . , αm}∈D put

V (g, D) = sup
{∥∥∥ m∑

j=1

Fj
[
g(αj)−g(αj−1)

]∥∥∥
X

: Fj ∈L(X ), ‖Fj‖L(X)≤1
}

and SV b
a (g)= sup

D∈D
V (g, D).

SV = SV ([a, b], X ) is the set of g: [a, b]→X with SVb
a(g)<∞.
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Definition of Kurzweil-Stieltjes integral

G =
�
δ: [a, b]→ (0, 1)

	
are gauges on [a, b].

P=
�

P=(D, ξ), D = {a=α0<α1< . . . <αm=b}, ξ = (ξ1, . . . , ξm)∈[a, b]m, ξj ∈ [αj−1, αj ]
	

are tagged divisions of [a, b].

P =(D, ξ)∈P is δ-fine if [αj−1, αj ] ⊂ (ξj − δ(ξj ), ξj + δ(ξj )) for all j .

For F : [a, b]→ L(X), g : [a, b] → X , P = (D, ξ)∈P define

S(F∆g, P) =
mX

j=1

F (ξj ) [g(αj )− g(αj−1)] .

Definition

I =

Z b

a
F d [g] ⇐⇒

8>>><>>>:
for each ε > 0 there is a gauge δ ∈G such that���S(F∆g, P)− I

��� < ε

for every δ − fine tagged division P.Z c

c
F d [g] = 0.
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Definition of Kurzweil-Stieltjes integral

RS ⊂ KS, X = R =⇒ KS = PS.

KS-integral has usual linear properties and it is additive function of
intervals.

F : [a, b] → L(X ) and g : [a, b] → X are regulated =⇒∫ b

a
F d [g] and

∫ b

a
d [F ] g exist whenever

one of the functions F , g is a finite step function.

F ∈SV and
∫ b

a
d [F ] g exists =⇒

∥∥∥∫ b

a
d [F ] g

∥∥∥
X
≤SV b

a (F ) ‖g‖∞.

g ∈SV and
∫ b

a
d [F ] g exists =⇒

∥∥∥∫ b

a
d [F ] g

∥∥∥
X
≤2 ‖F‖∞ SV b

a (g).

F ∈SV and
∫ b

a
F d [g] exists =⇒

∥∥∥∫ b

a
F d [g]

∥∥∥
X
≤2 SV b

a (F ) ‖g‖∞.

g ∈SV and
∫ b

a
F d [g] exists =⇒

∥∥∥∫ b

a
F d [g]

∥∥∥
X
≤‖F‖∞ SV b

a (g).



Definition of Kurzweil-Stieltjes integral

F (t) ≡ C ∈ L(X), g : [a, b] → X =⇒
Z b

a
F d [g] = C [g(b)− g(a)].

F : [a, b] → L(X), g(t) ≡ c ∈X =⇒
Z b

a
F d [g] = 0.

g : [a, b] → X semi-regulated, τ ∈ [a, b], and F (t)= χ[τ,b](t) C for some C ∈ L(X)

=⇒
Z b

τ
F d [g] =C [g(b)− g(τ)].

Let δ(x) =

(
1
4 (τ − x) pro x < τ ,

η pro x = τ

and (D, ξ)=
�
{α0, α1, . . . , αm}, (ξ1, ξ2, . . . , ξm)

�
is δ-fine. Then
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Integration of finite step functions

F (t) ≡ C ∈ L(X), g : [a, b] → X =⇒
Z b

a
F d [g] = c [g(b)− g(a)].

F : [a, b] → L(X), g(t) ≡ c ∈X =⇒
Z b

a
F d [g] = 0.

g : [a, b] → X semi-regulated, C ∈ L(X), τ ∈ [a, b], =⇒Z b

a
χ[τ,b]C d [g] = C g(b)−C g(τ−),

Z b

a
χ(τ,b]C d [g] = C g(b)−C g(τ+).

Z b

a
χ[a,τ ]C d [g] = C g(τ+)−C g(a),

Z b

a
χ[a,τ)C d [g] = C g(τ−)−C g(a).
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8><>:
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C g(b)−C g(b−)] for τ = b ,

F : [a, b]→ L(X), ex ∈X , τ ∈ [a, b] =⇒Z b

a
F d [χ[a,τ ] ex ] =

Z b

a
F d [χ[a,τ) ex ] = −F (τ) ex ,Z b

a
F d [χ[τ,b] ex ] =

Z b

a
F d [χ(τ,b] ex ] = F (τ) ex ,

Z b

a
F d [χ[τ ] ex ] =

8><>:
−F (a) ex for τ = a ,

0 for τ ∈ (a, b) ,

F (b) ex for τ = b .
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Existence of KS integrals

Schwabik

Let F : [a, b] → L(X) and g : [a, b] → X .

(i) Let F ∈SV, gk : [a, b]→X ,
Z b

a
d[F ] gk exists for all n∈N and gk ⇒ g on [a, b]. Then

Z b

a
d [F ] g exists and

Z b

a
d [F ] g = lim

k→∞

Z b

a
d [F ] gk .

(ii) Let F ∈SV be semi-regulated and g ∈G. Then
Z b

a
d [F ] g exists.

(iii) Let F ∈SV be semi-regulated and g ∈BV . Then
Z b

a
F d [g] and

Z b

a
d [F ] g exist,

the sum
X

a≤τ<b

∆+F (τ)∆+g(τ)−
X

a<τ≤b

∆−F (τ)∆−g(τ) converges in X and

Z b

a
F d [g] +

Z b

a
d [F ] g

= F (b) g(b)−F (a) g(a)−
X

a≤t<b

∆+F (t)∆+g(t)+
X

a<t≤b

∆−F (t)∆−g(t) .
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Let F : [a, b] → L(X) and g : [a, b] → X .

(i) If F ∈G, g ∈G and at least one of them has a bounded semi-variation on [a, b],

then both integrals
Z b

a
F d [g] and

Z b

a
d [F ] g exist and

Z b

a
F d [g] +

Z b

a
d [F ] g

= F (b) g(b)−F (a) g(a)−
X

a≤t<b

∆+F (t)∆+g(t)+
X

a<t≤b

∆−F (t)∆−g(t) .

(ii) If F ∈BV, g ∈G,

then

�����
Z b

a
d[F ] g

����� ≤ varb
a F ‖g‖∞ and

�����
Z b

a
F d [g]

����� ≤ 2 varb
a F ‖g‖∞.

(iii) If g ∈BV, Fk ∈G for k ∈N and Fk ⇒ F ,

then
Z t

a
d [Fk ] g ⇒

Z t

a
d [F ] g.

(iv) If F ∈BV, gk ∈G for k ∈N and gk ⇒ g,

then
Z t

a
F d [gk ] ⇒

Z t

a
F d [g].



Convergence theorems

ASSUME:

F , Fk ∈G for n∈N, g ∈SV [a, b] is semi-regulated,

Fk ⇒ F .

THEN :
Z t

a
Fk d [g] ⇒

Z t

a
F d [g] on [a, b].

ASSUME:

F ∈SV, g, gk ∈G for n∈N,

gk ⇒ g.

THEN :
Z t

a
F d [gk ] ⇒

Z t

a
F d [g] on [a, b].

ASSUME:

F , Fk ∈G, g, gk ∈BV for n∈N,

Fk ⇒ F , gk ⇒ g,

α∗ := sup{var b
a gk : n∈N}<∞.

THEN :
Z t

a
Fk d [gk ] ⇒

Z t

a
F d [g] on [a, b].



Let A ∈ BV. Put (A x)(t) =

Z t

a
d[A] x for x ∈G and t ∈ [a, b]. Then

|Ax | ≤ varb
a A ‖x‖∞ ≤ varb

a ‖x‖BV for x ∈G,

i.e. both A : G → BV and A : BV → BV are linear bounded operators.

That’s nice - BUT for applications we need COMPACTNESS !!!

Thus, let X = Rn, {xk} ⊂ BV and ‖xk‖BV ≤ κ < ∞ for all k ∈N.

HELLY Theorem =⇒ there are x ∈BV and {k`}⊂N increasing and such that

‖x‖BV ≤ 2 κ and lim
`→∞

xk`
(t) = x(t) for t ∈ [a, b].

Denote z`(t)= xk`
(t)− x(t) for `∈N and t ∈ [a, b]. Then

|z`(t)| ≤ 4 κ, lim
`→∞

z`(t) = 0 for t ∈ [a, b] and

V (A z`, D)=
mX

j=1

��(A z`)(αj )− (A z`)(αj−1)
�� =

mX
j=1

��� Z αj

αj−1

d[A] zk

���≤ mX
j=1

Z αj

αj−1

d
�

vars
a A
�
|z`(s)|

≤
Z b

a
d
�

vars
a A
�
|z`(s)| for D = {α0, α2, . . . , αm}∈D[a, b] and `∈N.
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BOUNDED CONVERGENCE THEOREM (for X = R)
(i) ASSUME:

F ∈BV, g, gk ∈G for k ∈N,

gk (t) → g(t) on [a, b],

‖gk‖∞ ≤ K < ∞ for k ∈N.

THEN :
Z b

a
d [F ] gk →

Z b

a
d[F ] g.

(ii) ASSUME:

g ∈BV, F , Fk ∈G for k ∈N,

Fk (t) → F (t) on [a, b],

‖Fk‖∞ ≤ K < ∞ for k ∈N.

THEN :
Z b

a
Fk d[g] →

Z b

a
F d[g].

LEBESGUE INTEGRAL: Lebesgue Dominated Convergence Theorem
RIEMANN or STIELTJES INTEGRAL: Arzelà-Osgood Theorem.

Available proofs can not be extended to the abstract setting !!

Moreover, deep Arzelà’s lemma is needed.



BOUNDED CONVERGENCE THEOREM
(i) ASSUME:

F ∈BV, g, gk ∈G for k ∈N,

gk (t) → g(t) on [a, b],

‖gk‖∞ ≤ γ∗ < ∞ for k ∈N.

THEN :
Z b

a
d [F ] gk →

Z b

a
d[F ] g.

(ii) ASSUME:

g ∈BV, F , Fk ∈G for k ∈N,

Fk (t) → F (t) on [a, b],

‖Fk‖∞ ≤ κ∗ < ∞ for k ∈N.

THEN :
Z b

a
Fk d[g] →

Z b

a
F d[g].

LEMMA (Arzelà) Let
�
{Jk,j} : k ∈N, j ∈Uk} be the set of subintervals of [a, b] such that:

for each k ∈N, the set of indices Uk is finite, the intervals from {Jk,j : j ∈Uk} are mutually
disjoint and X

j ∈Uk

|Jk,j | > c > 0.

Then there exist sequences of indices {k`} and {j`} such that

j` ∈Uk`
for `∈N and

\
`∈N

Jk`,j` 6= ∅.



DEFINITIONS

J ⊂ R is an interval if α, β ∈ J, α < β, α < x < β =⇒ x ∈ J ({a} = [a]).

For intervals J ⊂ [a, b], sets D = {α0, α1, . . . , αm} such that

α0 < α1 < · · · < αm and αj ∈ J for j = 0, 1, . . . , m

are divisions of J. D(J) is the set of all divisions of J.

For f : J → X var J f = sup {V (f , D) : D ∈D(J)} is its variation over J,
var∅ f = var[c] f = 0 for any c ∈ [a, b].

A bounded subset E of R is an elementary set if it is a finite union of intervals.
For A ⊂ R, E(A) is the set of all elementary subsets of A.

A collection of intervals {Jk : k = 1, 2, . . . , m}, is a minimal decomposition of E if

E =
m[

k=1

Jk , while Jk ∪ J` is not an interval whenever k 6= `.

For f : [a, b] → X and an elementary subset E of [a, b] with a minimal decomposition

{Jk : k = 1, . . . , m}, we define var(f , E) =
Pm

k=1 varJk
f .

Proposition

Let c, d ∈ [a, b], c < d . Then

var[c,d ] f = vard
c f , var[c,d) f = lim

δ→ 0+
vard−δ

c f = sup
t∈[c,d)

vart
c f ,

var(c,d) f = lim
δ→ 0+

vard−δ
c+δ f , var(c,d ] f = lim

δ→ 0+
vard

c+δ f = sup
t∈(c,d ]

vard
t f .

If f ∈ BV ((c, d), X) and f (c+), f (d−) exist, then f ∈ BV ([c, d ], X) and

vard
c f = var(c,d) f + ‖∆+f (c)‖X + ‖∆−f (d)‖X .



KS integral over elementary sets

DEFINITION

Let F : [a, b] → L(X), g: [a, b] → X and let E ∈E([a, b]). Then we define

Z
E

d[F ] g =

Z b

a
d[F ] (g χE ) and

Z
E

F d[g] =

Z b

a
(F χE ) d[g]

provided the integrals on the right-hand sides exist.

Propositions

Let E1, E2 ∈E([a, b]), E1 ∩ E2 = ∅, F : [a, b] → L(X), g: [a, b] → X

and let the integrals
Z

Ej

d[F ] g, j = 1, 2, exist. ThenZ
E1∪E2

d[F ] g =

Z
E1

d[F ]g +

Z
E2

d[F ]g.

Let J = (c, d) and let
R

J d[F ] g exists. ThenZ
(c,d)

d[F ] g


X
≤
�

var(c,d) F
��

sup
t ∈ (c,d)

‖g(t)‖X

�
.

Let J = [c, d), and let
R

J d[F ] g and F (c−) exist. ThenZ
[c,d)

d[F ]g


X
≤
�

var[c,d)

�
F
�

sup
t ∈ [c,d)

‖g(t)‖X

�
+ ‖∆−F (c)‖L(X) ‖g(c)‖X .



Bounded Convergence Theorem

BOUNDED CONVERGENCE THEOREM
(i) ASSUME:

F ∈BV, gk ∈G for k ∈N,

gk (t) → 0 on [a, b],

‖gk‖∞ ≤ K < ∞ for k ∈N.

THEN :
∫ b

a
d [F ] gk → 0.

LEMMA (Arzelà) Let
{
{Jk,j} : k ∈N, j ∈Uk} be the set of subintervals of

[a, b] such that:
for each k ∈N, the set of indices Uk is finite, the intervals from {Jk,j : j ∈Uk}
are mutually disjoint and∑

j ∈Uk

|Jk,j | > c > 0.

Then there exist sequences of indices {k`} and {j`} such that
j` ∈Uk`

for `∈N and
⋂

`∈N
Jk`,j` 6= ∅.



Bounded Convergence Theorem

Lewin (1986)

Let {An} be a sequence of bounded subsets of [a, b] such that

An+1 ⊂ An and
⋂

An = ∅.
Put

αn = sup{m(E): E elementary subset of An } for n∈N.

Then lim
n→∞

αn = 0.

LEMMA
Let f ∈BV([a, b], X ) be continuous on [a, b] and let {An} be a sequence
of bounded subsets of [a, b] such that

An+1 ⊂ An and
⋂

An = ∅.
Put

αn = sup{ var(f , E): E elementary subset of An } for n∈N.

Then lim
n→∞

αn = 0.
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LEMMA

Let f ∈BV([a, b], X) be continuous on [a, b] and let {An} be a sequence of bounded
subsets of [a, b] such that

An+1 ⊂ An and
\

An = ∅.
Put

αn = sup{ var(f , E): E elementary subset of An } for n∈N.
Then lim

n→∞
αn = 0.

Proof.

{αn} is decreasing. Assume that αn 6→ 0. Then, there is ε > 0 such that
αn > ε for every n ∈ N.

Hence, for each n ∈ N, there is an elementary subset En of An such that

αn −
ε

2n
< var(f , En).

Define Hn =
Tn

j=1 Ej for n ∈ N. Then Hn ⊂ An. We show that Hn 6= ∅. Obviously,

var(f , F ) + var(f , En) = var(f , F ∪ En) ≤ αn for any elementary subset F of An \ En.

Thus, var(f , F ) < ε
2n and since any elementary subset E of An \ Hn can be written as

E = (E \ E1) ∪ (E \ E2) ∪ . . . ∪ (E \ En),

where E \ Ej are elementary subsets of Aj \ Ej for j = 1, . . . , n, we get

var(f , E) < ε for every elementary subset E of An \ Hn.

As αn > ε, this means that there is an elementary subset E of Hn with var(f , E) > ε.
Therefore, Hn 6= ∅.
{Hn} is a sequence of non-empty, closed and bounded sets such that Hn+1 ⊆ Hn.

By Cantor’s intersection theorem we get
T

n Hn 6= ∅. This contradicts our assumption
T

n An = ∅.
Hence, lim

n→∞
αn = 0.
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Sketch of the proof of Bounded Convergence Theorem

Let ‖gn‖ ≤ K < ∞ for n∈N and gn(t) → 0 on [a, b].
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Z b
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Z b
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b) Let varb
a F 6= 0, ε > 0 and An =
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t ∈ [a, b] : ∃m ≥ n such that ‖gn(t)‖ ≥

ε
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�
.

Then An+1 ⊃ An,
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n An = ∅ and αn = sup {var(F , E) : E elementary subset of An}.
LEMMA =⇒ αn ↘ 0. Hence ∃N ∈ N such that αn <
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for n ≥ N, i.e.

(1) var(F , E) <
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for any elementary subset E of An and any n ≥ N.
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i.e. Un ⊂An.
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