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Dagmar Medková, Mariya Ptashnyk, Werner Varnhorn

28. 02. 2014

Abstract

With methods of potential theory we develop a representation of the solution of a coupled
Stokes-Darcy model in a Lipschitz domain for boundary data in H−1/2.

1 Introduction

Let Ω ⊂ R3 be a bounded domain, i.e. a bounded open connected set, with Lipschitz boundary
∂Ω, and suppose that ΩS is a subdomain of Ω with Lipschitz boundary ∂ΩS . Then ΩD := Ω\ΩS

is a bounded open set, not necessarily connected, and we define Γ = ∂ΩS ∩ ∂ΩD.
In Ω we consider the following coupled Stokes-Darcy problem:

−η∆vS +∇pS = 0, div vS = 0 in ΩS ,

vD + k∇pD = 0, div vD = 0 in ΩD,

vS = 0 on ∂ΩS \ Γ,

vD · n = 0 on ∂ΩD \ Γ,

vD · n = vS · n, vS
τ = 0 on Γ,

[(−2ηDvS + pSI)n] · n = pD + vD · n− g · n on Γ.

(1)

Here η, k ∈ R are positive constants, vD = (vD
1 , v

D
2 , v

D
3 ) denotes the Darcy velocity vector, and

vS = (vS
1 , v

S
2 , v

S
3 ) represents the Stokes flow, whereas

Dv =
1
2
[∇v + (∇v)T ]

is the symmetric gradient of v and I the identity matrix. By n = nS we mean the exterior unit
normal vector of ΩS . If v is a vector function on ∂ΩS then v = vn +vτ , where vn is the normal
part of v and vτ is the tangential part of v, i.e. vn = (v · n) n, vτ = v − vn. (Remark that
instead of vτ = 0 we can use an equivalent form n× v = 0.)

The above problem arises from the modeling of water flow through a tissue of plant cells.
Water flow in plant tissues takes place in two different physical domains separated by semi-
permeable membranes, denoted as symplast and apoplast [42]. The apoplast is composed of
cell walls and intercellular spaces, while the symplast is constituted by cell insides, which can
be connected by plasmodesmata. The complex microstructure of the cell walls, composed of
polymers and microfibrils, can in simplified form be represented as a porous medium. The water
flow in the cell walls can be modeled by Darcy’s law. The Stokes equations can be used to
describe viscous flow in the cell cytoplasm. The central modeling aspects of the water transport
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in the plant tissue are the transmission conditions, which describe the fluxes through the plasma
membranes, and thus, between the apoplast and symplast.

Coupled free fluid and porous media problems have received an increasing attention during
the last years both from the mathematical and the numerical point of view. Well-posedness
analysis and numerical algorithms for coupled Stokes-Darcy and Navier-Stokes-Darcy problems
with Beavers-Joseph-Saffman transmission conditions between the free fluid and the porous
medium have been investigated in [19, 37] and references therein. Multiscale analysis for a
Stokes-Dracy system modeling water flow in a vuggy porous media with Beavers-Joseph-Saffman
transmission condition was considered in [1].

The main difference of our problem to the well known models coupling free fluid and porous
media, see [1, 9], is that the free fluid and the porous media domains do not interact directly,
as the membrane separates the domains and controls actively and passively the fluxes of the
water and the solutes. Thus the continuity of the normal forces and the Beavers-Joseph-Saffman
transmission condition between the free fluid and the porous medium do not apply. The reg-
ulation of the water flow from the cell symplast into the cell wall apoplast is represented via
the transmission conditions on the boundary Γ, comprising the normal component of the Darcy
velocity vD ·n and a given function g ·n which corresponds to the difference between the solute
concentrations in the symplast and the apoplast, respectively, [3]. The transmission conditions
at the cell-membrane-cell wall interface and the coupling between the flow velocity and the solute
concentrations via transmission conditions reflect the osmotic nature of the water flow through
a semipermeable membrane.

The aim of the paper is to study the solvability of the coupled Stokes-Darcy model problem
(1) and to develop an integral representation of the solution of this problem. It is important
for calculation of a solution using the boundary element method (see [40], [8]). At first we
determine necessary and sufficient conditions for the existence of a solution of (1). We show
that the problem (1) is solvable for arbitrary data but a solution is not unique. The general
form of the problem (1) with trivial boundary conditions is vS = 0, vD = 0, pS = c, pD = c,
where c is a constant. We show that the velocity fields and the pressures of a solution of the
problem (1) can be represented in terms of boundary single layer potentials, such that the Darcy
pressure qD = SΩD

ψ is a harmonic single layer potential with density ψ ∈ H−1/2(∂ΩD), while
the velocity field for the Darcy flow is defined by vD = ∇SΩD

ψ. For the Stokes flow we ob-
tain that [vS , qS ] = ẼΩS

Ψ is a modified hydrodynamical single layer potential with density
Ψ ∈ [H−1/2(∂ΩS)]3.

To derive integral representations for the solutions of the model (1) we study two auxiliary
problems: The Robin problem for the Laplace equation and the mixed Navier–Dirichlet problem
for the Stokes system. It is a tradition to study the Dirichlet and the Neumann problems for
the Laplace equation in different spaces by the integral equation method (see [20], [15], [10]).
Later a solution of the Robin problem for the Laplace equation has been looked for in the form
of a harmonic single layer potential for boundary conditions given by real measures ([32], [33],
[34]) or p-integrable functions on the boundary ([18], [17], [23]). The classical result of the
theory of partial differential equations says that the Robin problem for the Laplace equation is
uniquely solvable in H1(Ω) (see [31]). It was shown in [41], [24] and [25] that a solution of the
Neumann problem for the Laplace equation in H1(Ω) has the form of a harmonic single layer
potential with density from H−1/2(∂Ω). All these results enables us to show that each solution
of the Robin problem in H1(Ω) is representable by a harmonic single layer potential with density
ψ ∈ H−1/2(∂Ω), and the corresponding integral operator is continuously invertible.
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The potential theory for the hydrodynamics was first developed to study classical solutions
of the Dirichlet and Neumann problems for the Stokes system (see [36], [35], [44], [14], [21]).
Later, solutions of the Dirichlet problem, the Neumann problem and the transmission problem
for the Stokes system have been looked for in the form of hydrodynamical boundary layers
also for p-integrable boundary conditions and for solutions from Sobolev and Besov spaces
(see [6], [29], [22], [12], [13], [11], [5]). We have used this theory to study a solution (v, p) ∈
[H1(Ω)]3 × L2(Ω) of the Navier–Dirichlet problem for the Stokes system. We have proved that
the Navier–Dirichlet problem for the Stokes system is uniquely solvable and the corresponding
solution can be represented using a modified hydrodynamic single layer potential with density
Ψ ∈ [H−1/2(∂Ω)]3, and the corresponding integral operator is continuously invertible, too.

2 Single layer potentials

Defining new variables qD = kpD, qS = pS/η we can normalize the constants in model (1) and
obtain the equations

−∆vS +∇qS = 0, div vS = 0 in ΩS ,

vD +∇qD = 0, div vD = 0 in ΩD,

vS = 0 on ∂ΩS \ Γ,

vD · n = 0 on ∂ΩD \ Γ,

vD · n = vS · n, vS
τ = 0 on Γ,

η [T (vS , qS)n] · n + qD/k + vD · n = g · n on Γ,

(2)

where T (v, p) = 2Dv − pI denotes the stress tensor.

For 0 6= x ∈ R3 consider the fundamental solution h of the Laplace equation −∆u = 0,
defined by

h(x) =
1

4π|x|
.

Assume that G ⊂ R3 is a bounded open set with Lipschitz boundary. Then for ψ ∈ H−1/2(∂G)
we can define the harmonic single layer potential with density ψ as the convolution SGψ = h∗ψ.
In particular, if ψ ∈ L2(∂G), then

(SGψ)(x) =
∫

∂G
h(x− y)ψ(y) dσy for x ∈ G. (3)

If ψ ∈ H−1/2(∂G), then u := SGψ is a solution of the elliptic problem

−∆u = 0 in G ,

u = tr(SGψ) on ∂G ,

where tr(SGψ) ∈ H1/2(∂G) denotes the usual trace of SGψ ∈W 1,2(G), see e.g. [40, Lemma 6.6].

For ψ ∈ L2(∂G) and x ∈ ∂G we set

K∆
Gψ(x) = lim

r↓0

∫
∂G\B(x;r)

nG(x) · (x− y)
4π|x− y|3

ψ(y) dσy (4)
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with nG(x) as the exterior unit normal vector with respect to G and B(x; r) as the ball with
radius r > 0 and center at x ∈ R3. This limit is defined for almost all x ∈ ∂G, and K∆

G is
a bounded linear operator on L2(∂G), which can be extended to a bounded linear operator
on H−1/2(∂G), see e.g. [8, Theorem 5.6.2]. For a harmonic function u ∈ W 1,2(G) and g ∈
H−1/2(∂G) we have that ∇u · n = g if and only if∫

G
∇u · ∇ϕ dx = 〈g, tr(ϕ)〉H−1/2,H1/2 ∀ϕ ∈W 1,2(G),

see [31] for details. Thus we can conclude that for ψ ∈ H−1/2(∂G) it holds

∇(SGψ) · n =
ψ

2
−K∆

Gψ on ∂G, (5)

see [40, Lemma 6.8].

Next we consider the (4× 3) fundamental tensor E of the Stokes system, given by

Ej,k(x) =
1
8π

{
δjk

1
|x|

+
xjxk

|x|3
}
, E4,k(x) =

xk

4π|x|3
for 0 6= x ∈ R3, j, k = 1, 2, 3. (6)

Then for Ψ = [Ψ1,Ψ2,Ψ3] ∈ [H−1/2(∂G)]3 we can define the hydrodynamical single layer
potential with density Ψ as the convolution EGΨ = E ∗Ψ.
In particular, for Ψ ∈ [L2(∂G)]3 we obtain

(EGΨ)(x) =
∫

∂G
E(x− y)Ψ(y) dσy. (7)

By E•
GΨ = Er ∗ Ψ we denote the velocity part of this potential, i.e. the three components of

the velocity field. Here the 3 × 3 matrix Er(z) is obtained from E(z) by eliminating the last
row, which corresponds to the pressure part.

If Ψ ∈ [H−1/2(∂G)]3, then for v = E•
GΨ and p = [EGΨ]4 we obtain that v ∈ [W 1,2(G)]3,

p ∈ L2(G) is a solution of the Stokes system

∆v = ∇p, in G ,

div v = 0 in G ,

v = tr(E•
GΨ) on ∂G ,

see [40, §6.8] or [22, Theorem 4.4] for details.

For x,y ∈ ∂G, y 6= x and j, k = 1, 2, 3 we consider the kernel matrix

KS
jk(x,y) =

3
4π

(xj − yj)(xk − yk)(x− y) · nG(x)
|x− y|5

,

and for Ψ ∈ [L2(∂G)]3 and x ∈ ∂G we set

KS
GΨ(x) = lim

r↓0

∫
∂G\B(x;r)

KS(x,y)Ψ(y) dσy.

The limit in the last equality is well defined for almost all x ∈ ∂G, and KS
G is a bounded linear

operator on [L2(∂G)]3, see [4, 6, 22], which can be extended to a bounded linear operator on
[H−1/2(∂G)]3, see [27].
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For u ∈ [W 1,2(G)]3, p ∈ L2(G) and g ∈ [H−1/2(∂G)]3 we have that T (u, p) n = g if and
only if

2
∫

G
Du : Dv dy −

∫
G
p div v dy = 〈g,v〉H−1/2,H1/2 ∀v ∈ [H1(G)]3,

see [27] for details, where here and in the following we use A : B =
∑3

i,j=1AijBij for 3 × 3
matrices A,B. Thus, using [27, Proposition 4.2], for Ψ ∈ [H−1/2(∂G)]3 we obtain that

T (EGΨ)n =
Ψ
2
−KS

GΨ on ∂G. (8)

3 The Robin problem for the Laplace equation

We need to study two auxiliary problems and express their solutions in the form of appropriate
potentials. The first problem is the Robin problem for the Laplace equation.

Let G ⊂ R3 be a bounded open set with Lipschitz boundary ∂G. For a given g ∈ H−1/2(∂G)
and a given positive constant a ∈ R we study the following Robin problem: Find a function
u ∈ H1(G) with

−∆u = 0 in G,
∂u

∂n
+ au = g on ∂G,

(9)

i.e. with ∫
G
∇u · ∇ϕ dy +

∫
∂G
a uϕ dσy = 〈g, tr(ϕ)〉H−1/2,H1/2 ∀ϕ ∈ H1(G).

Concerning the solvability of this problem we find

Proposition 3.1 For g ∈ H−1/2(∂G) there exists a unique solution u ∈ H1(G) of the Robin
problem (9).

See [31] for the proof.

Proposition 3.2 Let u ∈ H1(G) and −∆u = 0 in G. Then there exists a unique f ∈
H−1/2(∂G) such that u = SGf .

Proof. If f ∈ H−1/2(∂G), then SGf ∈ H1(G) with the trace tr(SGf) ∈ H1/2(∂G). The operator
SG : H−1/2(∂G) → H1/2(∂G) is a Fredholm operator with index 0, see [28, Theorem 4.1], and
the kernel of SG is trivial, see [16, Chapter VI]. This implies that SG(H−1/2(∂G)) = H1/2(∂G).
Therefore, for any u|∂G ∈ H1/2(∂G) there exists a unique f ∈ H−1/2(∂G) such that u = tr(SGf)
on ∂G. Since the Dirichlet problem for the Laplace equation is uniquely solvable in H1(G), see
[31], we deduce that u = SGf in G.

Proposition 3.3 The operator 1
2 I − K∆

G + aSG is a continuously invertible bounded linear
operator on H−1/2(∂G), where I is the identity operator.

Proof. For f, g ∈ H−1/2(∂G) we have that SGf is a solution of the Robin problem (9) if and
only if [1/2 I − K∆

G + aSG]f = g. On the other hand, by Proposition 3.1, for g ∈ H−1/2(∂G)
there exists a unique solution u ∈ H1(G) of the problem (9). Then, due to Proposition 3.2, there
exists a unique f ∈ H−1/2(∂G) such that u = SGf . Thus, since the operator (1/2) I−K∆

G +aSG

on H−1/2(∂G) is onto and one-to-one, it is continuously invertible, see [39, Theorem 3.8].
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4 A mixed Navier–Dirichlet problem for the Stokes system

The second auxiliary problem we consider is a mixed Navier–Dirichlet problem for the Stokes
system. Suppose that G ⊂ R3 is a bounded domain with Lipschitz boundary. Let Γ ⊂ ∂G be
a closed part of the boundary. For given f ∈ [H1/2(∂G)]3, g ∈ [H−1/2(∂G)]3 and a positive
constant a ∈ R we look for weak solutions v ∈ [H1(G)]3 and p ∈ L2(G) of the problem

∆v = ∇p, div v = 0 in G,
v = f on ∂G \ Γ,
vτ = fτ on Γ,
[T (v, p)n + av] · n = g · n on Γ,

(10)

i.e. the boundary conditions v = f on ∂G \ Γ, vτ = fτ on Γ are fulfilled in the sense of traces
and it holds

2
∫

G
Dv : DΦ dy −

∫
G
p div Φ dy +

∫
∂G
av ·Φ dσy = 〈g,Φ〉H−1/2,H1,2

for all Φ ∈ VΓ(G) = {Φ ∈ [H1(G)]3 : Φ = 0 on ∂G \ Γ, Φτ = 0 on Γ}.

If Γ a set of the surface measure zero (for example a set consisting from finitely many points),
then the mixed problem (10) reduces to the Dirichlet problem. To avoid this case we assume
that there exists some function Θ ∈ [H1(G)]3 with Θ = 0 on ∂G\Γ and Θτ = 0 on Γ satisfying∫

∂G
Θ · n dσy = 1. (11)

(Notice that this condition is fulfilled if Γ contains a smooth surface.) If this condition is not
satisfied, then v = (0, 0, 0) and p = 1 would be a nontrivial solution of the problem (10) with
homogeneous boundary condition f = g = (0, 0, 0).

In the case ∂G is connected we shall look for a solution of (10) in the form of a hydrodynam-
ical single layer potential (v, p)T = EGΨ with an appropriate Ψ ∈ [H−1/2(∂G)]3. If ∂G is not
connected, then solutions of the problem (10) cannot be represented by a pure hydrodynamical
single layer potential. In order to obtain a representation formula for solutions of (10) in this
case we can use some modifications as follows. We denote by C1, . . . , Ck all bounded connected
components of R3 \G and consider for j = 1, . . . , k and fixed zj ∈ Cj the functions

w•
j (x) =

x− zj

|x− zj |3
, wj(x) =

(
w•

j (x)
0

)
. (12)

An easy calculation yields that ∆w•
j = 0 with div w•

j = 0 in R3\{zj}. Now for Ψ ∈ [H−1/2(∂G)]3

we define

ẼGΨ = EGΨ +
k∑

j=1

wj〈Ψ,w•
j 〉H−1/2,H1/2 , (13)

and if ∂G is connected we set ẼGΨ = EGΨ. Due to the definition of EG and wj , in both cases
it is ensured that ẼGΨ is a solution of the Stokes system in G.

Denote by VΓ(∂G) the space of traces of VΓ(G), i.e.

VΓ(∂G) = {v ∈ [H1/2(∂G)]3;v = 0 on ∂G \ Γ,vτ = 0 on Γ},
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and by V ′
Γ(∂G) the dual space of VΓ(∂G). According to the Hahn-Banach theorem the space

V ′
Γ(∂G) can be interpreted as the space of restrictions {gn|Γ; g ∈ [H−1/2(∂G)]3}. Clearly,
V ′

Γ(∂G) ⊂ V ′
Γ(G) (the dual space of VΓ(G)). In fact, V ′

Γ(∂G) is the space of all f ∈ V ′
Γ(G)

supported on ∂G.
Denote the space of restrictions

WΓ(∂G) = {[v|(∂G \ Γ),vτ |Γ];v ∈ [H1/2(∂G)]3}

equipped with the norm

‖v‖WΓ(∂G) = inf{‖u‖H1/2(∂G);u ∈ [H1/2(∂G)]3,u = v on ∂G \ Γ,uτ = vτ on Γ}.

Since WΓ(∂G) is the factorspace [H1/2(∂G)]3/VΓ(∂G), it is a Banach space.
The operator

T1Ψ = [Ẽ•
GΨ|∂G\Γ, (Ẽ

•
GΨ)τ |Γ] (14)

is a bounded linear operator from [H−1/2(∂G)]3 to WΓ(∂G). We now define a bounded operator
T a

2 : [H−1/2(∂G)]3 → V ′
Γ(G) as

〈T a
2 Ψ,Φ〉 = 2

∫
G

DΦ·DẼ•
GΨ dy−

∫
G
[EGΨ]4 div Φ dy+

∫
∂G
aΦ·Ẽ•

GΨ dσy, Φ ∈ VΓ(G). (15)

Since ẼΨ is a solution of the Stokes system we have 〈T a
2 Ψ,Φ〉 = 0 for Φ ∈ [C∞(G)]3 with

compact support in G. So, T a
2 Ψ is supported on ∂G. Hence T a

2 : [H−1/2(∂G)]3 → V ′
Γ(∂G) is a

bounded linear operator.
For Ψ ∈ [H−1/2(∂G)]3 we obtain that ẼGΨ is a solution of (10) iff T1Ψ =

[
f |∂G\Γ,fτ |Γ

]
and T a

2 Ψ = gn|Γ.

Proposition 4.1 We have Ẽ•
G([H−1/2(∂G)]3) = {f ∈ [H1/2(∂G)]3 :

∫
∂G f · nG dσy = 0}.

If v ∈ [H1(G)]3, p ∈ L2(G), and ∆v = ∇p, div v = 0 in G then there exists a unique Ψ ∈
[H−1/2(∂G)]3 such that [v, p] = ẼGΨ and

‖Ψ‖[H−1/2(∂G)]3 ≤ C

[
‖v‖[H1/2(∂G)]3 +

∣∣∣∣∫
G
p dσy

∣∣∣∣] ,
where a constant C depends only on G.

Proof. We define the space

X ≡
{

f ∈ [H1/2(∂G)]3 :
∫

∂G
f · nG dσy = 0

}
.

The operator E•
G : [H−1/2(∂G)]3 → [H1/2(∂G)]3 is a Fredholm operator with index 0, see [38].

Since Ẽ•
G−E•

G is a finite dimensional operator, we obtain that Ẽ•
G : [H−1/2(∂G)]3 → [H1/2(∂G)]3

is also a Fredholm operator with index 0, see [30, § 16, Theorem 16]. For Ψ ∈ [H−1/2(∂G)]3

we have that ẼGΨ is a solution of the Stokes system in G and Ẽ•
GΨ ∈ X, see [7, Chapter IV].

Thus, the codimension of the range of Ẽ•
G is at least 1.

We denote by C1, . . . , Ck+1 all components of R3 \ G, where Ck+1 denotes the unbounded
component, and consider nj = n on ∂Cj , whereas nj = 0 elsewhere. Then EGnj = 0 for
j = 1, . . . , k and EGnk+1 = [0, 0, 0,−1] in G, see e.g [35, §3.2]. Now we define the space

Y = {Ψ ∈ [H−1/2(∂G)]3 :
∫

G
[EGΨ]4 dσy = 0}.
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Since [EGnk+1]4 = −1, the space [H−1/2(∂G)]3 is the direct sum of Y and {cnk+1; c ∈ R1}.
Denote

Z = {Ψ ∈ [H−1/2(∂G)]3; 〈Ψ,w•
j 〉 = 0 ∀j = 1, . . . , k},

i.e. Z = {Ψ ∈ [H−1/2(∂G)]3; Ẽ•
GΨ = E•

GΨ}. Let j, l ∈ {1, . . . , k}, j 6= l. Since div w•
l = 0 in

R3 \ Cl, Green’s formula gives∫
∂G

w•
l · nj dσy = −

∫
∂Cj

w•
l · n dσy = −

∫
Cj

div w•
l dy = 0.

For r > 0 such that B(zl; r) ≡ {y; |y − zl| < r} ⊂ Cl, applying easy calculation we obtain∫
∂G

w•
l · nl dσy = −

∫
∂(Cl\B(zl;r))

w•
l · n dσy −

∫
∂B(zl;r)

w•
l · n dσy

= −
∫

∂B(zl;r)
w•

l · n dσy 6= 0.

Thus [H−1/2(∂G)]3 is the direct sum of Z and the linear hull of {n1, . . . ,nk}. So, [H−1/2(∂G)]3

is the direct sum of Y ∩ Z and the linear hull of {n1, . . . ,nk+1}.
Suppose now that Ẽ•

GΨ = 0 on ∂G. Then we obtain that Ẽ•
GΨ = 0 in G, see [7, Chapter

IV]. Since divE•Ψ = 0 in R3 \ ∂G we conclude∫
∂G

nj · E•Ψ dσy = 0, for j = 1, . . . , k + 1,

see [7, Chapter IV]. If l = 1, . . . , k then

0 =
∫

∂G
nl · Ẽ•

GΨ dσy =
k∑

j=1

〈Ψ,w•
j 〉

∫
∂G

w•
j · nl dσy = 〈Ψ,w•

l 〉
∫

∂G
w•

l · nl dσy.

Since ∫
∂G

w•
l · nl dσy 6= 0

this forces that 〈Ψ,w•
l 〉 = 0. Thus Ψ ∈ Z and ẼGΨ = EGΨ. Since E•

G is injective on Y ∩Z by
[38] and the codimension of Y is equal to 1, we deduce that the dimension of the kernel of Ẽ•

G

is at most 1. Since Ẽ•
G is a Fredholm operator with index 0, the dimension of the kernel of Ẽ•

G

and the codimension of the range of Ẽ•
G are equal to 1. Since Ẽ•

G([H−1/2(∂G)]3) ⊂ X we infer
that Ẽ•

G([H−1/2(∂G)]3) = X. Since the dimension of the kernel of Ẽ•
G is equal to 1 there exists

Φ ∈ Z \ Y such that Ẽ•
GΦ = 0, i.e. there exists Φ such that Ẽ•

GΦ = [0, 0, 0] and∫
G
[EGΦ]4 dy 6= 0.

Since ẼGΦ is a solution of the Stokes system in G, we deduce that [EGΦ]4 is constant in G. So,
we can choose Φ such that ẼGΦ = [0, 0, 0, 1] in G. Therefore

Ψ 7→
[
Ẽ•

GΨ,
∫

G
[EGΨ]4 dy

]
is an injective mapping [H−1/2(∂G)]3 onto X × R. This mapping is continuously invertible by
[39], Theorem 3.8. So, there exists a positive constant C such that

‖Ψ‖[H−1/2(∂G)]3 ≤ C

[
‖Ẽ•

GΨ‖[H1/2(∂G)]3 +
∣∣∣∣∫

G
[EGΨ]4 dy

∣∣∣∣] .
8



Let now assume that v ∈ [H1(G)]3, p ∈ L2(Ω) is a solution of the Stokes system in G. Then
we obtain that the trace of v is in X, see [7], Chapter IV, and there exists Ψ ∈ [H−1/2(∂G)]3

such that Ẽ•
GΨ = v on ∂G. Since (v, p) − ẼGΨ is a solution of the Dirichlet problem for the

Stokes system with the zero boundary condition, we have v = Ẽ•
GΨ in G and p − [EGΨ]4 is

constant in G. Therefore, there exists a constant c such that (v, p) = ẼG(Ψ + cΦ).

Proposition 4.2 Suppose that there exists Θ ∈ [H1(G)]3 such that Θ = 0 on ∂G \ Γ, Θτ = 0
on Γ, and assumptions (11) is satisfied.

• Then T : Ψ 7→ [T1Ψ, T a
2 Ψ] is a continuously invertible bounded linear operator from

[H−1/2(∂G)]3 onto WΓ(∂G)× V ′
Γ(∂G).

• If f ∈ [H1/2(∂G)]3, g ∈ [H−1/2(∂G)]3 then there exists a unique solution v ∈ [H1(G)]3,
p ∈ L2(G) of the problem (10). Moreover, (v, p) = ẼGΨ, where Ψ is a unique solution of
the integral equations T1Ψ =

[
f |∂G\Γ,fτ |Γ

]
and T a

2 Ψ = gn|Γ.

Proof. Suppose first that (v, p) is a solution of the problem (10) with f = g = (0, 0, 0). Then

0 = 〈g,v〉H−1/2,H1/2 = 2
∫

G
|Dv|2 dy +

∫
∂G
a|v|2 dσy.

Denote the inner product

(w,u) = 2
∫

G
Dw ·Du dy +

∫
∂G
aw · u dσy. (16)

Then ‖w‖ =
√

(w,w) is an equivalent norm in [H1(G)]3, see for example [2, Theorem 5.2].
Thus v = 0 in G. Hence ∇p = ∆v = 0 in G and p = c with some constant c, see [43, Lemma
6.4]. Therefore T (v, p)n + av = −cn and, using boundary condition in (10) we obtain

0 = 〈(T (v, p)n + av) · n,Θ〉 = −c

and c = 0.
We consider now g ∈ [H−1/2(∂G)]3 and f ∈ [H1/2(∂G)]3, and define

α =
∫

∂G
f · nG dσy .

Then for f̃ = f−αΘ there exists a solution ṽ ∈ [H1,2(G)]3, p̃ ∈ L2(G) of the Stokes system in G
such that ṽ = f̃ on ∂G, see [7, Chapter IV]. Considering v = ṽ+u and p = p̃+q, we can conclude
that (v, p) is a solution of the mixed problem (10) if and only if (u, q) ∈ [H1(G)]3 × L2(G) is a
solution of the mixed problem

∆u = ∇q, div u = 0 in G,
u = 0 on ∂G \ Γ,
uτ = 0 on Γ,
[T (u, q)n + au] · n = g̃n on Γ,

(17)

where g̃ = g − [T (ṽ, p̃)n + aṽ].
Denote

XΓ =
{

v ∈ VΓ(∂G);
∫

∂G
v · nG dσy = 0

}
.

9



Clearly, VΓ(∂G) and XΓ are closed subspaces of [H1/2(G)]3, and VΓ(∂G) is the direct sum of XΓ

and {cΘ; c ∈ R}. We denote also the spaces YΓ = {Ψ ∈ [H−1/2(∂G)]3; Ẽ•
GΨ ∈ XΓ} and

Y 0
Γ = {Ψ ∈ YΓ;

∫
G
[ẼGΨ]4 dy = 0}.

For f ∈ XΓ there exists a unique solution v ∈ [H1(G)]3 and p ∈ L2(G) of the Stokes system
in G such that v = f on ∂G and ∫

G
p dy = 0,

see for example [7, Chapter IV]. Proposition 4.1 implies that Ẽ•
G is a bounded continuously

invertible operator from Y 0
Γ onto XΓ. Thus {Ẽ•

GΨ;Ψ ∈ YΓ} = XΓ.
If Ψ ∈ YΓ then ẼGΨ is a solution of the mixed problem (17) if and only if T a

2 Ψ = g̃n|Γ.
Since V ′

Γ(∂G) is the dual space of VΓ(∂G), we have T a
2 Ψ = g̃n|Γ if and only if 〈T a

2 Ψ,w〉 = 〈g̃,w〉
for all w ∈ VΓ(∂G) (i.e. for w = Θ and w = Ẽ•

GΦ with Φ ∈ YΓ).
Denote ZΓ = {Ẽ•

GΨ|G;Ψ ∈ YΓ}. Then ZΓ is a closed subspace of [H1(G)]3. Since the inner
product ( , ) given by (16) define an equivalent norm in [H1(G)]3, the Riesz representation
theorem implies that there exists unique w ∈ ZΓ such that (w, w̃) = 〈g̃, w̃〉 for all w̃ ∈ ZΓ.
Fix Ψ ∈ YΓ such that w = Ẽ•

GΨ. Then 〈T a
2 Ψ, w̃〉 = 〈g̃, w̃〉 for all w̃ = Ẽ•

GΦ with Φ ∈ YΓ.
Denote by ω the unbounded component of R3 \ G. Then EGnω = [0, 0, 0, 1] in G, see for
example [35, §3.2], and ẼGnω = [0, 0, 0, 1] in G. If c ∈ R then Ẽ•

G(Ψ + cnω) = w and therefore
〈T a

2 (Ψ + cnω), w̃〉 = 〈g̃, w̃〉 for all w̃ = Ẽ•
GΦ with Φ ∈ YΓ. Now we choose c ∈ R such that

〈T a
2 (Ψ + cnω),Θ〉 = 〈g̃,Θ〉. We have proved that there exists a solution of the problem (10).
If f ∈ [H1/2(∂G)]3 and g ∈ [H−1/2(∂G)]3 then there exists a unique solution v ∈ [H1(G)]3,

p ∈ L2(Ω) of the problem (10). According to Proposition 4.1 there exists a unique Ψ ∈
[H−1/2(∂G)]3 such that (v, p) = ẼGΨ. Remark that ẼGΨ is a solution of the problem (10)
if and only if T Ψ = [f |∂G\Γ,f τ |Γ, gn|Γ]. Thus the operator T is a continuous injective operator
from [H−1/2(∂G)]3 onto WΓ(∂G) × V ′

Γ(∂G). Therefore, according to [39, Theorem 3.8], the
operator T is continuously invertible.

5 Stokes–Darcy problem

Let Ω ⊂ R3 be a bounded domain and suppose that ΩS is a subdomain of Ω with Lipschitz
boundary such that ΩD = Ω\ΩS has Lipschitz boundary. We denote Γ = ∂ΩS∩∂ΩD. Let k and
η be positive constants. For given g ∈ [H−1/2(∂ΩS)]3, f ∈ [H1/2(∂ΩS)]3 and h ∈ H−1/2(∂ΩD)
we shall look for a solution (vS , pS) ∈ [H1(ΩS)]3×L2(ΩS), and (vD, pD) ∈ [L2(ΩD)]3×H1(ΩD)
of the coupled Stokes-Darcy problem

−∆vS +∇pS = 0, div vS = 0 in ΩS ,

vD +∇pD = 0, div vD = 0 in ΩD,

vS = f on ∂ΩS \ Γ,

vD · n = h on ∂ΩD \ Γ,

vD · n− vS · n = h, vS
τ = fτ on Γ,

η[T (vS , pS)n] · n + pD/k + vD · n = gn on Γ.

(18)

Here n = nS on ∂ΩS , n = −nD on ∂ΩD. We suppose that there exists Θ ∈ [H1(ΩS)]3 such
that Θ = 0 on ∂Ω \ Γ with Θτ = 0 on Γ, and satisfies∫

Γ
Θ · n dy = 1 .
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Notice that this condition is fulfilled if Γ contains a nontrivial smooth surface.
Suppose now that (vS , pS) ∈ [H1(ΩS)]3×L2(ΩS), (vD, pD) ∈ [L2(Ω)]3×H1(ΩD) is a solution

of the problem (18). Then, by Proposition 3.2, pD = Sψ with ψ ∈ H−1/2(∂ΩD), where Sψ =
SGψ and G = ΩD. We notice that ∆pD = div∇pS = −div vD = 0 in ΩD.

If ∂ΩS is connected we denote ẼΨ = EGΨ with G = ΩS . In the case ∂ΩS is not connected,
we denote by C1, . . . , Ck all bounded components of R3 \ΩS and consider fixed points zj ∈ Cj ,
for j = 1, . . . , k. Then as in (12) and (13), for Ψ ∈ [H−1/2(∂ΩS)]3 we can define ẼΨ := ẼGΨ
with G = ΩS . According to Proposition 4.1 there exists a unique Ψ ∈ [H−1/2(∂ΩS)]3 such that
(vS , pS) = ẼΨ. Thus, for integral representation of solutions of (18), we shall look for a solution
in that form.

Now we denote by K∆ the operator K∆
G defined by (4) for G = ΩD. Let WΓ(∂ΩS), VΓ(∂ΩS)

and V ′
Γ(∂ΩS) be spaces from §4. We consider T1 a bounded linear operator from [H−1/2(∂ΩS)]3

to WΓ(∂ΩS) given by (14) for G = ΩS . For a constant a ∈ R we denote by T a
2 a bounded

operator from [H−1/2(∂Ωs)]3 to V ′
Γ(∂Ωs) defined by (15) with G = ΩS .

For ψ ∈ H−1/2(∂ΩD) and Ψ ∈ [H−1/2(∂ΩS)]3 we define

T3(ψ,Ψ) = [ψ/2−K∆ψ − χΓn · Ẽ•Ψ, T1Ψ, ηT 0
2 Ψ + k−1Sψ + ψ/2−K∆ψ],

where χΓ is the characteristic function of Γ.

Proposition 5.1 If ψ ∈ H−1/2(∂ΩD), Ψ ∈ [H−1/2(∂ΩS)]3 then (vS , pS) = ẼΨ, and pD = Sψ,
vD = −∇pD is a solution of the problem (18) if and only if T3(ψ,Ψ) = [h,f |∂ΩS\Γ,f τ |Γ, gn|Γ].
The operator T3 : H−1/2(∂ΩD) × [H−1/2(∂ΩS)]3 → H−1/2(∂ΩD) × WΓ(∂ΩS) × V ′

Γ(∂ΩS) is a
Fredholm operator with index 0.

Proof. For ψ ∈ H−1/2(∂ΩD) and Ψ ∈ H−1/2(∂ΩS)]3 easy calculation ensures that (vS , pS) =
ẼΨ, and pD = Sψ, vD = −∇pD is a solution of the problem (18) if and only if T3(ψ,Ψ) =
[h,f |∂ΩS\Γ,f τ |Γ, gn|Γ].

For ψ ∈ H−1/2(∂ΩD) and Ψ ∈ [H−1/2(∂ΩS)]3 we define the operator

T4(ψ,Ψ) = [ψ/2−K∆ψ + Sψ, T1Ψ, ηT 1
2 Ψ + k−1Sψ +

1
2
ψ −K∆ψ]

and shall show that T4 is a continuously invertible bounded linear operator from H−1/2(∂ΩD)×
[H−1/2(∂ΩS)]3 to H−1/2(∂ΩD)×WΓ(∂ΩS)× V ′

Γ(∂ΩS).
For h ∈ H−1/2(∂ΩD), f ∈ [H1/2(∂ΩS)]3, and g ∈ [H−1/2(∂ΩS)]3, due to Proposition 3.3,

there exists a unique ψ ∈ H−1/2(∂ΩD) such that K∆ψ − 1
2ψ − Sψ = h. Then Proposition 4.2

ensures that there exists a unique Ψ ∈ [H−1/2(∂ΩS)]3 such that T1Ψ = [f |∂ΩS\Γ,fτ |Γ] and
ηT 1

2 Ψ = gn−k−1Sψ− 1
2ψ+K∆ψ. Since T4 is an injective bounded linear operatorH−1/2(∂ΩD)×

[H−1/2(∂ΩS)]3 onto H−1/2(∂ΩD)×WΓ(∂ΩS)× V ′
Γ(∂ΩS), applying e.g. Theorem 3.8 in [39], we

obtain that T4 is continuously invertible.
For ψ ∈ H−1/2(∂ΩD) and Ψ ∈ [H−1/2(∂ΩS)]3 we have that

[T3 − T4](ψ,Ψ) = [−Sψ − χΓn · Ẽ•Ψ, 0,−ηẼ•Ψ].

S is a bounded linear operator from H−1/2(∂ΩD) to H1/2(∂ΩD), see for example [28, Theorem
4.1], and therefore a compact operator on H−1/2(∂ΩD). Similarly, Ẽ• is a bounded linear op-
erator from [H−1/2(∂ΩS)]3 to [H1/2(∂ΩS)]3, [27, Proposition 4.10] and a compact operator on
[H−1/2(∂ΩS)]3. Thus χΓn ·Ẽ• is a compact operator from [H−1/2(∂ΩS)]3 to H−1/2(∂ΩD). Alto-
gether, [T3−T4] is a compact linear operator fromH−1/2(∂ΩD)×[H−1/2(∂ΩS)]3 toH−1/2(∂ΩD)×
WΓ(∂ΩS) × V ′

Γ(∂ΩS). Since T4 is invertible, T3 is a Fredholm operator with index 0, see [30,
§ 16, Theorem 16].
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Proposition 5.2 Let (vS , pS) ∈ [H1(ΩS)]3 ×L2(ΩS) and (vD, pD) ∈ [L2(ΩD)]3 ×H1(ΩD) be a
solution of the problem (18) with f ≡ 0, h ≡ 0, and g ≡ 0. Then there exists a constant c such
that pS = c, vS ≡ 0, vD ≡ 0, and pD = kηc. On the other hand, if pS = c, vS ≡ 0, vD ≡ 0,
pD = kηc for some constant c then vS, pS, vD, pD is a solution of the problem (18) with f ≡ 0,
h ≡ 0, and g ≡ 0.

Proof. Since vS · n = vD · n = −∂pD/∂nS = ∂pD/∂nD we have, using Green’s formula,

0 =
∫

Γ
(vS · n){η[T (vS , pS)nS ] · n + pD/k + vD · n} dσy

+
∫

Γ
vS

τ{[ηT (vS , pS)nS ]τ dσy +
∫

∂ΩS\Γ
ηvS · T (vS , pS)nS dσy

+
∫

∂ΩD\Γ
(vD · n)

pD

k
dσy =

∫
∂ΩS

ηvS · T (vS , pS)nS dσy +
∫

∂ΩD

pD

k

∂pD

∂nD
dσy

+
∫

Γ
|vS · n|2 dσy =

∫
ΩS

2η|DvS |2 dy +
∫

ΩD

|∇pD|2

k
dy +

∫
Γ
|vS · n|2 dσy.

(19)

Therefore vS · n = 0 on Γ, DvS = 0 in ΩS and ∇pD = 0 in ΩD. So, vS = 0 on ∂ΩS . Since
DvS ≡ 0, we obtain that the functions vS

j , for j = 1, 2, 3 are affine, [26, Lemma 6], and therefore
harmonic. The maximum principle for harmonic functions gives that vS

j ≡ 0, for j = 1, 2, 3.
Since ∇pS = ∆vS = 0 there exists a constant c such that pS = c. Since ∇pD = 0 in ΩD

the function pS is constant on each component of ΩD. Therefore vD = −∇pD = 0. Using the
boundary conditions 0 = η[T (vS , pS)nS ] ·n+pD/k+vD ·n = −ηc+pD/k on Γ, we can conclude
that pD = kηc.

Theorem 5.3 For g ∈ [H−1/2(∂ΩS)]3, f ∈ [H1/2(∂ΩS)]3, and h ∈ H−1/2(∂ΩD), there exists a
solution of the problem (18) if and only if

〈h, 1〉 =
∫

∂ΩS\Γ
nS · f dσy. (20)

Proof. Let (vS , pS) ∈ [H1(ΩS)]3 × L2(ΩS), and vD ∈ [L2(ΩD)]3, pD ∈ H1(ΩD) be a solution
of the problem (18). Since ∆pD = 0 for ϕ ≡ 1 we obtain that

〈∂pD/∂nD, 1〉 =
∫

ΩD

∇pD · ∇ϕ dy = 0.

Considering div vS = 0, Green’s theorem gives∫
∂ΩS

nS · vS dσy = 0,

compare [7, Chapter IV]. Since n = nS on ∂ΩS , n = −nD on ∂ΩD, and ∂pD/∂nD = −nD ·vD =
n · vD we have

0 = 〈∂pD/∂nD, 1〉 = 〈h, 1〉+
∫

Γ
nS · vS dσy −

∫
∂ΩS

vS · nS dσy

= 〈h, 1〉 −
∫

∂ΩS\Γ
f · nS dσy.
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Now for ψ ∈ H−1/2(∂ΩD) and Ψ ∈ [H−1/2(∂ΩS)]3 we consider (vS , pS) = ẼΨ, and pD = Sψ,
vD = −∇pD. Then by Proposition 5.1 , (vS , pS) and (vD, pD) is a solution of the problem (18)
if and only if T3(ψ,Ψ) = [h,f |∂ΩS\Γ,f τ |Γ, gn|Γ]. Suppose now that T3(ψ,Ψ) = 0. According
to Proposition 5.2 there exists a constant c such that ẼΨ = [0, 0, 0, c] and Sψ = kηc. This,
together with Proposition 3.2 and Proposition 4.1, yields that the dimension of the kernel of T3

is at most 1. The condition (20) forces that the codimension of the range of T3 is at least 1. Since
T3 is a Fredholm operator with index 0 we infer that codim T3(H−1/2(∂ΩD)× [H−1/2(∂ΩS)]3) =
dim Ker T3 = 1. Hence the Stokes-Darcy problem is solvable if and only if the compatibility
condition (20) holds true.

Corollary 5.4 Let η and k be positive constants. For g ∈ [H−1/2(∂ΩS)]3 there exists a solution
(vS , pS) ∈ [H1(ΩS)]3 × L2(ΩS), and (vD, pD) ∈ [L2(ΩD)]3 × H1(ΩD) of the problem (1). If
ṽS ∈ [H1(ΩS)]3, p̃S ∈ L2(ΩS), ṽD ∈ [L2(ΩD)]3, and p̃D ∈ H1(ΩD), then ṽS, p̃S, ṽD, p̃D is a
solution of the problem (1) if and only if there exists a constant c such that ṽS = vS, ṽD = vD,
p̃S = pS + c, p̃D = pD + c.

Proof . If we set qD = kpD, qS = pS/η then vS , pS , vD, pD is a solution of the problem (1) if
and only if vS , qS , vD, qD is a solution of the problem (18) with f = 0, h = 0. The rest follows
from Theorem 5.3 and Proposition 5.2.
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Math. Z. 32 (1930), 329–375.

[37] A. Quarteroni, M. Discacciati. Navier-Stokes/Darcy Coupling: Modeling, Analysis, and
Numerical Approximation. Rev. Mat. Comput., 22 (2009), 315–426.

[38] B. Reidinger, O. Steinbach. A symmetric boundary element method for the Stokes problem
in multiple connected domains. Math. Meth. Appl. Sci. 26 (2003), 77–93

[39] M. Schechter. Principles of Functional Analysis. American Mathematical Society, Provi-
dence, Rhode Island 2002

[40] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems.
Finite and Boundary Elements. Springer, New York 2008

[41] O. Steinbach, W. L. Wendland: On C. Neumann’s method for second-order elliptic systems
in domains with non-smooth boundaries. J. Math. Anal. Appl. 262 (2001), 733–748

[42] E. Steudle. Water uptake by plant roots: an integration of views. Plant Soil, 226 (2000),
45 – 56.

[43] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces. Springer-Verlag,
Berlin Heidelberg 2007

[44] W. Varnhorn, The Stokes equations, Akademie Verlag, Berlin, 1994.

Dagmar Medkova
Mathematical Institute of the Academy of Sciences of the Czech Republic,
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