PAC = PAEzxact
and other Equivalent Models in Learning

Nader H. Bshouty *

Department of Computer Science
Technion, 32000
Haifa, Israel

bshouty@cs.technion.ac.il

Abstract

The Probably Almost FEzact model (PAEzract)
[BJTO2] can be viewed as the Exact model relared so
that

1. The counterexamples to equivalence queries are
distributionally drawn rather than adversarially
chosen.

2. The output hypothesis is equal to the target with
negligible error (1/w(poly) for any poly).

This model allows studying (Almost) Fract learn-
ability of infinite classes and is in some sense analo-
gous to the Eract-learning model for finite classes.

It s known that PAFEzact-learnable = PAC-
learnable [BJTO02]. In this paper we show thal if a
class is PAC-learnable (in polynomial time) then it is
PAEzact-learnable (in polynomial time). Therefore,

PAFEzact-learnable = PAC-learnable.

It follows from this result that if a class 1s PAC-
learnable then it 1s learnable in the Probabilistic Pre-
diction model from eramples with an algorithm that
runs in polynomial time for each prediction (polyno-
mial in log(the number of trials)) and that after poly-
nomial number of mistakes achieves a hypothests that
predicts the target with probability 1 — 1/2P° .

We also show that if a class is PAC-learnable in
parallel then it is PAFExact-learnable in parallel.

Those and other results mentioned in the introduc-
tion answer the open problems posed in [B97, BJT02].

*This research was supported by the fund for promotion of
research at the Technion. Research no. 120-025.

Dmitry Gavinsky
Department of Computer Science
Technion, 32000
Haifa, Israel

demitry@cs.technion.ac.il

1. Introduction

In this paper we study two learning models that lie
between the PAC and Exact models. The Probably
Exact model (PExact) model, introduced by Bshouty
[BI7], is the Exact model (learning ezactly the target
function from equivalence queries) in which each coun-
terexample to an equivalence query F@Qp is drawn ac-
cording to a distribution D rather than maliciously
chosen. When the concept class is infinite it is impos-
sible to achieve an exact learning of the target. The
Probably Almost Exact model (PAExact), introduced
by Bshouty, Jackson and Tamon [BJT02], is the same
as the PExact model but requires that the hypothe-
sis produced by the learning algorithm have negligible
(1/w(poly)) error.

The goal of learning is to make computers (learn-
ers) build (learn) a simulator (hypothesis) that simu-
lates (this depends on the model) a phenomena (target
function) from observed examples of inputs (the do-
main of the function) and outputs (the value of the
function) assuming the input is generated according
to some fixed distribution D. Since we (the learner)
cannot efficiently (in polynomial time) learn any tar-
get function (by simple counting argument) we also
assume that it is given a class C' (concept class) of
hypothesis and there is a hypothesis A € C' that sim-
ulates the target. In the PAC learning model “simu-
late” means that the simulator can predict the output
of a random input (according to D) with probability
at least 1 —e. So PAC learnability of C' implies that we
can efficiently build a simulator h for such phenomena
such that for a random input, h simulates 1t correctly
with probability at least 1 —e. On the other hand Ex-
act learnability of C' implies that the learner can learn
such simulator from any observed example and can
update the simulator after each error and after small

(polynomial) number of errors it gets a perfect simu-
lator. That is, a simulator that does not error. The
disadvantage of the PAC model is in that the simu-
lator is not perfect. Especially when an error in the
simulator cost us a fortune. On the other hand, the
Exact model disadvantage is in that the concept class
we learn (by counting arguments) must be finite and
each concept in the class must have small represen-
tation. Also an Exact learner must be able to learn
the function in all the domain points even points that
will not be relevant for the simulation. The PAExact
learning model 1s a model that addresses those disad-
vantages. It is a model in which the learner can update
the simulator after each mistake and at the same time
does not require a perfect simulator but a very close
to a perfect one. That is, after small number (poly-
nomial) of mistakes the simulator will err with very
small (1/w(poly)) probability. In this model the class
can be infinite and the simulator will be (with prob-
ability exponentially close to 1) perfect against any
polynomial time algorithm. The PExact-model ad-
dresses the case when a PAExact-learning algorithm
can achieve a probability of error that is less than D(x)
for any x in the domain. That 1s, the simulator is
perfect after polynomial number of errors. Therefore,
PExact-model studies exact learnability when the ex-
amples of the domain inputs are generated according
to some distribution (e.g., uniform distribution).

In [BJT02], Bshouty et al. showed that Exact-
learnable = PExact-learnable = PAFExact-learnable
= PAC-learnable. They also showed that under
the standard cryptographic assumption that one-way
functions exist, PExact-learnable # PAC-learnable
(Based on the construction in [B94]).

In this paper we show that PAC-learnable =
PAExact-learnable. We have two constructions. The
first construction is similar to Schapire boosting algo-
rithm [S90]. In Schapire boosting algorithm a PAC-
learning algorithm that learns with error e can be
turned into a PAC-learning algorithm that PAC-learns
with error ¢ = 3¢2 4 2¢3 that runs in polynomial time
in 1/¢. Using Schapire construction the algorithm will
not run in polynomial time when ¢ = 1/w(poly). In
our construction we start from a PAC-learning algo-
rithm that learns with error ¢ and runs in time 73
and an PAExact-learning algorithm that learns with
error i7 and runs in time 75 and construct an PAExact-
learning algorithm that learns with error en and runs
in time 77 + ¢1% for some constant ¢ > 2. We use
this construction log poly times and gets a polynomial
time algorithm that PAExact-learns the class with er-
ror 1/poly©U1o8rely) = 1 /u(poly).

The second construction is based on Mansour and
McAllester [MAO00] boosting algorithm and uses equiv-
alence queries with randomized hypotheses. We
use their booster with a hypothesis H"° that 7g-
approximates the target and learn a new hypothe-
sis H"9/? that ny/2-approximates the target in time
log®(1/m0). Therefore in time log®(1/5) we can learn
a hypothesis with error 5. That is, after poly-
nomial time we learn a hypothesis with error less
than 1/2P°%. This shows that under bounded poly-
bit distributions (distributions such that D(z) = 0
or D(z) > 1/2r°¥) PExact-learnable = PAExact-
learnable = PAC-learnable. It follows from this result
that if a class 18 PAC-learnable then it is learnable
in the Probabilistic Prediction model from examples
with an algorithm that runs in polynomial time for
each prediction (polynomial in log(the number of tri-
als)) and that after polynomial number of mistakes
achieves a hypothesis that predicts the target with
probability 1 — 1/2P°%. Specifically, after d mistakes
we achieve a hypothesis with error

1
= Smin (4178 (dfw)i/5)

where w is the complexity of the PAC learning al-
gorithm with constant e. Previous algorithms run in
polynomial time in the number of trials (and expo-
nential in the number of mistakes d) to achieve such
error.

For bounded poly-bit distributions it learns the tar-
get exactly after polynomial number of mistakes. For
example, for the uniform distribution over {0, 1}" our
algorithm learns the target exactly in polynomial time
after n® max(n, w) mistakes.

For each of the above models M we define the
deterministic models D-M (e.g. D-PAC, D-Exact)
where the learner i1s a deterministic algorithm. That
is, the confidence parameter § is provided only to
account for uncertainty inherent in accessing exam-
ples through the probability distribution D and not
to cover any randomness in the algorithm itself. In
[BJT02] Bshouty et al. showed that D-Exact-learning
= D-PExact-learning. It is easy to show that any ran-
domized PAExact and PAC learning algorithm can be
changed into a deterministic one. This can be done
simply by replacing the random bits in the algorithm
by bits that can be generated from the oracle.

The following diagrams summarize the current
state of our knowledge:

D-Exact = D-PExact D-PAExact = D-PAC

=
v T [[

Exact = PExact PAExact = PAC

and under bounded poly-bit distribution we have

=

v

Unsolved open problems still remain: (1)
Exact = PExact?, (2) Exact = D-Exact?. Notice
that if PExact = D-PExact then Exact = PExact and
Exact = D-Exact.

In section 2 we define the learning models. In sec-
tion 3 we give the first construction and prove that
PAC=PAExact. In section 3 we give the second con-
struction that achieve error 1/2°°W.

Exact

PExactbpb = P/—\Exactbpb = PACbpb.

2. Learning Models and Definitions

In learning, a teacher has a target function f € C
where f: X — {0,1} and a target distribution D over
X. The learner knows X and C but does not know
the distribution D nor the function f.

The term “polynomial” and the problem size nota-
tion [¢ that we will use in this paper depends on X, C'
and f and it can be different in different settings. For
example, for Boolean functions {0,1}" — {0,1}, C is
a set of formulas (e.g. DNF, Decision tree, etc.) and
“polynomial” means poly(n, sizec (f)) where sizec (f)
is the minimal size formula in C' that is equivalent to
f. We always define [; such that “polynomial” will
mean poly(I¢). Then Iy can be defined as the sum of
the parameters in the poly. So in the above Boolean
case Ir = n+ sizec(f). For infinite domains X the
parameter n is usually replaced by the VC-dimension
of the class VC(C) and I; = VC(C) + sizec (f).

The learner can ask the teacher queries about the
target. The queries we consider in this paper are:
Example Query according to D (Exp) [V84] For
the example query the teacher chooses © € X accord-
ing to a distribution D and returns (z, f(2)) to the
learner.

Equivalence Query (EQ) [A88] For the equivalence
query the learner asks EQ(h) for some polynomial
size circuit h. The teacher (which can be an ad-
versary with unlimited computational power) chooses
y € Xeap ={z | f(z) # h(z)} and returns y. If Xyap
is empty, the teacher answers “YES” | indicating that
h is equivalent to f.

Equivalence Query according to D (EQp)[B97]
For the equivalence query according to D the learner
asks EQp(h) for some polynomial size circuit A.
The teacher chooses y &€ Xfap according to the
induced distribution of D on XA and returns y. If
Prp[Xsan] = 0, the teacher answer “YES”, indicating
that h is equivalent to f over Zp(X) = {z|D(x) # 0}.

The EQp can be extended to also handle random
hypothesis. A random hypothesis i, : X x R — {0, 1}
is a polynomial size circuit where for an input zy € X
it randomly uniformly chooses r; € R and returns
hro(20). In that case, EQp (h()) returns an output
of the following

1. Choose zq €p X.
2. Choose ry € R.

3.if f(wog) # hro(wo) then output(zg, f(zo)) else
goto (1).
That is, each xg 1s received with probability
D(xo) Pry[hr (o) # f(w0)]
2o D(x) Profhe(x) # f(2)]

We say that the hypothesis h, n-approzimates f
with respect to D if

By [Prlf(x) # h(2)]] <n

where here and elsewhere Prp denotes Prye, x.

The learning models we will consider in this paper
are
PAC (Probably Approximately Correct)[V84] In the
PAC learning model we say that an algorithm A of
the learner PAC-learns the class C' if for any f € C|
any distribution D and for any ¢,§ > 0 the algorithm
Ale,) asks example queries according to D, Exp and
with probability at least 1 — 4, outputs a hypothesis
h € C' that e-approximates f according to D. We say
that C' is PAC-learnable if there is an algorithm that
PAC-learns C in time poly(1/e, log(1/8), I;).
Exact (Exactly Correct) [A88] In the Exact model we
say that algorithm A of the learner Fzact-learns the
class C' if for any f € C' and for any J the algorithm
A(J) asks equivalence queries and with probability at
least 1 — & outputs a polynomial size hypothesis h that
is equivalent to f. We say that C' is Eract-learnable
if there is an algorithm that Exact-learns C' in time
poly(log(1/68), If).
PExact (Probably Exactly Correct) [B97] In the
Probably Exact model we say that algorithm A of the
learner Probably Eract-learns the class C' if for any
f € C and for any § the algorithm A(4) asks equiva-
lence queries with respect to D, EQp and with prob-
ability at least 1 — 4 outputs a polynomial size cir-
cuit h that satisfies Prp[Xsap] = 0. We say that C'is
Probably Ezact-learnable if there is an algorithm that
Probably Exact-learns C' in time poly(log(1/d), I;).
PAExact (Probably Almost Exactly Correct)
[BJT02] In the Almost Exact model we say that algo-
rithm A of the learner Almost Ezxact-learns the class C'

if for any f € C and for any 4 the algorithm .A(4) asks
equivalence queries with respect to D, EQp and with
probability at least 1 —J outputs a polynomial size
circuit h that satisfies Prp[Xyan] = 1/w(poly(ly)).
We say that C is Almost Ezact-learnable if there is
an algorithm that Almost Exact-learns C' in time
poly(log(1/68), If).

In the online learning model [L88] the teacher sends
apoint # € X to the learner and the learner has to pre-
dict f(z). The learner returns to the teacher the pre-
diction y. If f(x) # y then the teacher returns “mis-
take” to the learner. The goal of the learner is to
minimize the number prediction mistakes.

Online [L88] In the online model we say that algo-
rithm A of the learner Online-learns the class C' if for
any f € C and for any 4, algorithm A(6) with prob-
ability at least 1 — J makes bounded number of mis-
takes. We say that C is Online-learnable if the num-
ber of mistakes and the running time of the learner for
each prediction is poly(log(1/d), Iy).

Probabilistic Prediction (PP) [HLW94] In the
Probabilistic Prediction the points sent to the learner
are chosen from X according to some distribution D.
We say an algorithm A of the learner n-PP-learns the
class C' if for any f € C' and for any ¢ the algorithm
A(d) with probability at least 1 —4J after bounded
number of mistakes can predict the answer with prob-
ability greater than 1 —7. We say that C' is n-PP-
learnable if the number of mistakes and the running
time of the learner at each trial is poly(log(1/d), Iy).

It is known that Exact-learnable=Online-
learnable [L88] and PAC-learnable=1/poly(i;)-
PP-learnable [HLW94]. In the same way one
can prove that PAExact-learnable=1/poly(I;)-PP-
learnable. Our result in this paper implies that
PAC-learnable=PAExact-learnable=1/2r*v(s)_pPPp-
learnable.

3. Boosting in the PAExact-model

In this section we prove the following two Theorems

Theorem 1 If C s PAC-learnable then C s
PA Ezact-learnable.

Theorem 2 If C' s PAC-learnable then C s
l/I}Ong -PP-learnable.

Our proof is similar to Shapire boosting algorithm

[S90]. We first prove

Theorem 3 Let C' be a class of functions. Let A(e,d)
be a PAC-learming algorithm that learns the class

R(B.A)

1) Run B(n,1/32) — hy
2) Run A(e®/2,1/32) — hs
Exp +— (is replaced with)
with prob. 1/2 ask EQp(h1)
with prob. 1/2 ask EQD(Bl)
3) Run B(n,1/32) = ¢
EQbp(g) +— EQSimulate(g)
4) Output (May(hi,h2,9))

The algorithm R(B, A).

C with error ¢ < 1/8 and confidence & in time
mal(e, d,1). Let B(n,d) be a PAEzact-learning algo-
rithm that learns the class C' with error n < ¢/4 and
confidence § in time mpg(n,0,1¢). Then, there is an
PAEzact-learning algorithm R(B, A) that learns the
class C with error en and confidence 1/4 in time

mpm,a) (6, 1/8,15) < (c+1)mp(n,1/32,I7) +
ma(€?)2,1/32,1;),

where ¢ > 1 and mp(n,1/32, 1) (2¢)° < 1/32.

Proof. We start by describing the algorithm R =
R(B,A). 1In the first step of R, it runs the al-
gorithm B(n,1/32) to get a hypothesis Ay in time
mpg(n,1/32,I¢) where with probability at least 31/32
we have

%f[hlzf] >1-n (1)

In the second step of R, the algorithm runs
the PAC learning algorithm A(e?/2,1/32) in time
ma(e?/2,1/32, ;) where each example is with proba-
bility 1/2 an answer of EQp(h1) and with probability
1/2 an answer of EQD(ﬁl). Algorithm A will learn a
hypothesis his. In the third step in R the algorithm
runs B(n, 1/32) and replaces each query EQp(g) with
EQSimulate(g). See next page.

In the forth and last step of R, it takes the output
g of the third step and outputs Maj(hy, ha, g)

Let hy = hy1Vhy and hn = h1 Ahs. We now prove
the following Claims

Claim 4 With probability at least 31/32 we have

Prihy = 1A f =01 <nt+e?, Prlhy =0 A f=1] < e,

EQSimulate(g)

1)i«0
2) Repeat EQp(Maj(hi,ha,g9)) = z; 1+ 1+1
3) Until hy(z) # ho(z) or 1 = c.
4) If i = ¢ Then output g and HALT.
Else return(z).

Prfhn = 1A [=01 < 0, Prlhn =04 [= 1] < e
and Prp[hy # ha] < 2(n+ €2).

Claim 5 If at any stage in step 3, EQSimulate halts
and oulpul g then with probability at least 29/32

fl’)r[Maj(hl,hz,g) % f] < ne.

Claim 6 If algorithm R does not halt in some call
to EQSimulate then Algorithm A wn step 8 will run
in time (c+ 1)yma(n,1/32,1;) and with probability at
least 29/32 oulputs a hypothesis h such that

Pr[Maj(hy, hs,) # f] < ne.

Proof of Claim 1. In the second step of algo-
rithm R, it takes m4 (€%/2,1/32, 1) examples S where
each example in S is with probability 1/2 an answer
of EQp(hy) and with probability 1/2 an answer of
EQp(h1). Then it runs A(e?/2,1/16) on S.

Let D’ be the distribution of the examples in the
second step of R. Let Hy = [hy # f] and Hy =
[ha # f]. Then by (1) and the properties of A, with
probability at least 30/32,

62

PrlH | < nd Pr[Hs| < —.
Dr[J<na DI'Q[2] < 2
Now

Prifa] = Pr[Ho|Hi) PriH] + Pr[Ho|Hi] PriHi]

P
D
1P[H|H]+1P[H|H]
2D1” 2411 2D1” 2411,

and since Prp/[Hs] < €?/2 we have

fl’)r[H2|H1] < ¢ and fl’)r[H2|H1] <€
Therefore, Prp[Hs] < ¢2. Now we are ready to prove
the claim. We have

< Prp[Hi]+ Prp[Ha] <+ ¢

and

Prlhy =0A f = 1] Prlhy=0Ahy =0Af=1]

IA

PI'[Hl A Hz]
D

Pl’)r[Hl] Il’)r[H2|H1] < ne.
In the same way it is easy to show that
fl’)r[h/\ =1Af=0]<né, fl’)r[h/\ =0Af=1]<nte

Now we have

];I))I'[hl ;é hz]

fl’)r[h/\ * hy]

< P =0AT=1]4
< 2+ €

Proof of Claim 2. Suppose the algorithm halts
in some call to EQSimulate(g) and let S be the set
of examples obtained from EQp(Maj(hi, ha,g)) in
step 2 of EQSimulate(g). Then |S| = ¢ and for ev-
ery # € S we have hy(x) = ha(z). Since # is a coun-
terexample we also have f(x) # hi(x) = ha(z) for
every © € S. Suppose g is not a “good” hypothesis,
ie., Prp[Maj(hi, ha,g)] > ne. The probability that
EQSimulate returns g is

f;f[f # h1 = hy [Maj(hi, ha,g) # f].
Denote M = [Maj(hy, ha,g) # f]. Then
Prlf # hy = ho |M]
(%f[f £ h1 = hy | M])¢

PI'D[f ;é h1 = hz] ¢

(PI'D[M])

(PrD[hv =0Af=1]+ Prplha :Mf:O])C
ne

= (2¢)°.

Therefore, the probability that some EQSimulate re-
turns a bad output is at most

1
mg(n,1/32,1¢)(2¢)° < 35

Since failing in the first two steps of the algorithm can
happen with probability at most 2/32, the probability
that ¢ is good is at least 29/32.¢

Proof of Claim 3. All the answers z of the
equivalence queries in EQSimulate satisfies f(x) #

Maj(hi(z), ha(z), g(x)) and hy(x) # hao(z). There-
fore, Maj(hi(z), ha(z),9(x)) = g(x) and z is a coun-
terexample of EQp:(g) where D' is the induced distri-
bution D on {z|hi(x) # ha(x)}. Therefore, if the al-
gorithm does not halt on some EQSimulate then with
probability at least 31/32,

%1"[9 # flhi # ho] <.
Therefore, with probability at least 29/32 we have
PriMaj(hi, hz,g) # f]
%f[hl =hs # f]+ %1"[9 # Jlh1 # ho] %f[hl # hs]
= %r[hv =0A[f= 1]-1'%1"[]1/\ =1Af=0]
+n %I"[hl # hs]

< et (200 +) = 297 4 4ne® <peco

IA

We now show how to boost §. We denote by R** the
algorithm that runs R k times and takes the majority
function Maj(h;) of the output hypotheses.

Theorem 7 Let R be an PAEzact-learning algorithm
for C' that runs in time mgr(n,d6,17). Then for any
odd integer k

k+1 1
Mmp+k (%7}, (46)%—_,If) S ka(ﬁ,(s, [f).

Proof. We run R k times and take the majority func-
tion Maj(h;) of the outputs. Tt is clear that if at
least (k + 1)/2 of the outputs h; are good, i.e. sat-
isfies Prplh; # f] < n, then Prp[Maj(h;) # f] <
(k + 1)n/2. Therefore,

k+1
Pr [f;r[Maﬂhn £ f]> %n]
k+1
< Pr [—21— of %I"[hi # f] are greater than 77]
k
<

k41 k41
<k+1)5 T <(4)7 0
2

Now we are ready to prove our main result. Let
A(e,) be a polynomial time PAC-learning algorithm
for C that runs in time ma4 (e, d, I). Suppose

ma(1/17,1/32,1;) < I,

for some constant b. Define n = ¢?/2 and e = 1/(51;),
and ¢ a constant such that (¢ + 1) — log(9(c + 2)) >
b. Define a sequence of PAExact-learning algorithms

Bo, By, ..., Blog ;41 where

Bo = A(e?/2,1/32), Biy1 = R(B;, A)*.

Now it is easy to prove by induction

Lemma 8 For a = 9(c+ 2) we have
mp,,, ((56) e, 1/32,I;) < a'ma(?/2,1/32,I}).

Proof. For i = —1 we have mp,(¢,1/32,1;) =
ma(e?/2,1/32,1f). Now we have

mp,,, ((56)" e, 1/32, 1)

< 9mpp, a)(e(5e)e, 1/8, ;) (2)

< 9((c+ ymp, ((5e)'e, 1/32,I;) +
mal€/2,1/32,I7)) (3)

< 9((c+ Da'"tma(e?/2,1/32, ;) +
ma(€?)2,1/32,1;)) (4)

< alma(€?/2,1/32,15)

In (2) we used Theorem 7. In (3) we used Theorem
3. In (4) we used the induction hypothesis for ;. We
now show that the condition in Theorem 3 is true. We
have

mp, ((5¢)",1/32, [1)(2€)°

< ot Tlma(€2/2,1/32, 1) (2¢)°
, 1
_ i—17b
s
11
< Ib—c+logoc - _
- < I; D)

Now we have

log I
mBlong+1(1/If & f, 1/32, If)
< TP ma(1/(3013), 1/32,I7) = poly(Iy).

Therefore Biogr,+1 is a PAExact-learning algorithm
that runs in polynomial time and achieve error

log I
/175
and 2.0

This complete the proof of Theorem 1

3.1. Parallel PAExact learning

In this subsection we show

Theorem 9 If a class C' is PAC-learnable in parallel
then C' is PAEzact-learnable in parallel.

Proof Sketch. Let A be a parallel PAC-learning al-
gorithm for C'. For a PAExact-learning algorithm B
we denote by PC(B) the parallel complexity of the
algorithm. Let B; as defined before. Then

PC(Bloglong) = (log If)PC(A)

and as before this algorithm achieve error l/I}Og logls o

4. PAExact Learning with Error 1/27°%

In this section we prove the following

Theorem 10 If C is PAC-learnable then C s
1/2pP°% _PP-learnable.

4.1 Mansour-McAllester Booster

In this section we give an overview of Mansour
McAllester booster. Mansour and McAllester booster
in [MAOQQ] is based on other boosting result introduced
earlier by Kearns and Mansour in [KM96]. We denote
the algorithm by M A.

The boosting algorithm M A constructs its final hy-
pothesis A in the form of a branching program (fur-
ther denoted as BP). The root and the internal nodes
of this BP are marked with boolean function over X,
so that for any « € X the corresponding “path” from
the root to one of the leaves of the BP may be found.
This fact puts each x € X into correspondence with
one of the BP’s leaves. The leaves are marked with
constant boolean values.

MA(d)
define a BP T} a single node nq o
for j from 0 to d — 1 do:
set w;y1, as specified in [MAOQQ]
define a BP T}, to be T} with nodes
ML G4l oo Ty, j+1 added
for ¢ from 1 to w; 41 do:
define S; ; Z{instances reaching n; ;}
dﬁi)ine S92 55 0 {z|f(x) = 0},
A
Siyj = Sz’,j N {l‘|f(l‘) = 1}
define
0 x Q_ﬁ Siyj
_D(=) x € S(O.)
i,

D x(l) x € Sz(fy)
2D(5;)
call weak learner W, with dist. D/S,,j
the returned hypothesis marks n; ;
end-for
install edges from n; ; to n; j41,
as specified in [MA0Q]

end-for
return 7y

In general, by n; ; we mean the 7’th node from layer
J . By S;; we denote the sets of instances from X

which arrive at n; ; and by h; ; we denote the predicate
which marks n; ;.

At stage j in the loop of the booster (see algorithm
M A(d)) the algorithm builds the nodes at the jth
level of the BP. It defines for each node n;; a dis-
tribution D’Sm, on the set of points S; ; that arrives at
this node. Originally ([KM96]), this distribution was
addressed as a balanced distribution. It gives nonzero
probabilities only to instances from S, so that 1/2 of
the probabilistic weight falls to “zeros” and 1/2 of the
weight falls to “ones” of the target function f. Then
the algorithm marks the node n; ; with the hypothesis
h; ; returned by the weak learner W.

In our case, the target concept class is PAC-
learnable, therefore we obviously may assume that W,
being faced with some instance distribution D’S“j, pro-
duces a hypothesis that c-approximates f w.r.t. D’Sm,
with some given constant accuracy c¢. To achieve error
7 the depth and width of the BP will be

d(n) = O(In(1/7)). (5)

Note that in [MA00] this values (the depth and the
size) are not defined as functions of 7, instead, the def-
inition depends on certain measure of the algorithm
progress (namely, T, which we will consider later). On
the other hand, the booster may stop adding new lay-
ers to BP as soon as the required accuracy (above
1 —7n) may be achieved by simply choosing “right”
constant values for all the nodes of the last added
layer. Suppose that S is the set of instances arriving
at certain leaf of the constructed hypothesis h (i.e., at
a node without outgoing edges), then obviously, the
choice of the marking value for that leaf must be done
in accordance with the classification of the majority of
the points which belong to S, if we are interested to

lower the classification error of h. In each constructed
BP layer j ,it holds that the width

wj = O(In(1/n)). (6)

Together, expressions (5) and (6) provide us with the
following fact: If we address by & both the final hy-
pothesis itself and its representation, as constructed
by M A, and by |h| we denote the corresponding size
of the representation, then it holds that:

|h] = O(n* (1/n)). (7)

To install the edges from the nodes n; ; in level j
to the nodes n; ;41 in level j + 1 of the BP, they had
to estimate the value of I(S) where S = S5; ; and

q(S) = Prp [f(x) = 1]z € 5],
1(S) = 2¢/(1 = q(5))q(5),

L
L

4.2 Running MA with EQp Oracle

We now want to run the MA algorithm with the EQp
oracle to achieve exponentially small error.
We have the following problems

1. How to provide the distribution Df
learner?

iy to the weak

2. How to estimate I(S)?

To be able to solve both problems we let our
PAExact-learning algorithm runs in stages. At each
stage the algorithm has some hypothesis H" that n-
approximates the target function f and the learner
goal is to learn a new hypothesis H"/? that 7/2-
approximates f. We will show that using H”7 and
the EQp oracle it is possible to generate examples
according to the balanced distribution DY j and to
estimate I(5; ;) as long as the weights of S ={z €
Sij, f(z) = 0} and S ={z € S, flz) = 1} ac-
cording to D are greater than n/(4t) where ¢ is the size
of the final hypothesis (which can be estimated before
the running of the algorithm). Once S}i) weight is
less than n/(4t), for some & € {0,1}, we turn node
n;; to a leaf node and label it with &. The total er-
ror of the hypothesis from those nodes is at most 1/4.
Our boosting algorithm will generate a BP of depth
O(log(1/n)). This guarantee that the error from the
nodes at the last level is at most /4. Together, the
generated hypothesis achieve error at most n/2.

Therefore, to each level of the BP we will add two
nodes. The 0- and 1-node. Those nodes are for sets
that cannot be samples with the balanced distribution.

4.3. Sampling with EQp-Oracle

In this section we show how to generate examples from
Si ; according to the balanced distributions D for
the weak learner. This will solve the first problem
The balanced distribution is defined as follows: If we

denote by S = S, ; then the balanced distribution DY
is
0 r ¢S
T Y S C.) T flx) =
s(x) = ZDres fm=0) v
omes =y £ €S ()=

We first show how an EQp-Oracle may be used
in order to sample efficiently from superpolynomially
small subsets of X. Suppose that a certain subset YV

of X is defined by means of a polynomial time com-
putable boolean function (or predicate) ¢y as follows:

Y ={y € X|gy(y) =1}

Suppose that there exists some hypothesis h(z), and
the learner’s quest is to sample efficiently counterex-
amples for h w.r.t. the target function f and D, but
only those coming from Y. We assume that Y is
“small”, so that repeated calls of EQp(h) until a
counterexample from Y 1is received would be ineffi-
cient. Suppose further that the learner has a hypothe-
sis H"(x) which n-approximates f w.r.t. D. Instead of
repeated asking EQp (h) we will ask FQp (hy) where

hy (z) = { A (x) dy(x) =0 (ic, z¢Y)

T A(x) otherwise

A counterexample produced by the EQp-oracle as a
response to EQp (hy) comes from Y with probability
at least

Pl’)r[x € Ylhy # f]
— Ph# freYihy £
PI'D[h;éf, l‘EY]
Prplhy # f]
Prplh# f, x €Y]
Prplh# f, x € Y]+ Prp[H" £ f, x ¢ Y]
PI'D[h;éf, l‘EY]
Prplh# f, z€Y]+n’

The above construction makes it possible to receive
efficiently a counterexample to A coming from the sub-
set Y when Prpl[h(z) # f(x),z € Y] is polynomially
smaller than 5. However, 7 itself, may be arbitrarily
small.

Still more important, the counterexample is gener-
ated according to the target distribution D.

Lemma 11 Let ¢y (x) be a polynomial time com-
putable boolean predicate over X and let Y = {y €
X|éyv(y) = 1}. Suppose that we have a hypothesis
H" () which is at least n-approzimates f w.r.t. D and
that we can make queries to an EQp-oracle.

Then a counterexample w.r.t. f for any hypothesis
h may be recetved so that this countererample belongs
toY and s generated according to D. In average, the
time and the number of queries to the oracle required
is

¢ (1 B B 7 i) 7 € Y]) |

This can be done using repeated calls of EQp (hy (¢))
where

hy (x) £ { H'(z) ¢y (x) =0 (i.e

h(x) otherwise

s x2gY)

<

Now we consider the problem of generating bal-
anced distributions for the weak learner. We try to
do that using the above techniques.

The following Corollary is based on Lemma 11.

Corollary 12 Let S C X be a set of instances. Let
H" be a hypothesis which at least n-approzimates f
w.r.t. D, and let 1’ be some value smaller than 7.
Then there exists a procedure which with probability at
least 1 — & etther produces an example according to the
balanced distribution DY or returns a constant value

a € {0,1} such that

Prif(z) #a, z€S]<n

The average time complexity of the procedure is poly-
nomial in In(1/6) and n/y'.

Proof Sketch.Using H7, we may construct the fol-
lowing two hypotheses: For a € {0, 1}

plv e | H(z) w ¢S
5 1—a

otherwise

(0)

If we pass hy”’ to the EQp-oracle many times, we
will accept an example from {x € S|f(x) =0} after
the average of

O(”D({xesrﬂa@):ow)

calls to the oracle.o
We will set

W= (8)

If a balanced distribution cannot be produced then by
Corollary 12 for some a € {0,1} we have

n
%[()¢a$65]<5

Therefore labling the node corresponding to S with a
constant 1 —a will add error at most n/4¢. Labling all
such nodes will add error at most 7/4.

4.4 Estimating I(95)

In this section we solve the second problem. We show
that using EQp with a randomized hypotheses, we
can estimate the value I(S). We prove

Lemma 13 Let S C X and H" be a hypothesis ap-
proximating f, s.t. it holds:

D({x e X\ S|f(x) # H(x)}) <.

Then wusing a EQp-oracle with randomized hy-
pothesis, the values of ¢(S) and of 1—¢q(S) may
be found with constant multiplicative accuracy n
time polynomial in log(1/min({¢(5),1 —¢(S)})),
in n/D({x € S|f(x) =1}) and in
n/D({x € 5|f(x) = 0}).

Proof Sketch.Let us define a random hypothesis

H'(x) x¢S
R(z) =< 1 with probability p when « € S |
0 otherwise

for any p € [0, 1]. Let us check what happens when h?
is sent to EQp: First assume that a counterexample
zg comes from S, then not knowing what f(xg) is, we
may say that:

Prf(eo) =0] _ (1—q(S)p
Pr{f(zo) =11 ¢(S)(1 —-p)’

which follows from the above definition of AZ.
If for some p = pg we could say that

Pr [f(zg) = 0]
Pr[f(zg) = 1]

then, as follows from Equation (9), that would mean
that

)

—14A, (10)

sy = (1£4)- 50

We use binary search (starting from p=1/2) in
order to find a value for p, such that condition (10)
holds.

It remains to check how long will it take to receive
a counterexample from S for hf. Without loss of gen-
erality, we assume that ¢(S) < 1/2. In this case the
value of parameter p will always remain equal or be-
low 1/2 during the binary search. Therefore, for any
returned counterexample zq it holds:

Pr{zo € 5] =
D({weS|f(2)£RE(z)})

)
T2e5[f(2)2hL (@))+ D ({2EX\S|f(z)ZhL (z)}

N ({(ff()|f|< (>()) /3§<x(>(=)1}>}+)D3{(xie)S|fl< E)%ﬁh*;(Aol

pu -I—D z€S|f =0,h (z)=1V)+D({z€S f =1,hY =0

> " D({zeS|1{n)=0 82 (r) 21} D ({zeS| s ()=11]1/>

Z DS =0 =1 D((eST/ (D=1 172

> potizesliaiy

I+ D (€S| ()=

The result follows.o

4.5 The Complexity of the Algorithm

The algorithm runs in log(1/n) stages and at each
stage it builds a BP of size log”(1/7). To find the weak
hypothesis at each node n; ; we run the weak learner
with w = poly(I;) examples where in the worst case
each example can be received with log”(1/7) calls to
the EQp. To estimate I(S) we again use log”(1/n)
calls to EQp and the binary search will take in the
worst case log(1/n) steps. Therefore the total com-
plexity 1s
log™(1/m)w + log"(1/7).

Therefore, after d mistakes we achieve a hypothesis
with error

1
1= Smin(di78 (dfw)175)

5 Open Problems

Here we list some open problems.

1. Is PExact=Exact?
2. Is D-Exact=Exact?

3. Is D-PExact=PExact? Notice that if D-
PExact=PExact then D-Exact=Exact and PEx-
act=Exact.

4. Is PAC=1/2P°"Y-PP with deterministic hypothe-
ses?

5. Find a more efficient Booster.

6. In [HLW94] it is shown that in the PP-learning
model the error n > W where V(' 1s the
VC-dimension of C' and d is the number of mis-
takes. They also gave a double exponential time
algorithm that achieve this error. Then they gave
an exponential time algorithm (in d) that achieve

error 1 < m assuming we can solve the

consistent hypothesis problem (find a hypothesis

h € C that is a consistent with the sample). In

the second construction we showed that after d

mistakes we achieve (in polynomial time in d) a

hypothesis with error

1
= Smin(di/e (4] v C)1/%)

assuming we can solve the consistent hypothesis
problem. Can we achieve a better error?

7. Can we PAFExact-learn DNF with membership
queries under the uniform distribution?

10

References

[A88]

[B94]

[B97]

[BJT02]

[HLW94]

[KM96]

[1.88]

[MAOO]

[S90]

[V84]

D. Angluin. Queries and concept learn-
ing. Machine Learning 2(4), pp. 319-342,
1988.

A. Blum. Separating distribution-free
and mistake-bound learning models over
the boolean domain. SIAM Journal on
Computing 23(5), pp. 990-1000, 1994.

N. Bshouty. Exact learning of formulas
in parallel. Machine Learning 26, pp. 25-
41, 1997.

N. Bshouty, J. Jackson and C. Tamon.
Exploring learnability between exact and
PAC. Proceedings of the 15th Annual

Conference on Computational Learning

Theory, , 2002.

D. Haussler, N. Littlestone and M. War-
muth. Predicting 0,1-functions on ran-
domly drawn points. Information and

Computation 115, pp. 248-292, 1994.

M. Kearns and Y. Mansour. On the
Boosting Ability of Top-Down Decision
Tree Learning Algorithms. Proceedings of
the 28th Symposium on Theory of Com-
puting, pp. 459-468, 1996.

N. Littlestone. Learning quickly when ir-
relevant attributes abound: a new linear-
threshold learning algorithm. Machine
Learning 2(4), pp. 285-318, 1988.

Y. Mansour and D. McAllester. Boosting
using Branching Programs. Proceedings
of the 13th Annual Conference on Com-
putational Learning Theory, pp. 220-224,
2000.

R. E. Schapire. The strength of weak
learnability. Machine Learning 5(2), pp.
197-227, 1990.

L. Valiant. A theory of learnable. Com-
munications of the ACM 27(11), pp.
1184-1142, 1984.

