
PAC = PAExactand other Equivalent Models in LearningNader H. Bshouty �Department of Computer ScienceTechnion, 32000Haifa, Israelbshouty@cs.technion.ac.il Dmitry GavinskyDepartment of Computer ScienceTechnion, 32000Haifa, Israeldemitry@cs.technion.ac.ilAbstractThe Probably Almost Exact model (PAExact)[BJT02] can be viewed as the Exact model relaxed sothat1. The counterexamples to equivalence queries aredistributionally drawn rather than adversariallychosen.2. The output hypothesis is equal to the target withnegligible error (1=!(poly) for any poly).This model allows studying (Almost) Exact learn-ability of in�nite classes and is in some sense analo-gous to the Exact-learning model for �nite classes.It is known that PAExact-learnable) PAC-learnable [BJT02]. In this paper we show that if aclass is PAC-learnable (in polynomial time) then it isPAExact-learnable (in polynomial time). Therefore,PAExact-learnable = PAC-learnable.It follows from this result that if a class is PAC-learnable then it is learnable in the Probabilistic Pre-diction model from examples with an algorithm thatruns in polynomial time for each prediction (polyno-mial in log(the number of trials)) and that after poly-nomial number of mistakes achieves a hypothesis thatpredicts the target with probability 1� 1=2poly.We also show that if a class is PAC-learnable inparallel then it is PAExact-learnable in parallel.Those and other results mentioned in the introduc-tion answer the open problems posed in [B97, BJT02].�This research was supported by the fund for promotion ofresearch at the Technion. Research no. 120-025.

1. IntroductionIn this paper we study two learning models that liebetween the PAC and Exact models. The ProbablyExact model (PExact) model, introduced by Bshouty[B97], is the Exact model (learning exactly the targetfunction from equivalence queries) in which each coun-terexample to an equivalence query EQD is drawn ac-cording to a distribution D rather than maliciouslychosen. When the concept class is in�nite it is impos-sible to achieve an exact learning of the target. TheProbably Almost Exact model (PAExact), introducedby Bshouty, Jackson and Tamon [BJT02], is the sameas the PExact model but requires that the hypothe-sis produced by the learning algorithm have negligible(1=!(poly)) error.The goal of learning is to make computers (learn-ers) build (learn) a simulator (hypothesis) that simu-lates (this depends on the model) a phenomena (targetfunction) from observed examples of inputs (the do-main of the function) and outputs (the value of thefunction) assuming the input is generated accordingto some �xed distribution D. Since we (the learner)cannot e�ciently (in polynomial time) learn any tar-get function (by simple counting argument) we alsoassume that it is given a class C (concept class) ofhypothesis and there is a hypothesis h 2 C that sim-ulates the target. In the PAC learning model \simu-late" means that the simulator can predict the outputof a random input (according to D) with probabilityat least 1��. So PAC learnability of C implies that wecan e�ciently build a simulator h for such phenomenasuch that for a random input, h simulates it correctlywith probability at least 1� �. On the other hand Ex-act learnability of C implies that the learner can learnsuch simulator from any observed example and canupdate the simulator after each error and after small1

(polynomial) number of errors it gets a perfect simu-lator. That is, a simulator that does not error. Thedisadvantage of the PAC model is in that the simu-lator is not perfect. Especially when an error in thesimulator cost us a fortune. On the other hand, theExact model disadvantage is in that the concept classwe learn (by counting arguments) must be �nite andeach concept in the class must have small represen-tation. Also an Exact learner must be able to learnthe function in all the domain points even points thatwill not be relevant for the simulation. The PAExactlearning model is a model that addresses those disad-vantages. It is a model in which the learner can updatethe simulator after each mistake and at the same timedoes not require a perfect simulator but a very closeto a perfect one. That is, after small number (poly-nomial) of mistakes the simulator will err with verysmall (1=!(poly)) probability. In this model the classcan be in�nite and the simulator will be (with prob-ability exponentially close to 1) perfect against anypolynomial time algorithm. The PExact-model ad-dresses the case when a PAExact-learning algorithmcan achieve a probability of error that is less thanD(x)for any x in the domain. That is, the simulator isperfect after polynomial number of errors. Therefore,PExact-model studies exact learnability when the ex-amples of the domain inputs are generated accordingto some distribution (e.g., uniform distribution).In [BJT02], Bshouty et al. showed that Exact-learnable) PExact-learnable) PAExact-learnable) PAC-learnable. They also showed that underthe standard cryptographic assumption that one-wayfunctions exist, PExact-learnable 6= PAC-learnable(Based on the construction in [B94]).In this paper we show that PAC-learnable =PAExact-learnable. We have two constructions. The�rst construction is similar to Schapire boosting algo-rithm [S90]. In Schapire boosting algorithm a PAC-learning algorithm that learns with error � can beturned into a PAC-learning algorithm that PAC-learnswith error �0 = 3�2+2�3 that runs in polynomial timein 1=�. Using Schapire construction the algorithm willnot run in polynomial time when � = 1=!(poly). Inour construction we start from a PAC-learning algo-rithm that learns with error � and runs in time T1and an PAExact-learning algorithm that learns witherror � and runs in time T2 and construct an PAExact-learning algorithm that learns with error �� and runsin time T1 + cT2 for some constant c > 2. We usethis construction logpoly times and gets a polynomialtime algorithm that PAExact-learns the class with er-ror 1=polyO(log poly) = 1=!(poly).

The second construction is based on Mansour andMcAllester [MA00] boosting algorithmand uses equiv-alence queries with randomized hypotheses. Weuse their booster with a hypothesis H�0 that �0-approximates the target and learn a new hypothe-sis H�0=2 that �0=2-approximates the target in timelog5(1=�0). Therefore in time log6(1=�) we can learna hypothesis with error �. That is, after poly-nomial time we learn a hypothesis with error lessthan 1=2poly . This shows that under bounded poly-bit distributions (distributions such that D(x) = 0or D(x) � 1=2poly) PExact-learnable = PAExact-learnable = PAC-learnable. It follows from this resultthat if a class is PAC-learnable then it is learnablein the Probabilistic Prediction model from exampleswith an algorithm that runs in polynomial time foreach prediction (polynomial in log(the number of tri-als)) and that after polynomial number of mistakesachieves a hypothesis that predicts the target withprobability 1 � 1=2poly. Speci�cally, after d mistakeswe achieve a hypothesis with error� = 12min(d1=6;(d=w)1=5)where w is the complexity of the PAC learning al-gorithm with constant �. Previous algorithms run inpolynomial time in the number of trials (and expo-nential in the number of mistakes d) to achieve sucherror.For bounded poly-bit distributions it learns the tar-get exactly after polynomial number of mistakes. Forexample, for the uniform distribution over f0; 1gn ouralgorithm learns the target exactly in polynomial timeafter n5max(n;w) mistakes.For each of the above models M we de�ne thedeterministic models D-M (e.g. D{PAC, D-Exact)where the learner is a deterministic algorithm. Thatis, the con�dence parameter � is provided only toaccount for uncertainty inherent in accessing exam-ples through the probability distribution D and notto cover any randomness in the algorithm itself. In[BJT02] Bshouty et al. showed that D-Exact-learning= D-PExact-learning. It is easy to show that any ran-domized PAExact and PAC learning algorithm can bechanged into a deterministic one. This can be donesimply by replacing the random bits in the algorithmby bits that can be generated from the oracle.The following diagrams summarize the currentstate of our knowledge:D-Exact = D-PExact D-PAExact= D-PAC+ +)6(k kExact) PExact PAExact = PAC2

and under bounded poly-bit distribution we haveExact)6(PExactbpb = PAExactbpb = PACbpb:Unsolved open problems still remain: (1)Exact = PExact?, (2) Exact = D-Exact?. Noticethat if PExact = D-PExact then Exact = PExact andExact = D-Exact.In section 2 we de�ne the learning models. In sec-tion 3 we give the �rst construction and prove thatPAC=PAExact. In section 3 we give the second con-struction that achieve error 1=2poly.2. Learning Models and De�nitionsIn learning, a teacher has a target function f 2 Cwhere f : X ! f0; 1g and a target distribution D overX . The learner knows X and C but does not knowthe distribution D nor the function f .The term \polynomial" and the problem size nota-tion If that we will use in this paper depends on X, Cand f and it can be di�erent in di�erent settings. Forexample, for Boolean functions f0; 1gn! f0; 1g, C isa set of formulas (e.g. DNF, Decision tree, etc.) and\polynomial"means poly(n; sizeC (f)) where sizeC (f)is the minimal size formula in C that is equivalent tof . We always de�ne If such that \polynomial" willmean poly(If). Then If can be de�ned as the sum ofthe parameters in the poly. So in the above Booleancase If = n+ sizeC (f). For in�nite domains X theparameter n is usually replaced by the VC-dimensionof the class V C(C) and If = V C(C) + sizeC (f).The learner can ask the teacher queries about thetarget. The queries we consider in this paper are:Example Query according to D (ExD) [V84] Forthe example query the teacher chooses x 2 X accord-ing to a distribution D and returns (x; f(x)) to thelearner.Equivalence Query (EQ) [A88] For the equivalencequery the learner asks EQ(h) for some polynomialsize circuit h. The teacher (which can be an ad-versary with unlimited computational power) choosesy 2 Xf�h = fx j f(x) 6= h(x)g and returns y. If Xf�his empty, the teacher answers \YES", indicating thath is equivalent to f .Equivalence Query according to D (EQD)[B97]For the equivalence query according to D the learnerasks EQD(h) for some polynomial size circuit h.The teacher chooses y 2 Xf�h according to theinduced distribution of D on Xf�h and returns y. IfPrD[Xf�h] = 0, the teacher answer \YES", indicatingthat h is equivalent to f over ZD(X) = fxjD(x) 6= 0g.

The EQD can be extended to also handle randomhypothesis. A random hypothesis hr : X�R! f0; 1gis a polynomial size circuit where for an input x0 2 Xit randomly uniformly chooses r0 2 R and returnshr0(x0). In that case, EQD(hr(x)) returns an outputof the following1. Choose x0 2D X.2. Choose r0 2 R.3. if f(x0) 6= hr0 (x0) then output(x0; f(x0)) elsegoto (1).That is, each x0 is received with probabilityD(x0) Prr [hr(x0) 6= f(x0)]PxD(x) Prr [hr(x) 6= f(x)] :We say that the hypothesis hr �-approximates fwith respect to D ifEr[PrD [f(x) 6= h(x)]] � �where here and elsewhere PrD denotes Prx2DX .The learning models we will consider in this paperarePAC (Probably Approximately Correct)[V84] In thePAC learning model we say that an algorithm A ofthe learner PAC-learns the class C if for any f 2 C,any distribution D and for any �; � > 0 the algorithmA(�; �) asks example queries according to D, ExD andwith probability at least 1� �, outputs a hypothesish 2 C that �-approximates f according to D. We saythat C is PAC-learnable if there is an algorithm thatPAC-learns C in time poly(1=�; log(1=�); If).Exact (Exactly Correct) [A88] In the Exact model wesay that algorithm A of the learner Exact-learns theclass C if for any f 2 C and for any � the algorithmA(�) asks equivalence queries and with probability atleast 1� � outputs a polynomial size hypothesis h thatis equivalent to f . We say that C is Exact-learnableif there is an algorithm that Exact-learns C in timepoly(log(1=�); If).PExact (Probably Exactly Correct) [B97] In theProbably Exact model we say that algorithm A of thelearner Probably Exact-learns the class C if for anyf 2 C and for any � the algorithm A(�) asks equiva-lence queries with respect to D, EQD and with prob-ability at least 1� � outputs a polynomial size cir-cuit h that satis�es PrD[Xf�h] = 0: We say that C isProbably Exact-learnable if there is an algorithm thatProbably Exact-learns C in time poly(log(1=�); If).PAExact (Probably Almost Exactly Correct)[BJT02] In the Almost Exact model we say that algo-rithmA of the learner Almost Exact-learns the class C3

if for any f 2 C and for any � the algorithmA(�) asksequivalence queries with respect to D, EQD and withprobability at least 1� � outputs a polynomial sizecircuit h that satis�es PrD[Xf�h] = 1=!(poly(If)):We say that C is Almost Exact-learnable if there isan algorithm that Almost Exact-learns C in timepoly(log(1=�); If).In the online learning model [L88] the teacher sendsa point x 2 X to the learner and the learner has to pre-dict f(x). The learner returns to the teacher the pre-diction y. If f(x) 6= y then the teacher returns \mis-take" to the learner. The goal of the learner is tominimize the number prediction mistakes.Online [L88] In the online model we say that algo-rithm A of the learner Online-learns the class C if forany f 2 C and for any �, algorithm A(�) with prob-ability at least 1� � makes bounded number of mis-takes. We say that C is Online-learnable if the num-ber of mistakes and the running time of the learner foreach prediction is poly(log(1=�); If).Probabilistic Prediction (PP) [HLW94] In theProbabilistic Prediction the points sent to the learnerare chosen from X according to some distribution D.We say an algorithm A of the learner �-PP-learns theclass C if for any f 2 C and for any � the algorithmA(�) with probability at least 1� � after boundednumber of mistakes can predict the answer with prob-ability greater than 1� �. We say that C is �-PP-learnable if the number of mistakes and the runningtime of the learner at each trial is poly(log(1=�); If).It is known that Exact-learnable=Online-learnable [L88] and PAC-learnable=1=poly(If)-PP-learnable [HLW94]. In the same way onecan prove that PAExact-learnable=1=poly(If)-PP-learnable. Our result in this paper implies thatPAC-learnable=PAExact-learnable=1=2poly(If)-PP-learnable.3. Boosting in the PAExact-modelIn this section we prove the following two TheoremsTheorem 1 If C is PAC-learnable then C isPAExact-learnable.Theorem 2 If C is PAC-learnable then C is1=I log Iff -PP-learnable.Our proof is similar to Shapire boosting algorithm[S90]. We �rst proveTheorem 3 Let C be a class of functions. Let A(�; �)be a PAC-learning algorithm that learns the class

R(B,A)1) Run B(�; 1=32)! h12) Run A(�2=2; 1=32)! h2ExD ! (is replaced with)with prob. 1=2 ask EQD(h1)with prob. 1=2 ask EQD(�h1)3) Run B(�; 1=32)! gEQD(g) ! EQSimulate(g)4) Output (Maj(h1; h2; g))The algorithm R(B;A).C with error � < 1=8 and con�dence � in timemA(�; �; If). Let B(�; �) be a PAExact-learning algo-rithm that learns the class C with error � < �=4 andcon�dence � in time mB(�; �; If). Then, there is anPAExact-learning algorithm R(B;A) that learns theclass C with error �� and con�dence 1=4 in timemR(B;A)(��; 1=8; If) � (c + 1)mB(�; 1=32; If) +mA(�2=2; 1=32; If);where c > 1 and mB(�; 1=32; If)(2�)c � 1=32.Proof. We start by describing the algorithm R =R(B;A). In the �rst step of R, it runs the al-gorithm B(�; 1=32) to get a hypothesis h1 in timemB(�; 1=32; If) where with probability at least 31=32we have PrD [h1 = f] � 1� �: (1)In the second step of R, the algorithm runsthe PAC learning algorithm A(�2=2; 1=32) in timemA(�2=2; 1=32; If) where each example is with proba-bility 1=2 an answer of EQD(h1) and with probability1=2 an answer of EQD(�h1). Algorithm A will learn ahypothesis h2. In the third step in R the algorithmruns B(�; 1=32) and replaces each query EQD(g) withEQSimulate(g). See next page.In the forth and last step of R, it takes the outputg of the third step and outputs Maj(h1; h2; g)Let h_ = h1_h2 and h^ = h1^h2:We now provethe following ClaimsClaim 4 With probability at least 31=32 we havePrD [h_ = 1 ^ f = 0] � �+�2; PrD [h_ = 0 ^ f = 1] � ��2;4

EQSimulate(g)1) i 02) Repeat EQD(Maj(h1; h2; g))! x; i i + 13) Until h1(x) 6= h2(x) or i = c.4) If i = c Then output g and HALT.Else return(x).PrD [h^ = 1 ^ f = 0] � ��2; PrD [h^ = 0 ^ f = 1] � �+�2;and PrD[h1 6= h2] � 2(� + �2):Claim 5 If at any stage in step 3, EQSimulate haltsand output g then with probability at least 29=32PrD [Maj(h1; h2; g) 6= f] � ��:Claim 6 If algorithm R does not halt in some callto EQSimulate then Algorithm A in step 3 will runin time (c+ 1)mA(�; 1=32; If) and with probability atleast 29=32 outputs a hypothesis h such thatPrD [Maj(h1; h2; g) 6= f] � ��:Proof of Claim 1. In the second step of algo-rithmR, it takesmA(�2=2; 1=32; If) examples S whereeach example in S is with probability 1/2 an answerof EQD(h1) and with probability 1=2 an answer ofEQD(�h1). Then it runs A(�2=2; 1=16) on S.Let D0 be the distribution of the examples in thesecond step of R. Let H1 = [h1 6= f] and H2 =[h2 6= f]. Then by (1) and the properties of A, withprobability at least 30=32,PrD [H1] � � and PrD0 [H2] � �22 :NowPrD0 [H2] = PrD0 [H2jH1] PrD0 [H1] + PrD0 [H2j �H1] PrD0 [�H1]= 12 PrD [H2jH1] + 12 PrD [H2j �H1];and since PrD0 [H2] � �2=2 we havePrD [H2jH1] � �2 and PrD [H2j �H1] � �2:Therefore, PrD[H2] � �2: Now we are ready to provethe claim. We havePrD[h_ = 1^ f = 0]� PrD[H1] + PrD[H2] � � + �2

andPrD [h_ = 0 ^ f = 1] = PrD [h1 = 0 ^ h2 = 0 ^ f = 1]� PrD [H1 ^H2]= PrD [H1] PrD [H2jH1] � ��2:In the same way it is easy to show thatPrD [h^ = 1 ^ f = 0] � ��2; PrD [h^ = 0 ^ f = 1] � �+�2:Now we havePrD [h1 6= h2] = PrD [h^ 6= h_]� PrD [h^ = 0 ^ f = 1] +PrD [h_ = 1 ^ f = 0]� 2(� + �2):�Proof of Claim 2. Suppose the algorithm haltsin some call to EQSimulate(g) and let S be the setof examples obtained from EQD(Maj(h1; h2; g)) instep 2 of EQSimulate(g). Then jSj = c and for ev-ery x 2 S we have h1(x) = h2(x). Since x is a coun-terexample we also have f(x) 6= h1(x) = h2(x) forevery x 2 S. Suppose g is not a \good" hypothesis,i.e., PrD[Maj(h1; h2; g)] � ��. The probability thatEQSimulate returns g isPrS [f 6= h1 = h2 jMaj(h1; h2; g) 6= f]:Denote M = [Maj(h1; h2; g) 6= f]. ThenPrS [f 6= h1 = h2 jM]= (PrD [f 6= h1 = h2 j M])c= �PrD[f 6= h1 = h2]PrD[M] �c� �PrD[h_ = 0 ^ f = 1] + PrD[h^ = 1 ^ f = 0]�� �c= (2�)c:Therefore, the probability that some EQSimulate re-turns a bad output is at mostmB(�; 1=32; If)(2�)c � 132 :Since failing in the �rst two steps of the algorithm canhappen with probability at most 2=32, the probabilitythat g is good is at least 29=32.�Proof of Claim 3. All the answers x of theequivalence queries in EQSimulate satis�es f(x) 6=5

Maj(h1(x); h2(x); g(x)) and h1(x) 6= h2(x). There-fore, Maj(h1(x); h2(x); g(x)) = g(x) and x is a coun-terexample of EQD0(g) where D0 is the induced distri-bution D on fxjh1(x) 6= h2(x)g. Therefore, if the al-gorithm does not halt on some EQSimulate then withprobability at least 31=32,PrD [g 6= f jh1 6= h2] � �:Therefore, with probability at least 29=32 we havePrD [Maj(h1; h2; g) 6= f]� PrD [h1 = h2 6= f] + PrD [g 6= f jh1 6= h2] PrD [h1 6= h2]= PrD [h_ = 0 ^ f = 1] + PrD [h^ = 1 ^ f = 0]+� PrD [h1 6= h2]� 2��2 + �(2(� + �2)) = 2�2 + 4��2 � ��:�We now show how to boost �. We denote by R?k thealgorithm that runs R k times and takes the majorityfunction Maj(hi) of the output hypotheses.Theorem 7 Let R be an PAExact-learning algorithmfor C that runs in time mR(�; �; If). Then for anyodd integer kmR?k �k + 12 �; (4�) k+12 ; If� � kmR(�; �; If):Proof. We run R k times and take the majority func-tion Maj(hi) of the outputs. It is clear that if atleast (k + 1)=2 of the outputs hi are good, i.e. sat-is�es PrD [hi 6= f] � �, then PrD[Maj(hi) 6= f] �(k + 1)�=2. Therefore,Pr �PrD [Maj(hi) 6= f] > k + 12 ��� Pr �k + 12 of PrD [hi 6= f] are greater than ��� � kk+12 �� k+12 � (4�) k+12 :�Now we are ready to prove our main result. LetA(�; �) be a polynomial time PAC-learning algorithmfor C that runs in time mA(�; �; If). SupposemA(1=I2f ; 1=32; If) � Ibf ;for some constant b. De�ne � = �2=2 and � = 1=(5If);and c a constant such that (c + 1) � log(9(c + 2)) �b: De�ne a sequence of PAExact-learning algorithmsB0; B1; : : : ; Blog If+1 whereB0 = A(�2=2; 1=32); Bi+1 = R(Bi; A)?9:Now it is easy to prove by induction

Lemma 8 For � = 9(c+ 2) we havemBi+1 ((5�)i+1�; 1=32; If) � �imA(�2=2; 1=32; If):Proof. For i = �1 we have mB0(�; 1=32; If) =mA(�2=2; 1=32; If). Now we havemBi+1 ((5�)i+1�; 1=32; If)� 9mR(Bi ;A)(�(5�)i�; 1=8; If) (2)� 9((c+ 1)mBi ((5�)i�; 1=32; If) +mA(�2=2; 1=32; If)) (3)� 9((c+ 1)�i�1mA(�2=2; 1=32; If) +mA(�2=2; 1=32; If)) (4)� �imA(�2=2; 1=32; If)In (2) we used Theorem 7. In (3) we used Theorem3. In (4) we used the induction hypothesis for i. Wenow show that the condition in Theorem 3 is true. Wehave mBi ((5�)i; 1=32; If)(2�)c� �i�1mA(�2=2; 1=32; If)(2�)c= �i�1Ibf 1Icf� Ib�c+log�f < 1If < 132 :Now we havemBlog If+1 (1=I log Iff ; 1=32; If)� I log�f mA(1=(30I2f); 1=32; If) = poly(If):Therefore Blog If+1 is a PAExact-learning algorithmthat runs in polynomial time and achieve error1=I log Iff . This complete the proof of Theorem 1and 2.�3.1. Parallel PAExact learningIn this subsection we showTheorem 9 If a class C is PAC-learnable in parallelthen C is PAExact-learnable in parallel.Proof Sketch. Let A be a parallel PAC-learning al-gorithm for C. For a PAExact-learning algorithm Bwe denote by PC(B) the parallel complexity of thealgorithm. Let Bi as de�ned before. ThenPC(Blog log If) = (log If)PC(A):and as before this algorithmachieve error 1=I log log Iff .�6

4. PAExact Learning with Error 1=2polyIn this section we prove the followingTheorem 10 If C is PAC-learnable then C is1=2poly-PP-learnable.4.1 Mansour-McAllester BoosterIn this section we give an overview of MansourMcAllester booster. Mansour and McAllester boosterin [MA00] is based on other boosting result introducedearlier by Kearns and Mansour in [KM96]. We denotethe algorithm by MA.The boosting algorithmMA constructs its �nal hy-pothesis h in the form of a branching program (fur-ther denoted as BP). The root and the internal nodesof this BP are marked with boolean function over X ,so that for any x 2 X the corresponding \path" fromthe root to one of the leaves of the BP may be found.This fact puts each x 2 X into correspondence withone of the BP's leaves. The leaves are marked withconstant boolean values.MA(d)de�ne a BP T0 a single node n1;0for j from 0 to d� 1 do:set wj+1, as speci�ed in [MA00]de�ne a BP Tj+1 to be Tj with nodesn1;j+1; :::; nwj+1;j+1 addedfor i from 1 to wj+1 do:de�ne Si;j ,finstances reaching ni;jgde�ne S(0)i;j , Si;j \ fxjf(x) = 0g,S(1)i;j , Si;j \ fxjf(x) = 1gde�neD0Si;j (x) ,8>>><>>>: 0 x =2 Si;jD(x)2�D(S(0)i;j) x 2 S(0)i;jD(x)2�D(S(1)i;j) x 2 S(1)i;jcall weak learner W , with dist. D0Si;jthe returned hypothesis marks ni;jend-forinstall edges from ni;j to ni;j+1,as speci�ed in [MA00]end-forreturn TdIn general, by ni;j we mean the i'th node from layerj . By Si;j we denote the sets of instances from X

which arrive at ni;j and by hi;j we denote the predicatewhich marks ni;j.At stage j in the loop of the booster (see algorithmMA(d)) the algorithm builds the nodes at the jthlevel of the BP. It de�nes for each node ni;j a dis-tribution D0Si;j on the set of points Si;j that arrives atthis node. Originally ([KM96]), this distribution wasaddressed as a balanced distribution. It gives nonzeroprobabilities only to instances from S, so that 1=2 ofthe probabilistic weight falls to \zeros" and 1=2 of theweight falls to \ones" of the target function f . Thenthe algorithmmarks the node ni;j with the hypothesishi;j returned by the weak learner W .In our case, the target concept class is PAC-learnable, therefore we obviously may assume thatW ,being faced with some instance distributionD0Si;j , pro-duces a hypothesis that c-approximates f w.r.t. D0Si;jwith some given constant accuracy c. To achieve error� the depth and width of the BP will bed(�) = O(ln(1=�)): (5)Note that in [MA00] this values (the depth and thesize) are not de�ned as functions of �, instead, the def-inition depends on certain measure of the algorithmprogress (namely, I , which we will consider later). Onthe other hand, the booster may stop adding new lay-ers to BP as soon as the required accuracy (above1� �) may be achieved by simply choosing \right"constant values for all the nodes of the last addedlayer. Suppose that S is the set of instances arrivingat certain leaf of the constructed hypothesis h (i.e., ata node without outgoing edges), then obviously, thechoice of the marking value for that leaf must be donein accordance with the classi�cation of the majority ofthe points which belong to S, if we are interested tolower the classi�cation error of h. In each constructedBP layer j ,it holds that the widthwj = O(ln(1=�)): (6)Together, expressions (5) and (6) provide us with thefollowing fact: If we address by h both the �nal hy-pothesis itself and its representation, as constructedby MA, and by jhj we denote the corresponding sizeof the representation, then it holds that:jhj = O(ln2(1=�)): (7)To install the edges from the nodes ni;j in level jto the nodes ni;j+1 in level j + 1 of the BP, they hadto estimate the value of I(S) where S = Si;j andq(S) , PrD [f(x) = 1jx 2 S];I(S) , 2p(1� q(S))q(S);7

4.2 Running MA with EQD OracleWe now want to run the MA algorithm with the EQDoracle to achieve exponentially small error.We have the following problems1. How to provide the distribution D0Si;j to the weaklearner?2. How to estimate I(S)?To be able to solve both problems we let ourPAExact-learning algorithm runs in stages. At eachstage the algorithm has some hypothesis H� that �-approximates the target function f and the learnergoal is to learn a new hypothesis H�=2 that �=2-approximates f . We will show that using H� andthe EQD oracle it is possible to generate examplesaccording to the balanced distribution D0Si;j and toestimate I(Si;j) as long as the weights of S(0)i;j = fx 2Si;j ; f(x) = 0g and S(1)i;j = fx 2 Si;j; f(x) = 1g ac-cording to D are greater than �=(4t) where t is the sizeof the �nal hypothesis (which can be estimated beforethe running of the algorithm). Once S(�)i;j weight isless than �=(4t), for some � 2 f0; 1g, we turn nodeni;j to a leaf node and label it with ��. The total er-ror of the hypothesis from those nodes is at most �=4.Our boosting algorithm will generate a BP of depthO(log(1=�)). This guarantee that the error from thenodes at the last level is at most �=4. Together, thegenerated hypothesis achieve error at most �=2.Therefore, to each level of the BP we will add twonodes. The 0- and 1-node. Those nodes are for setsthat cannot be samples with the balanced distribution.4.3. Sampling with EQD-OracleIn this section we show how to generate examples fromSi;j according to the balanced distributions D0Si;j forthe weak learner. This will solve the �rst problem.The balanced distribution is de�ned as follows: If wedenote by S = Si;j then the balanced distribution D0Sis D0S(x) = 8><>: 0 x =2 SD(x)2�D(fx2S;f(x)=0g) x 2 S; f(x) = 0D(x)2�D(fx2S;f(x)=1g) x 2 S; f(x) = 1 :We �rst show how an EQD-Oracle may be usedin order to sample e�ciently from superpolynomiallysmall subsets of X . Suppose that a certain subset Y

of X is de�ned by means of a polynomial time com-putable boolean function (or predicate) �Y as follows:Y = fy 2 Xj�Y (y) = 1g:Suppose that there exists some hypothesis h(x), andthe learner's quest is to sample e�ciently counterex-amples for h w.r.t. the target function f and D, butonly those coming from Y . We assume that Y is\small", so that repeated calls of EQD(h) until acounterexample from Y is received would be ine�-cient. Suppose further that the learner has a hypothe-sisH�(x) which �-approximates f w.r.t. D. Instead ofrepeated asking EQD(h) we will ask EQD(hY) wherehY (x) , � H�(x) �Y (x) = 0 (i:e:; x =2 Y)h(x) otherwise :A counterexample produced by the EQD-oracle as aresponse to EQD(hY) comes from Y with probabilityat least PrD [x 2 Y jhY 6= f]= PrD [h 6= f; x 2 Y jhY 6= f]= PrD[h 6= f; x 2 Y]PrD[hY 6= f]= PrD[h 6= f; x 2 Y]PrD[h 6= f; x 2 Y] + PrD[H� 6= f; x 62 Y]� PrD[h 6= f; x 2 Y]PrD[h 6= f; x 2 Y] + � :The above construction makes it possible to receivee�ciently a counterexample to h coming from the sub-set Y when PrD[h(x) 6= f(x); x 2 Y] is polynomiallysmaller than �. However, � itself, may be arbitrarilysmall.Still more important, the counterexample is gener-ated according to the target distribution D.Lemma 11 Let �Y (x) be a polynomial time com-putable boolean predicate over X and let Y = fy 2Xj�Y (y) = 1g. Suppose that we have a hypothesisH�(x) which is at least �-approximates f w.r.t. D andthat we can make queries to an EQD-oracle.Then a counterexample w.r.t. f for any hypothesish may be received so that this counterexample belongsto Y and is generated according to D. In average, thetime and the number of queries to the oracle requiredis O�1 + �PrD [h(x) 6= f(x); x 2 Y]� :8

This can be done using repeated calls of EQD(hY (x))wherehY (x) , � H�(x) �Y (x) = 0 (i:e:; x =2 Y)h(x) otherwise :�Now we consider the problem of generating bal-anced distributions for the weak learner. We try todo that using the above techniques.The following Corollary is based on Lemma 11.Corollary 12 Let S � X be a set of instances. LetH� be a hypothesis which at least �-approximates fw.r.t. D, and let �0 be some value smaller than �.Then there exists a procedure which with probability atleast 1� � either produces an example according to thebalanced distribution D0S or returns a constant valuea 2 f0; 1g such thatPrD [f(x) 6= a; x 2 S] � �0:The average time complexity of the procedure is poly-nomial in ln(1=�) and �=�0.Proof Sketch.UsingH�, we may construct the fol-lowing two hypotheses: For a 2 f0; 1gh(a)S , � H�(x) x =2 S1� a otherwise :If we pass h(0)S to the EQD-oracle many times, wewill accept an example from fx 2 S jf(x) = 0g afterthe average ofO�1 + �D(fx 2 S jf(x) = 0g)�calls to the oracle.�We will set �0 = �4t : (8)If a balanced distribution cannot be produced then byCorollary 12 for some a 2 f0; 1g we havePrD [f(x) 6= a; x 2 S] � �4t :Therefore labling the node corresponding to S with aconstant 1�a will add error at most �=4t. Labling allsuch nodes will add error at most �=4.

4.4 Estimating I(S)In this section we solve the second problem. We showthat using EQD with a randomized hypotheses, wecan estimate the value I(S). We proveLemma 13 Let S � X and H� be a hypothesis ap-proximating f , s.t. it holds:D (fx 2 X n Sjf(x) 6= H�(x)g) � �:Then using a EQD-oracle with randomized hy-pothesis, the values of q(S) and of 1� q(S) maybe found with constant multiplicative accuracy intime polynomial in log(1=min(fq(S); 1 � q(S)g));in �=D(fx 2 Sjf(x) = 1g) and in�=D(fx 2 Sjf(x) = 0g).Proof Sketch.Let us de�ne a random hypothesishps(x) ,8<: H�(x) x =2 S1 with probability p when x 2 S0 otherwise ;for any p 2 [0; 1]: Let us check what happens when hpsis sent to EQD: First assume that a counterexamplex0 comes from S, then not knowing what f(x0) is, wemay say that:Pr [f(x0) = 0]Pr [f(x0) = 1] = (1 � q(S))pq(S)(1 � p) ; (9)which follows from the above de�nition of hps.If for some p = p0 we could say thatPr [f(x0) = 0]Pr [f(x0) = 1] = 1��; (10)then, as follows from Equation (9), that would meanthat 1�q(S)q(S) = (1��) � 1�p0p0 :We use binary search (starting from p = 1=2) inorder to �nd a value for p; such that condition (10)holds.It remains to check how long will it take to receivea counterexample from S for hps. Without loss of gen-erality, we assume that q(S) < 1=2. In this case thevalue of parameter p will always remain equal or be-low 1=2 during the binary search. Therefore, for anyreturned counterexample x0 it holds:Pr [x0 2 S] =D(fx2Sjf(x)6=hps (x)g)D(fx2Sjf(x)6=hps (x)g)+D(fx2XnSjf(x)6=hps (x)g)� D(fx2Sjf(x)=0;hps (x)=1g)+D(fx2Sjf(x)=1;hps (x)=0g)�+D(fx2Sjf(x)=0;hps (x)=1g)+D(fx2Sjf(x)=1;hps (x)=0g)� D(fx2Sjf(x)=0;hps (x)=1g)+D(fx2Sjf(x)=1g)�1=2�+D(fx2Sjf(x)=0;hps (x)=1g)+D(fx2Sjf(x)=1g)�1=2� D(fx2Sjf(x)=1g)2�+D(fx2Sjf(x)=1g) :9

The result follows.�4.5 The Complexity of the AlgorithmThe algorithm runs in log(1=�) stages and at eachstage it builds a BP of size log2(1=�). To �nd the weakhypothesis at each node ni;j we run the weak learnerwith w = poly(If) examples where in the worst caseeach example can be received with log2(1=�) calls tothe EQD. To estimate I(S) we again use log2(1=�)calls to EQD and the binary search will take in theworst case log(1=�) steps. Therefore the total com-plexity is log5(1=�)w + log6(1=�):Therefore, after d mistakes we achieve a hypothesiswith error � = 12min(d1=6;(d=w)1=5)5 Open ProblemsHere we list some open problems.1. Is PExact=Exact?2. Is D-Exact=Exact?3. Is D-PExact=PExact? Notice that if D-PExact=PExact then D-Exact=Exact and PEx-act=Exact.4. Is PAC=1=2poly-PP with deterministic hypothe-ses?5. Find a more e�cient Booster.6. In [HLW94] it is shown that in the PP-learningmodel the error � � 12O(d=V C) where V C is theVC-dimension of C and d is the number of mis-takes. They also gave a double exponential timealgorithm that achieve this error. Then they gavean exponential time algorithm (in d) that achieveerror � � 12O((d=V C)1=2) assuming we can solve theconsistent hypothesis problem (�nd a hypothesish 2 C that is a consistent with the sample). Inthe second construction we showed that after dmistakes we achieve (in polynomial time in d) ahypothesis with error� = 12min(d1=6;(d=V C)1=5)assuming we can solve the consistent hypothesisproblem. Can we achieve a better error?7. Can we PAExact-learn DNF with membershipqueries under the uniform distribution?

References[A88] D. Angluin. Queries and concept learn-ing.Machine Learning 2(4), pp. 319-342,1988.[B94] A. Blum. Separating distribution-freeand mistake-bound learning models overthe boolean domain. SIAM Journal onComputing 23(5), pp. 990-1000, 1994.[B97] N. Bshouty. Exact learning of formulasin parallel. Machine Learning 26, pp. 25-41, 1997.[BJT02] N. Bshouty, J. Jackson and C. Tamon.Exploring learnability between exact andPAC. Proceedings of the 15th AnnualConference on Computational LearningTheory, , 2002.[HLW94] D. Haussler, N. Littlestone and M. War-muth. Predicting 0,1-functions on ran-domly drawn points. Information andComputation 115, pp. 248-292, 1994.[KM96] M. Kearns and Y. Mansour. On theBoosting Ability of Top-Down DecisionTree Learning Algorithms.Proceedings ofthe 28th Symposium on Theory of Com-puting, pp. 459-468, 1996.[L88] N. Littlestone. Learning quickly when ir-relevant attributes abound: a new linear-threshold learning algorithm. MachineLearning 2(4), pp. 285-318, 1988.[MA00] Y. Mansour and D. McAllester. Boostingusing Branching Programs. Proceedingsof the 13th Annual Conference on Com-putational Learning Theory, pp. 220-224,2000.[S90] R. E. Schapire. The strength of weaklearnability. Machine Learning 5(2), pp.197-227, 1990.[V84] L. Valiant. A theory of learnable. Com-munications of the ACM 27(11), pp.1134-1142, 1984.10

