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Abstract

We prove a Chernoff-like large deviation bound on the sum of non-independent ran-
dom variables that have the following dependence structure. The variables Y1, . . . , Yr

are arbitrary Boolean functions of independent random variables X1, . . . , Xm, modulo a
restriction that every Xi influences at most k of the variables Y1, . . . , Yr.

1 Introduction

Let Y1, . . . , Yr be independent indicator random variables with Pr [Yi = 1] = p and let Y =
Y1 + . . . + Yr denote their sum. The average number of variables which are set is E [Y ] = pr.
A basic question is how concentrated is the sum around its average. The answer is given
by Chernoff bound: for any ε > 0, the probability that the fraction of variables that occur
exceeds the expectation by more than ε is bounded by

Pr [Y1 + . . . + Yr ≥ (p + ε)r] ≤ e−dKL(p+ε||p)·r ≤ e−2ε2r,

and similarly, the probability that it is below the expectation by more than ε is bounded by

Pr [Y1 + . . . + Yr ≤ (p − ε)r] ≤ e−dKL(p−ε||p)·r ≤ e−2ε2r.

Here, dKL (q||p) is Kullback-Leibler divergence defined as

dKL (q||p) = q log

(

q

p

)

+ (1 − q) log

(

1 − q

1 − p

)

,

and the latter estimate (which is the one more commonly used in applications) follows from
dKL (q||p) ≥ 2(q − p)2.

Our focus in this paper is on deriving similar estimates when the variables Y1, . . . , Yr are
not independent, but the level of dependence between them is in some sense ’weak’. These
type of questions are commonly studied in probability theory, as they allow one to apply
Chernoff-like bounds to more general scenarios. For example, one case which is used in
various applications is where the variables Y1, . . . , Yr are assumed to be k-wise independent.
In this case, Bellare and Rompel [BR94] obtained Chernoff-like tail bounds on the probability



that the number of set variables deviates from its expectation. Another well studied case is
when Y1, . . . , Yr form a martingale, in which case Azuma inequality and its generalizations
give bounds which are comparable to Chernoff bound.

We consider in this paper another model of weak dependence. Assume that the variables
Y1, . . . , Yr can be factored as functions of independent random variables X1, . . . ,Xm. More
concretely, each Yj is a function of a subset of the variables X1, . . . ,Xm. One extreme case
is that these subsets are disjoint, in which case the variables Y1, . . . , Yr are independent. The
other extreme case is when these subsets all share a common element, in which case Y1, . . . , Yr

can be arbitrary. We say that Y1, . . . , Yr are a read-k family if there exists such a factorization
where each Xi influences at most k of the variables Y1, . . . , Yr.

Definition 1. (Read-k families) Let X1, . . . ,Xm be independent random variables. For j ∈
[r], let Pj ⊆ [m] and let fj be a Boolean function of (Xi)i∈Pj

. Assume that |{j | i ∈ Pj}| ≤ k

for every i ∈ [m]. Then the random variables Yj = fj((Xi)i∈Pj
) are called a read-k family.

There are several motivations for studying read-k families of functions: for example,
they arise naturally when studying subgraphs counts in random graphs; or in generalizations
of read-once models in computational complexity. We will not discuss applications in this
paper, but instead focus on the basic properties of read-k families. Our main result is that
Chernoff-like tail bounds hold for read-k families, where the bounds degrade as k increases.

Theorem 1.1. Let Y1, . . . , Yr be a family of read-k indicator variables with Pr [Yi = 1] = pi,
and let p be the average of p1, . . . , pr. Then for any ε > 0,

Pr [Y1 + . . . + Yr ≥ (p + ε)r] ≤ e−dKL(p+ε||p)·r/k

and
Pr [Y1 + . . . + Yr ≤ (p − ε)r] ≤ e−dKL(p−ε||p)·r/k.

That is, we obtain the same bound as that of the standard Chernoff bound, except that
the exponent is divided by k. This is clearly tight: let Y1 = . . . = Yk = X1, Yk+1 = . . . =
Y2k = X2, etc, where X1,X2, . . . ,Xr/k are independent with Pr[Xi = 1] = p. Then for
example

Pr [Y1 + . . . + Yr ≥ (p + ε)r] = Pr
[

X1 + . . . + Xr/k ≥ (p + ε)r/k
]

.

We note that concentration bounds for Y =
∑

i Yi may also be obtained by observing
that Y is a k-Lipschitz function of the underlying independent random variables X1, . . . ,Xm

and then applying standard Martingale-based arguments, such as Azuma’s inequality (see,
for example, [DP09]). However, these techniques are limited in the sense that they only
yield concentration bounds when the deviation ε · r above is at least

√
m or so, whereas our

results yield concentration bounds even when the deviation is roughly the square root of the
mean p · r, which may be much smaller. It is also known (see [Von10, Section 4]) that such
‘dimension-free’ concentration bounds cannot be obtained for Lipschitz functions in general.

1.1 Proof overview

Let Y1, . . . , Yr be a read-k family with Pr[Yi = 1] = pi. Let us consider for a moment a more
basic question: what is the maximal probability that Y1 = . . . = Yr = 1? The answer to this
question is given by Shearer’s lemma [CGFS86], which is a simple yet extremely powerful
tool.
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Theorem 1.2. Let Y1, . . . , Yr be a family of read-k indicator variables with Pr [Yi = 1] = p.
Then

Pr [Y1 = . . . = Yr = 1] ≤ pr/k.

Note that the answer is the k-th root of the answer in the case where the variables are
independent, similar to what we get for the tail bounds. The result is tight, as can be seen
by taking Y1 = . . . = Yk = X1, Yk+1 = . . . = Y2k = X2, etc, where X1,X2, . . . ,Xr/k are
independent with Pr [Xi = 1] = p. The proof of Shearer’s lemma is based on the entropy
method. We refer the interested reader to a survey of Radhakrishnan [Rad03] on applications
of Shearer’s lemma; and to continuous analogs by Finner [Fin92] and Friedgut [Fri04].

We derive Theorem 1.1 by constructing an information-theoretic proof of Chernoff bound
and applying Shearer’s lemma to make the proof robust for the case of non-independent
random variables forming a read-k family. In our proof we use the “entropy method” that
was introduced by Ledoux [Led96], and more recently has been used to prove a number of
concentration inequalities (cf. [BLM03]). From a technical point of view, we construct analogs
of Shearer’s lemma for Kullback-Leibler divergence.

2 Preliminaries

Let X be a random variable and A be a subset of its support. We write “X ∈ A” to address
the event “the value of X belongs to A”.

2.1 Entropy

If X is distributed according to µ, then we will write both H [X] and H [µ] to denote the
entropy EX=x [log(1/µ(x))]. All logarithms in this paper are natural. If X is supported in
the set A then H [X] ≤ log |A|, where equality holds when X is the uniform distribution
over A. For two random variables X,Y we denote their conditional entropy by H [X|Y ] =

EY =y [H [X|Y = y]]. We note that always H [X] ≥ H [X|Y ]. If X1, . . . ,Xm are random
variables then H [X1, . . . ,Xm] denotes the entropy of their joint distribution. The chain rule
of entropy is

H [X1, . . . ,Xm] = H [X1] + H [X2|X1] + . . . + H [Xm|X1, . . . ,Xm−1].

2.2 Relative entropy

Let µ′ and µ be distributions defined over the same discrete domain A. The relative entropy
(or Kullback-Leibler divergence) between µ′ and µ is defined as

dKL

(

µ′
∣

∣

∣

∣µ
) def

=
∑

a∈A

µ′(a) log
µ′(a)

µ(a)
.

If random variables X,X ′ are distributed according to µ, µ′, accordingly, then we write
dKL (X ′||X) = dKL (µ′||µ). Kullback-Leibler divergence also satisfies a chain rule. We will
only need the following simple corollary of it.

3



Fact 2.1. Let X,X ′ be random variables defined on a domain A. Let φ : A → B be some

function. Then

dKL

(

X ′
∣

∣

∣

∣X
)

≥ dKL

(

φ(X ′)
∣

∣

∣

∣φ(X)
)

.

We will usually use relative entropy in the case when the second operand is the uniform
distribution over some set. The following observations will be useful.

Fact 2.2. Let µ be the uniform distribution over some set A, and let µ′ be any distribution

over A. Then

dKL

(

µ′
∣

∣

∣

∣µ
)

= H [µ] − H
[

µ′
]

.

Claim 2.3. Let µ be the uniform distribution over some set A, and let A′ ⊆ A satisfy

µ(A′) = p. Let µ′ be any distribution over A, satisfying µ′(A′) = q. Then

dKL

(

µ′
∣

∣

∣

∣µ
)

≥ dKL (q||p) .

Here we use the standard convention dKL (q||p) to denote the relative entropy between
Bernoulli distributions whose probabilities of positive outcomes are, respectively, q and p.

Proof. Let X be a random variable taking values in A according to the distribution µ′, and
let I be the indicator of the event “X ∈ A′”. Let H [q] denote the entropy of Bernoulli
distribution whose probability of positive outcome is q, then

H
[

µ′
]

= H [I] + H
[

X
∣

∣I
]

≤ H [q] + q log
(∣

∣A′
∣

∣

)

+ (1 − q) log
(

|A| −
∣

∣A′
∣

∣

)

= H [q] + q log (p |A|) + (1 − q) log ((1 − p) |A|)

= H [q] + log |A| + q log p + (1 − q) log(1 − p)

= H [µ] − dKL (q||p) ,

and the result follows by Fact 2.2. �

We will need the following facts on dKL (q||p). The first is the convexity of Kullback-
Leibler divergence. The last two relate to monotonicity of Kullback-Leibler divergence.

Fact 2.4. Let 0 ≤ p1, p2, q1, q2, λ ≤ 1. Then

dKL (λp1 + (1 − λ)p2||λq1 + (1 − λ)q2) ≤ λ · dKL (p1||q1) + (1 − λ) · dKL (p2||q2) .

Fact 2.5. Let 0 ≤ p ≤ q ≤ q′ ≤ 1. Then dKL (q′||p) ≥ dKL (q||p).

Fact 2.6. Let 0 ≤ q′ ≤ q ≤ p ≤ 1. Then dKL (q′||p) ≥ dKL (q||p).

2.3 Shearer’s Lemma

In order to derive bounds on mutual entropy we will use an elegant tool of amazing universal-
ity, Shearer’s Lemma [CGFS86]. The following formulation of the lemma will be convenient
for us.
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Lemma 2.7. [Shearer’s Lemma] Let X1, . . . ,Xm be random variables and let P1, . . . , Pr ⊆ [m]
be subsets such that for every i ∈ [m] it holds that |{j | i ∈ Pj}| ≥ k. Then

k ·H [(X1, . . . ,Xm)] ≤
r

∑

j=1

H
[

(Xi)i∈Pj

]

.

For completeness we include a short proof, based on the idea commonly attributed to
Jaikumar Radhakrishnan.

Proof. Let us denote sj = |Pj | and let Pj = {ij,1, . . . , ij,sj
}, where we order the elements

ij,1 < . . . < ij,sj
. We apply the chain rule for entropy:

H
[

(Xi)i∈Pj

]

=

sj
∑

t=1

H
[

Xij,t

∣

∣Xij,1
, . . . ,Xij,t−1

]

≥
sj

∑

t=1

H
[

Xij,t

∣

∣X1, . . . ,Xij,t−1

]

,

where the second inequality follows from non-increasing of entropy as a result of conditioning.
Summing over all 1 ≤ j ≤ r we obtain that

r
∑

j=1

H
[

(Xi)i∈Pj

]

≥
m

∑

i=1

|{j | i ∈ Pj}| · H
[

Xi

∣

∣X1, . . . ,Xi−1

]

≥ k ·
m

∑

i=1

H
[

Xi

∣

∣X1, . . . ,Xi−1

]

,

and the result follows. �

We need the following simple corollary of Shearer’s Lemma:

Corollary 2.8. Let X1, . . . ,Xm be random variables and let P1, . . . , Pr ⊆ [m] be such that
for every i ∈ [m] it holds that |{j | i ∈ Pj}| ≤ k. For each i ∈ [m], let Yi be an independent
random variable, uniformly distributed over a set that includes the support of Xi. Then

k · dKL ((Xi)
m
i=1||(Yi)

m
i=1) ≥

r
∑

j=1

dKL

(

(Xi)i∈Pj

∣

∣

∣

∣(Yi)i∈Pj

)

.

Note the difference in the conditions put upon |{j | i ∈ Pj}|: in Shearer’s Lemma it was
“≥ k”, and in the corollary it is “≤ k”.

Proof. First observe that w.l.o.g we can assume that |{j | i ∈ Pj}| = k for every i (adding
elements to some Pj can only increase the right-hand side of the stated inequality by Fact 2.1).
Under this assumption we can apply Lemma 2.7, concluding that

k · H [(Xi)
m
i=1] ≤

r
∑

j=1

H
[

(Xi)i∈Pj

]

.

Applying Claim 2.3 leads to

k · dKL ((Xi)
m
i=1||(Yi)

m
i=1) = k H [(Yi)

m
i=1] − k H [(Xi)

m
i=1]

≥ k H [(Yi)
m
i=1] −

r
∑

j=1

H
[

(Xi)i∈Pj

]

=

r
∑

j=1

(

H
[

(Yi)i∈Pj

]

− H
[

(Xi)i∈Pj

]

)

,
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where the last equality follows from mutual independence of Yi
′s and the assumption that

every i belongs to exactly k sets among P1, . . . , Pr. The result follows. �

3 Read-k families of functions

We prove Theorem 1.1 in this section. We first fix notations. Let X1, . . . ,Xm be independent
random variables. For j ∈ [r], let Pj ⊆ [m] be a subset and let Yj = fj((Xi)i∈Pj

). We

assume that Y1, . . . , Yr are a read-k family, that is, |{j | i ∈ Pj}| ≤ k for every i ∈ [m]. Let
Pr [Yi = 1] = pi, and let p be the average of p1, . . . , pr. Let ε > 0 be fixed. We will show that

Pr [Y1 + . . . + Yr ≥ (p + ε)r] ≤ e−dKL(p+ε||p)·r/k (1)

and
Pr [Y1 + . . . + Yr ≤ (p − ε)r] ≤ e−dKL(p−ε||p)·r/k. (2)

We first note that it suffices to prove the theorem in the case where each Xi is uniform over
a finite set Ai. This is since we can assume w.l.o.g that each Xi is a discrete random variable,
and any discrete distribution can be approximated to arbitrary accuracy by a function of a

uniform distribution over a large enough finite set. We denote by A
def
= A1 × . . .×Am the set

of all possible inputs, and let µ denote the uniform distribution over A.
We start by proving (1). For t = (p + ε)r let us denote by A≥t the set of inputs for which

∑

fi ≥ t,

A≥t def
=







(a1, . . . , am) ∈ A1 × · · · × Am













r
∑

j=1

fj(a1, . . . , am) ≥ t







.

We denote by µ≥t be uniform distribution over A≥t. We next define restrictions of these
distributions to the sets P1, . . . , Pm. For a set Pj ⊆ [m] we denote by µj the restriction of

µ to the coordinates of Pj (it is the uniform distribution over
∏

i∈Pj
Ai), and by µ≥t

j the

restriction of µ≥t to the coordinates of Pj .
We wish to upper bound the probability that

∑

fj ≥ t. Equivalently, we wish to upper
bound |A≥t|/|A|. Taking logarithms, this is equal to H

[

µ≥t
]

− H [µ]. By Fact 2.2, this is
equivalent to dKL

(

µ≥t
∣

∣

∣

∣µ
)

. That is,

Pr
µ

[

∑

fj ≥ t
]

=
|A≥t|
|A| = exp

(

H
[

µ≥t
]

− H [µ]

)

= exp
(

−dKL

(

µ≥t
∣

∣

∣

∣µ
))

. (3)

So, we need to obtain a lower bound on dKL

(

µ≥t
∣

∣

∣

∣µ
)

. Naturally, to do that we will use
Corollary 2.8. We thus have

Pr
µ

[

∑

fj ≥ t
]

≤ exp



−1

k

r
∑

j=1

dKL

(

µ≥t
j

∣

∣

∣

∣

∣

∣
µj

)



 . (4)

Recall that pj = Prµ [fj = 1] is the probability that fj = 1 under the uniform distribution.
Let us denote by qj = Prµ≥t [fj = 1] the probability that fj = 1 conditioned on

∑

fj ≥ t.
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By Fact 2.1 (using φ = fj) we have that dKL

(

µ≥t
j

∣

∣

∣

∣

∣

∣µj

)

≥ dKL (qj||pj), hence

Pr
µ

[

∑

fj ≥ t
]

≤ exp(−1

k

r
∑

j=1

dKL (qj||pj)). (5)

By convexity of Kullback-Leibler divergence (Fact 2.4) we have that

1

r

r
∑

j=1

dKL (qj||pj) ≥ dKL (q||p) ,

where q = 1
r

∑r
j=1 qj and p = 1

r

∑r
j=1 pj. To conclude, recall that qj is the probability

that fj = 1 given that f1 + . . . + fr ≥ t. Hence the sum
∑r

j=1 qj is the expected number
of fj for which fj = 1, which by definition is at least t. Hence q ≥ t/r = p + ε and
dKL (q||p) ≥ dKL (p + ε||p) by Fact 2.5. We have thus shown that

Pr
µ

[f1 + . . . + fr ≥ (p + ε)r] ≤ exp(−dKL (p + ε||p) · r/k).

which establishes (1).
The proof of (2) is very similar. Define for t = (p − ε)r the set A≤t as

A≤t def
=







(a1, . . . , am) ∈ A1 × · · · × Am













r
∑

j=1

fj(a1, . . . , am) ≤ t







.

Let µ≤t be the uniform distribution over A≤t, and let µ≤t
j be its projection to (Xi)i∈Pj

. Then
analogously to (4) we have

Pr
µ

[

∑

fj ≤ t
]

≤ exp



−1

k

r
∑

j=1

dKL

(

µ≤t
j

∣

∣

∣

∣

∣

∣µj

)



 . (6)

Let q′j = Prµ≤t [fj = 1] be the probability that fj = 1 conditioned on
∑

fj ≤ t. Then
analogously to (5) we have

Pr
µ

[

∑

fj ≤ t
]

≤ exp(−1

k

r
∑

j=1

dKL

(

q′j
∣

∣

∣

∣pj

)

). (7)

Let q′ = 1
r

∑r
j=1 q′j. Then by convexity of Kullback-Leibler divergence, we have

1

r

r
∑

j=1

dKL (qj||pj) ≥ dKL

(

q′
∣

∣

∣

∣p
)

.

Now, q′ ≤ t/r = p − ε by definition, hence by Fact 2.6 dKL (q′||p) ≥ dKL (p − ε||p). So, we
conclude that

Pr
µ

[f1 + . . . + fr ≤ (p − ε)r] ≤ exp(−dKL (p − ε||p) · r/k).

which establishes (2).
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