6th FERO meeting

Prague, 31 August 2012

Resolving Quasar Accretion Discs

by Gravitational Microlensing

David Heyrovský & Lukáš Ledvina

Charles University, Prague

Outline

- 1. Gravitational lensing principle and properties
- 2. Quasar microlensing principle and properties
- 3. UV / optical / X-ray observations of quasar microlensing
- 4. Microlensing sensitivity to accretion disc parameters

Gravitational lens model

Images of a point source

Images of an extended source

each point of the source imaged independently

angular magnification of images -> source flux amplification

Quasar 0957+561 (Walsh, Carswell, Weymann 1979)

http://www.astr.ua.edu/keel/agn/q0957.html

http://cfa-www.harvard.edu/castles/Individual/Q0957.html

Currently known gravitational (macro)lenses

Master Lens Database

Containing 526 Gravitational Lens Systems:

- 328 Grade-A Lenses
- 85 Grade-B Lenses
- 77 Grade-C Lenses

http://masterlens.astro.utah.edu

Gallery of Gravitational Lenses Hubble Space Telescope • WFPC2

PRC99-18 • STScl OPO • K. Ratnatunga (Carnegie Mellon University) and NASA

More realistic gravitational lenses

n point masses:

$$\vec{\alpha}(\vec{\theta}) = \frac{4G}{c^2 D_L} \sum_{i=1}^n M_i \frac{\vec{\theta} - \vec{\theta}_i}{\left|\vec{\theta} - \vec{\theta}_i\right|^2}$$

continuous mass distribution (surface mass density Σ):

$$\vec{\alpha}(\vec{\theta}) = \frac{1}{\pi} \frac{D_s}{D_{LS}} \int \kappa(\vec{\theta}') \frac{\vec{\theta} - \vec{\theta}'}{\left|\vec{\theta} - \vec{\theta}'\right|^2} d^2 \vec{\theta}' \qquad \kappa(\vec{\theta}') = \frac{\Sigma(D_L \vec{\theta}')}{\Sigma_{CR}} \qquad \Sigma_{CR} = \frac{c^2}{4\pi G} \frac{D_s}{D_L D_{LS}}$$

point-source flux amplification $A_0(\vec{y}) = \sum_{images} \frac{d \Omega(image)}{d \Omega(source)} = \sum_{images} \left| \frac{\partial \vec{y}}{\partial \vec{x}} \right|_i^{-1}$

 $A_0(\vec{y}) = \infty$ for source $\vec{y} \in \text{caustic}$, image $\vec{x} \in \text{critical}$ curve

Gravitational Lens G2237+0305

http://hubblesite.org/newscenter/newsdesk/archive/releases/1990/20/image

Effect of source position and size

Narayan & Bartelmann (1999)

Quasar microlensing

- angular size of quasar accretion disk comparable to Einstein radii of individual stars in the lens galaxy (micro-arcseconds)
- relative motion of quasar wrt caustic network formed by stars in lens galaxy on timescales of weeks / months

- → given image microlensed by the local stellar population
 - microimages cannot be resolved, but flux modulation due to microlensing amplification observable

Microlensing vs. intrinsic flux variations

- intrinsic flux variations identical in all macroimages (with time delays)
- microlensing variations are imagespecific (don't appear in other images)

Microlensing lens equation

$$\vec{y} = \begin{pmatrix} 1 - \kappa_c - \gamma & 0\\ 0 & 1 - \kappa_c + \gamma \end{pmatrix} \vec{x} - \sum_i \frac{M_i}{\overline{M}} \frac{\vec{x} - \vec{x}_i}{\left| \vec{x} - \vec{x}_i \right|^2}$$

 κ_c, γ depend on lens potential at macroimage position M_i, \vec{x}_i masses and positions of microlensing stars \overline{M} average stellar mass

amplification computed numerically using inverse ray shooting

Microlensing amplification map, microimages

J. Wambsganss

Quasar motion wrt caustic network: light curves

sensitive to quasar structure

light curves for Gaussian source widths 0.03 (solid), 0.3 (dashed)

Wambsganss (1998)

Resolving quasar accretion discs by microlensing

during caustic crossing emission from different parts of disc amplified differently

 \Rightarrow the caustic "scans" the disc surface

Flux from quasar with intensity distribution $I_{obs}(\vec{y}')$ centered at $\vec{y}_c(t)$

$$F(\vec{y}_{c}(t)) = \int_{disc} I_{obs}(\vec{y}') A_{0}(\vec{y}_{c} + \vec{y}') d^{2}\vec{y}'$$

 \Rightarrow light curve traces the quasar intensity distribution

Advantages of observing in X-rays

- smaller emitting region implies stronger microlensing variation
- only local structure of amplification map important

UV continuum region size in the Einstein Cross QSO 2237+0305 (Eigenbrod et al. 2008)

UV / optical continuum region size in 12 quadruply imaged QSOs (Blackburne et al. 2011)

log(size) vs. log(rest wavelength) plots

! Only 1 QSO compatible with thin-disk- predicted size and $R \propto \lambda^{4/3}$ scaling !

BLR size in the Einstein cross QSO 2237+0305 (Sluse et al. 2011)

macroimage A/D flux ratio in CIV[1549Å] and in V-band [5500Å] continuum (OGLE)

sample A, D amplification maps agreeing with data

$$R_{CIV} = 66^{+110}_{-46}$$
 light - days
 $R_{CIV} / R_{cont} = 4 - 29$

corresponding A, D light curves

X-ray monitoring of gravitational lenses with CHANDRA (Chen et al. 2012)

Lens	z_s^a	z_l^a	R.A. (J2000)	Decl. (J2000)	N _H ^b
					$(\times 10^{22} \mathrm{cm}^{-2})$
QJ 0158-4325	1.29	0.317	01:58:41.44	-43:25:04.20	0.0195
HE 0435-1223	1.689	0.46	04:38:14.9	-12:17:14.4	0.0511
SDSS 0924+0219	1.524	0.39	09:24:55.87	+02:19:24.9	0.0375
SDSS 1004+4112	1.734	0.68	10:04:34.91	+41:12:42.8	0.0111
HE 1104-1805	2.32	0.73	11:06:33.45	-18:21:24.2	0.0462
Q 2237+0305	1.69	0.0395	22:40:30.34	+03:21:28.8	0.0551

strong Fe Kα line detected in all 6

Home Page						
Title Page						
Contents						
•••						
•						
Page 1 of 7						
Go Back						
Full Screen						
Close						
Quit						

Model of accretion disc (Dovčiak)

- Kerr BH (spin a) + thin disk
- local emission: specific intensity $I_{E,e} \sim E_e^{-\Gamma} r^{-q}$
 - $-E_{\rm e}$...photon energy
 - -r... Boyer-Lindquist radius
 - $-\Gamma$...spectral index
 - -q...radial index
- observed photon energy $E_{obs} = E_e g$ $g \dots Doppler + gravitational shift$
- transformation $(r, \varphi)_{B-L} \Rightarrow (\alpha, \beta)$ cartesian coordinates of deflected photons
- observed intensity in given energy band: $I_{\text{obs}}(\alpha, \beta; q, \Gamma) = I_0 g(\alpha, \beta)^{\Gamma+2} r(\alpha, \beta)^{-q}$
- total observed particle flux $F_{obs} = \int_{disk} I_{obs}(\alpha, \beta; q, \Gamma) A_0(\alpha, \beta) d\alpha d\beta A_0(\alpha, \beta) \dots$ microlensing point-source amplification
- \bullet disk cutoff at ISCO, at radius including 99% of total flux

Crossing of a microlensing caustic

• local approximation of point-source amplification map by linear fold caustic:

$$A_0(\alpha, \beta) \simeq \begin{cases} 1 & \text{outside caustic} \\ 1 + \sqrt{\frac{d_0}{d_\perp(\alpha, \beta)}} & \text{inside caustic} \end{cases}$$

- $\, d_{\perp}(\alpha,\beta) \dots$ perpendicular distance from caustic line
- $-d_0 \dots$ caustic strength, scales light curve peak height
- geometry
 - $\ \psi. \, . \, .$ orientation of disk during caustic crossing

Future

- Use better model of caustic structure or real amplification map
- Study changes of shape of iron K_{α} line
- •[Thanks for attention] ... soon, but not just yet

X-ray microlensing in RX J1131-1231 (Chartas et al. 2012)

X-ray microlensing in RX J1131-1231 (Chartas et al. 2012) - cont'd

