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1. VALVELESS PUMPING

(Liebau phenomena)



1 tank - 1 pipe model

In 1954 G. Liebau showed experimentally that a periodic compression made
on an asymmetric part of a fluid-mechanical model could produce the
circulation of the fluid without the necessity of a valve to ensure a preferential
direction of the flow.

DEFINITION
Let T > 0, g : R3 → R and let e : R → R be nonconstant and T -periodic.
Then the equation

x ′′ = g(x , x ′, e(t))

generates a T -periodically forced pump if it has a T -periodic solution x
such that

g(x̄ , 0, ē) 6= 0,

i.e. the mean value x̄ of x is not an equilibrium of x ′′ = g(x , x ′, ē).
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1 tank - 1 pipe model

G. Propst (2006)

ρ . . . density of the liquid (constant)
p(t) . . . T − periodic pressure
g . . . acceleration of gravity
r0 . . . friction coefficient
ζ . . . junction coefficient
AP/AT . . . cross sections of pipe/tank
V0 . . . constant total volume of liquid
w = −` ′ . . . velocity in the pipe

AP `(t) + AT h(t) ≡ V0 =⇒ h(t) ≡
1

AT

�
V0 −AP `(t)

�
.

Momentum balance with Poiseuille’s law and Bernoulli’s equation

=⇒

` ` ′′ + a ` ` ′ + b (` ′)2 + c ` = e(t),

where

T > 0, a =
r0

ρ
≥ 0, b =

�
1 +

ζ

2

�
≥ 3/2,

e(t) =
g V0

AT
−

p(t)

ρ
is T − periodic, 0 < c =

g Ap

AT
< 1.
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First observations

This leads to singular periodic problem:

(1) u′′+a u ′ =
1
u

(
e(t)−b (u′)2)− c , u(0) = u(T ), u ′(0) = u ′(T ) ,

T > 0, a =
r 0

ρ
≥0, b =

(
1 +

ζ

2

)
≥3/2, 0 < c =

g Ap

AT
< 1, e(t) =

g V0

AT
−p(t)

ρ
.

Multiplying the equation by u and integrating over [0, T ] gives

THEOREM 1

(1) has a positive solution only if e≥0 (i.e. p≤ ρ g V0
AT

) .

THEOREM 2
If (1) has a positive solution, then it generates a T -periodically forced pump.
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Examples

(E) u′′+ku =
b
uλ

+e(t), u(0)=u(T ), u′(0)=u′(T ) (b>0, λ>0, k≥0, e∈L1[0, T ])

has a solution if :
• k = 0, λ≥1, e < 0 [Lazer & Solimini ],

• k 6=
(
n π

T

)2
for all n∈N, λ≥1, e∈C [del Pino, Manásevich & Montero ]

• 0 < k <
(

π
T

)2
, λ≥1, e∈L∞ [Omari & Ye ],

• k = 0, e < 0, e∗:= inf ess
t ∈ [0,T ]

e(t) > −
(

1
T 2 λ b

) λ
λ+1

(λ+1) b,

0 < k <
(

π
T

)2
, e∗:= inf ess

t ∈ [0,T ]
e(t) >−

(
π2−T 2k
T 2 λ b

) λ
λ+1

(λ+1) b

[supplementary results by Torres, Hakl & Torres, Chu & Franco et al.],

k =
(

π
T

)2
, inf ess

t ∈ [0,T ]
e(t) > 0 [Rachůnková, Tvrdý & Vrko č],

[supplementary results by Bonheure & De Coster, Chu & Torres et al.]



2. EXISTENCE OF A PERIODIC SOLUTION



Existence of a periodic solution

(1) u′′+a u ′ =
1

u

�
e(t)− b (u′)2�− c , u(0) = u(T ), u ′(0) = u ′(T ) ,

THEOREM 3
ASSUME:

a ≥ 0, b > 1, c > 0,

e is continuous and T-periodic on R, e∗ > 0,

(b + 1) c2

4 e∗
<
� π

T

�2
+

a2

4
.

THEN: (1) has a positive solution.

DEFINITION
A T -periodic function σ1 ∈ C2[0, T ] is a lower function for

u′′ + a u ′ = f (t , u), u(0) = u(T ), u ′(0) = u ′(T ) ,

if
σ′′1 (t) + a σ′1(t) ≥ f (t , σ1(t)) for t ∈ [0, T ],

while an upper function is defined analogously, but with reversed inequality.
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(1) u′′+a u ′ =
1

u

�
e(t)− b (u′)2�− c , u(0) = u(T ), u ′(0) = u ′(T ) ,

STEP 1: u : [0, T ]→R is a positive solution of (1) iff x = u1/µ is a positive solution of

(2) x ′′ + a x ′(t) = r(t) xα − s(t) xβ , x(0) = x(T ), x ′(0) = x ′(T ) ,
where

0 < µ =
1

b+1
<

2

5
, r(t) =

e(t)

µ
> 0, s(t) =

c

µ
> 0, 0 <α = 1− 2 µ, < β = 1−µ < 1.

STEP 2: There are constant lower and upper functions σ1 and σ2 of (2) such that

0 < σ2 < x0 = (r∗/s∗)1/(β−α) < x1 = (r∗/s∗)1/(β−α) < σ1.

STEP 3: We show that there is δ0 ∈ (0, σ2) such that

r(t) xα − s(t) xβ < 0 for t ∈ [0, T ], x ∈ (0, δ0)
and

−
 � π

T

�2
+

a2

4

!
x + r(t) xα − s(t) xβ < 0 for t ∈ [0, T ], x ≥ δ0.

STEP 4: We choose δ ∈ (0, δ0), put λ∗ =
�

π
T

�2
+ a2

4 ,

ef (t , x) =

(
r(t) δα − s(t) δβ − λ∗ (x − δ) for x < δ ,

r(t) xα − s(t) xβ for x ≥ δ

and consider auxiliary problem

(Aux) x ′′ + a x ′(t) = ef (t , x) , x(0) = x(T ), x ′(0) = x ′(T ) ,

Method of non-ordered lower and upper functions (BONHEURE & De COSTER)

=⇒ (Aux) has a solution x .
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Sketch of the proof

STEPS 1–4:

(1) u′′ + a u ′ =
1

u

�
e(t)− b (u′)2�− c , u(0) = u(T ), u ′(0) = u ′(T ) ,

m

(2) x ′′ + a x ′(t) = r(t) xα − s(t) xβ0 , x(0) = x(T ), x ′(0) = x ′(T ) ,

where
0 < µ =

1

b+1
<

2

5
, r(t) =

e(t)

µ
> 0, s(t) =

c

µ
> 0, 0 <α = 1− 2 µ, < β = 1−µ < 1.

We have a solution x to

(Aux) x ′′ + a x ′(t) = ef (t , x) , x(0) = x(T ), x ′(0) = x ′(T ) ,

where ef (t , x) =

(
r(t) δα − s(t) δβ − λ∗ (x − δ) for x < δ ,

r(t) xα − s(t) xβ for x ≥ δ

STEP 5: Put v = x − δ. Then

v ′′(t)+ a v ′(t) + λ∗ v(t) = h(t) for t ∈ [0, T ], v(0)= v(T ), v ′(0)= v ′(T ),

where (by Step 3) h(t) := λ∗ (x(t)− δ)−ef (t , x(t))≥ 0 on [0, T ].

Antimaximum principle (OMARI & TROMBETTA or HAKL & ZAMORA) =⇒ v ≥ 0, i.e. x ≥ δ �
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Existence of a periodic solution

(2) u′′+a u ′ = r(t) uα−s(t) uβ , u(0) = u(T ), u ′(0) = u ′(T ) ,

THEOREM 4
ASSUME:

a ≥ 0, b > 1, c > 0, 0 < α < β < 1,

r∗ > 0, s∗ > 0,

there is δ0 > 0 such that

r(t) uα − s(t) uβ < 0 for t ∈ [0, T ], x ∈ (0, δ0)
and

−
 � π

T

�2
+

a2

4

!
x + r(t) xα − s(t) xβ < 0 for t ∈ [0, T ], x ≥ δ0.

THEN: (2) has a positive solution.



3. ASYMPTOTIC STABILITY



Asymptotic stability

(3) x ′′ + a x ′(t) = f (t , x) , x(0) = x(T ), x ′(0) = x ′(T )

Lemma (Omari & Njoku, 2003)

ASSUME: a > 0,

σ1 is a strict lower function, σ2 is a strict upper function of (3) and

σ2 <σ1 on [0, T ].

∂

∂ x
f (t , x)≥−

( π

T

)2
+

a2

4
for t ∈ [0, T ], x ∈ [σ2(t), σ1(t)],

there is a continuous γ : [0, T ]→ [0,∞) such that γ̄ > 0 and

∂

∂ x
f (t , x)≤ − γ(t) for t ∈ [0, T ], x ∈ [σ2(t), σ1(t)].

Then (3) has at least one asymptotically stable T -periodic solution x
fulfilling

σ2 ≤ x ≤ σ1 on [0, T ] .



(3) x ′′ + a x ′(t) = f (t , x) , x(0) = x(T ), x ′(0) = x ′(T )

THEOREM 5
ASSUME: a > 0, f (t , x)= r(t) xα− s(t) xβ ,

r , s are continuous and positive on [0, T ], 0 <α < β< 1,

β s∗
(

s∗

r∗

)(1−β)/(β−α)

−α r∗
(s∗

r∗

)(1−α)/(β−α)

<
( π

T

)2
+

a2

4
,

α

β

r∗

s∗
<

r∗
s∗

.

THEN: (3) has at least one asymptotically stable positive solution.

(1) u′′+a u ′ =
1
u

(
e(t)−b (u′)2)− c , u(0) = u(T ), u ′(0) = u ′(T )

COROLLARY
(1) has at least one asymptotically stable positive solution if

c2 (b (e∗)2− (b−1) (e∗)2)

e∗ (e∗)2 <
( π

T

)2
+

a2

4
and

e∗ − e∗
e∗

<
1
b

.
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4. APPLICATION OF KRASNOSELSKII

COMPRESION/EXPANSION THEOREM



(4) x ′′ + a x ′ + m2 x = 0, x(0)− x(T ), x ′(0) = x ′(T )

�
a≥ 0, 0 < m2 <

� π

T

�2
+
�a

2

�2
�

has Green’s function Gm(t , s) such that

Gm(t , s) > 0 for all t , s∈ [0, T ],

there exists cm ∈ (0, 1) such that Gm(s, s)≥ cm Gm(t , s) for all t , s ∈ [0, T ],

Put (F x)(t) =

Z T

0
Gm(t , s)

h
r(s) xα(s)− s(t) xβ(s) + m2 x(s)

i
ds

Then x is a solution to

(2) x ′′ + a x ′ = r(t) xα − s(t) xβ , x(0) = x(T ), x ′(0) = x ′(T )

iff x = F x .

Krasnoselskii Fixed Point Theorem
Let P be a cone in X , Ω1 and Ω2 be bounded open sets in X such that 0∈Ω1 and Ω1 ⊂Ω2.
Let F : P ∩ (Ω2 \Ω1)→P be a completely continuous operator such that one of the following
conditions holds:

‖F x‖≥‖x‖ for x ∈P ∩ ∂Ω1 and ‖F x‖≤‖x‖ for x ∈P ∩ ∂Ω2,

‖F x‖≤‖x‖ for x ∈P ∩ ∂Ω1 and ‖F x‖≥‖x‖ for x ∈P ∩ ∂Ω2.

Then F has a fixed point in the set P ∩ (Ω2 \Ω1).
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(2) x ′′ + a x ′ = r(t) xα − s(t) xβ , x(0) = x(T ), x ′(0) = x ′(T )

Gm(t , s) > 0 for all t , s∈ [0, T ],

there exists cm ∈ (0, 1) such that Gm(s, s)≥ cm Gm(t , s) for all t , s ∈ [0, T ],

Put

P = {x ∈C[0, T ] : x(t)≥ 0 on [0, T ] and x(t)≥ cm ‖x‖ on [0, T ]},
Ω1 = {x ∈ C[0, T ]: ‖x‖ < R1}, Ω2 = {x ∈ C[0, T ]: ‖x‖ < R2}.

THEOREM 6
ASSUME: a≥ 0, r , s ∈ C[0, T ], 0 < α < β < 1,

there exist m > 0 and 0 < R1 < R2 such that m2 <
� π

T

�2
+
�a

2

�2
,

r(t) xα − s(t) xβ + m2 x ≥ 0 for t ∈ [0, T ], x ∈ [cm R1, R2],

r(t) xα − s(t) xβ + m2 x ≥m2 R1 for t ∈ [0, T ], x ∈ [cm R1, R1],

r(t) xα − s(t) xβ + m2 x ≤m2 R2 for t ∈ [0, T ], x ∈ [cm R2, R2],

THEN: (2) has a positive solution x ∈ [cm R1, R2].
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� π
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+
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Application of Krasnoselskii compresion/expansion theorem

(2) x ′′ + a x ′ = r(t) xα − s(t) xβ , x(0) = x(T ), x ′(0) = x ′(T )

COROLLARY=THEOREM 3
ASSUME:

a ≥ 0, b > 1, c > 0,

e is continuous and T-periodic on R, e∗ > 0,

(b + 1) c2

4 e∗
<
� π

T

�2
+

a2

4
.

THEN: (1) has a positive solution.

Remark
Compare conditions:

Theorem 3: there is δ > 0 such that�� π

T

�2
+
�a

2

�2
�

x − f (t , x) ≥
�� π

T

�2
+
�a

2

�2
�

δ for t ∈ [0, T ], x ≥ δ,

Theorem 6: there is m∈
�

0,
� π

T

�2
+
�a

2

�2
�

, such that

m2 x − f (t , x)≥ 0 for t ∈ [0, T ], x ∈ [cm R1, R2]
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I. Rachůnková, M. Tvrdý and I. Vrko č. Existence of nonnegative and nonpositive
solutions for second order periodic boundary value problems. J. Differential Equations 176
(2001), 445–469.
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