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Abstract. We give a new description of spectrum in max algebra of a given non-

negative matrix A via local spectral radii and obtain a new block triangular form of A

related to its Frobenius normal form. Related results for the usual spectrum of complex

matrices and distinguished spectrum for non-negative matrices are also obtained.

As an application we provide a new proof of the spectral mapping theorem in max

algebra and also generalize it to the setting of power series in max algebra.

Given a non-negative bounded infinite matrix A, we show that the Bonsall’s cone

spectral radius of a map x 7→ A⊗ x, with respect to the cone l∞+ , is included in its max

algebra approximate point spectrum. Moreover, the spectral mapping theorem with

respect to point and approximate point spectrum in max algebra is investigated. The

corresponding results for more general max and max-plus type kernel operators and for

tropical Bellman operators are obtained.
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1. Introduction

The algebraic system max algebra and its isomorphic versions (max-plus algebra, tropi-

cal algebra) provide an attractive way of describing a class of non-linear problems appear-

ing for instance in manufacturing and transportation scheduling, information technology,

discrete event-dynamic systems, combinatorial optimization, mathematical physics, DNA

analysis, ...(see e.g. [12], [6], [17], [7],[10], [33] and the references cited there). Max al-

gebra’s usefulness arises from a fact that these non-linear problems become linear when

described in the max algebra language. Moreover, recently max algebra techniques were

used to solve certain linear algebra problems (see e.g. [15], [30]). In particular, tropical
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2 VLADIMIR MÜLLER, ALJOŠA PEPERKO

polynomial methods improved the accuracy of the numerical computation of the eigen-

values of a matrix polynomial (see e.g. [1], [2], [18], [19], [3], [11] and the references cited

there).

The max algebra consists of the set of non-negative numbers with sum a⊕b = max{a, b}
and the standard product ab, where a, b ≥ 0. Denote by Ω the set {1, 2, . . . , n} or N. Let

A = [Aij] be a non-negative matrix, i.e., Aij ≥ 0 for all i, j ∈ Ω. A non-negative matrix

A is called bounded if sup{Aij : i, j ∈ Ω} <∞.

Let Rn×n (Cn×n) be the set of all n×n real (complex) matrices, Rn×n
+ the set of all n×n

non-negative matrices and M∞×∞
+ the set of all non-negative bounded matrices in the case

Ω = N. The operations between matrices and vectors in the max algebra are defined by

analogy with the usual linear algebra. The product of non-negative bounded matrices

A and B in the max algebra is denoted by A ⊗ B, where (A ⊗ B)ij = supk∈ΩAikBkj

and the sum A ⊕ B in the max algebra is defined by (A ⊕ B)ij = max{Aij, Bij}. The

notation A2
⊗ means A⊗ A, and Ak⊗ denotes the k-th max power of A. If x = (xi)i∈Ω is a

non-negative bounded (i.e., ‖x‖ = supi∈Ω xi <∞) vector, then the notation A⊗ x means

(A⊗ x)i = supj∈Ω Aijxj. The usual associative and distributive laws hold in this algebra.

The role of the spectral radius of A ∈ Rn×n
+ in max algebra is played by the maximum

cycle geometric mean r⊗(A), which is defined by

(1) r⊗(A) = max
{

(Ai1ik · · ·Ai3i2Ai2i1)1/k : k ∈ N and i1, . . . , ik ∈ {1, . . . , n}
}

and equal to

r⊗(A) = max
{

(Ai1ik · · ·Ai3i2Ai2i1)1/k : k ≤ n and i1, . . . , ik ∈ {1, . . . , n} mutually distinct
}
.

A digraph G(A) = (N(A), E(A)) associated to A ∈ Rn×n
+ is defined by setting N(A) =

{1, ..., n} and letting (i, j) ∈ E(A) whenever Aij > 0. When this digraph contains at

least one cycle, one distinguishes critical cycles, where the maximum in (1) is attained.

A graph with just one node and no edges will be called trivial. A bit unusually, but in

consistency with [12], [13], [20], [14], a matrix A ∈ Rn×n
+ is called irreducible if G(A) is

trivial (A is 1× 1 zero matrix) or strongly connected (for each i, j ∈ N(A) there is a path

in G(A) that starts in i and ends in j).

There are many different descriptions of the maximum cycle geometric mean r⊗(A) (see

e.g. [16], [12], [31], [32], [30] and the references cited there). It is known that r⊗(A) is the

largest max eigenvalue of A, i.e., r⊗(A) = max{λ : λ ∈ σ⊗(A)}, where the spectrum in

max algebra σ⊗(A) is the set of all (max eigenvalues) λ ≥ 0 for which there exists x ∈ Rn
+,

x 6= 0 with A⊗ x = λx.

Moreover, if A is irreducible, then r⊗(A) is the unique max eigenvalue and every max

eigenvector is positive (see e.g. [7, Theorem 2], [12], [6], [9]). Also, the max version of the

Gelfand formula holds for any A ∈ Rn×n
+ , i.e.,

(2) r⊗(A) = lim
m→∞

‖Am⊗‖1/m
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for an arbitrary vector norm ‖ · ‖ on Rn×n (see e.g. [31] and the references cited there).

As outlined e.g. in [27], due to (2) a natural generalization (and unification with

the usual spectral radius) in infinite dimensions is the Bonsall’s cone spectral radius,

which we will recall in Section 4. An eigenproblem for max type kernel operators and its

isomorphic versions (and an eigenproblem for more general maps) has already received

a lot of attention (see e.g. [4], [27], [29], [21], [34] and the references cited there). The

results can be applied in different contexts, for instance in optimal control problems (here

the max eigenvectors correspond to stationary solutions of the dynamic programming

equations and the max eigenvalues correspond to the maximal ergodic rewards per time

unit), in the study of discrete event systems, in statistical mechanics, in the study of delay

systems, ... (see e.g. [4], [27], [13] and the references cited there).

However, besides the study of the eigenproblem there seems to be a lack of more general

functional analytic spectral theory in max algebra (and more generally in idempotent

mathematics) in the literature, even though the need for it has already been explicitly

requested by the idempotent community.

The paper is organized as follows. In Section 2 we give a new description of spectrum

in max algebra of a given non-negative matrix A via local spectral radii (Theorem 2.6)

and obtain a new block triangular description of A related to its Frobenius normal form.

Consequently we provide a new proof of the spectral theorem in max algebra (Corollary

2.9). Related results for the usual spectrum of complex matrices and distinguished spec-

trum for non-negative matrices are also obtained (Proposition 2.11 and Theorem 2.13).

In Section 3 we apply results of Section 2 to obtain a new proof of the spectral mapping

theorem in max algebra (Theorem 3.3) and we also generalize it to the setting of power

series in max algebra (Theorem 3.7) by applying the continuity properties of the spectrum

in max algebra (Proposition 3.6).

Given a non-negative bounded infinite matrix A, we introduce in Section 4 the notion

of the approximate point spectrum in max algebra. In particular, we show that the

Bonsall’s cone spectral radius of a map x 7→ A ⊗ x, with respect to the cone l∞+ , is

included in its max algebra approximate point spectrum (Theorem 4.2). Moreover, the

spectral mapping theorem with respect to point and approximate point spectrum in max

algebra is investigated. In particular, we prove that in both cases the spectral mapping

theorem is valid for polynomials without an absolute term (Theorem 5.4 and Corollary

5.6). Also the corresponding results for more general max and max-plus type kernel

operators and for tropical Bellman operators are obtained.

2. Spectrum in max algebra for n× n matrices

In this section we prove a new description of the spectrum σ⊗(A) in max algebra and

a corresponding block triangular decomposition of a given matrix A ∈ Rn×n
+ .
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For x ∈ Rn
+ we define the local spectral radius in max algebra at x by

rx(A) = lim sup
k→∞

‖Ak⊗ ⊗ x‖1/k

(we show later that in fact the limit limk→∞ ‖Ak⊗ ⊗ x‖1/k always exists).

Let e1, . . . , en be the standard basis in Rn. Observe that ‖Ak⊗⊗ ej‖ is the largest entry

of the jth column of the matrix Ak⊗, i.e.,

‖Ak⊗ ⊗ ej‖ = max{Ajk,jk−1
· · ·Aj2,j1Aj1,j : 1 ≤ j, j1, · · · , jk ≤ n}.

The following result describes rej(A) for all j ∈ {1, . . . , n}.

Lemma 2.1. Let A ∈ Rn×n
+ , j ∈ {1, . . . , n}. Then rej(A) is the maximum of all t ≥ 0

with the following property (*):

there exist a ≥ 0, b ≥ 1 and mutually distinct indices i0 := j, i1, . . . , ia, ia+1, . . . , ia+b−1 ∈
{1, . . . , n} such that

a−1∏
s=0

Ais+1,is 6= 0 and
a+b−1∏
s=a

Ais+1,is = tb,

where we set ia+b = ia.

Proof. Let t, i0, . . . , ia+b−1 satisfy (*). Then

rej(A) = lim sup
k→∞

‖Ak⊗ ⊗ ej‖1/k ≥ lim sup
m→∞

‖Aa+mb
⊗ ⊗ ej‖1/a+mb

≥ lim sup
m→∞

(
a−1∏
s=0

Ais+1,is

(a+b−1∏
s=a

Ais+1,is

)m)1/a+mb

= lim sup
m→∞

(
tm

a−1∏
s=0

Ais+1,is

)1/a+mb

= t.

Conversely, let c be the maximum of all t with property (*). Then it is not difficult to

show that ‖Ak⊗ ⊗ ej‖ ≤ ‖A‖n · ck−n for all k ∈ N. Hence rej(A) ≤ c �

The following result follows directly from Lemma 2.1 and definition (1) of r⊗(A).

Corollary 2.2. If A ∈ Rn×n
+ , then

r⊗(A) = max
j=1,...,n

rej(A).

Remark 2.3. Lemma 2.1 states that (using a terminology of e.g. [13], [12]) for each j ∈
{1, . . . , n}, the radius t = rej(A) equals the maximum of cycle geometric means, such that

the node j is accessible from one of the corresponding (t−critical) cycles. Now we could

already deduce Theorem 2.6 bellow by applying the known spectral mapping theorem

(see Corollary 2.9 bellow). However, we choose to prove Theorem 2.6 independently and

thus we consequently provide a new proof of Corollary 2.9.

First we prove the following result.

Theorem 2.4. Let A ∈ Rn×n
+ , x = (x1, . . . , xn) ∈ Rn

+, x 6= 0. Then:
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(i) the limit limk→∞ ‖Ak⊗ ⊗ x‖1/k exists;

(ii) rx(A) = max{rej(A) : 1 ≤ j ≤ n, xj 6= 0}.

Proof. We show first that limk→∞ ‖Ak⊗ ⊗ ej‖1/k exists for each j = 1, . . . , n.

By Lemma 2.1 there exist i0 = j, i1, . . . , ia+b−1 satisfying property (*) with t = rej(A).

Let k ∈ N. Write k = a+ db+ z with d ∈ N0 and z < b. Then

‖Ak⊗ ⊗ ej‖ ≥
a−1∏
s=0

Ais+1,is

(a+b−1∏
s=a

Ais+1,is

)d a+z−1∏
s=a

Ais+1,is

=
a−1∏
s=0

Ais+1,is · tdb ·
a+z−1∏
s=a

Ais+1,is .

It follows that

lim inf
k→∞

‖Ak⊗ ⊗ ej‖1/k ≥ t = rej(A)

and therefore rej(A) = limk→∞ ‖Ak⊗ ⊗ ej‖1/k for all j = 1, . . . , n.

Moreover, for each k ∈ N, we have

‖Ak⊗ ⊗ x‖ = max{xj‖Ak⊗ ⊗ ej‖ : j = 1, . . . , n}.

So

lim
k→∞
||Ak⊗ ⊗ x‖1/k = lim

k→∞
max{‖Ak⊗ ⊗ ej‖1/k : xj 6= 0}

= max{ lim
k→∞
‖Ak⊗ ⊗ ej‖1/k : xj 6= 0} = max{rej(A) : 1 ≤ j ≤ n, xj 6= 0},

which completes the proof. �

A set C ⊂ Rn
+ is called a max cone, if x⊕ y ∈ C and λx ∈ C for all x, y ∈ C and λ ≥ 0.

For a set S ⊂ Rn
+ we denote by

∨
S the max cone generated by S, i.e.,

∨
S is the set of

all x ∈ Rn
+ for which there exist k = k(x) ∈ N, s1, . . . , sk ∈ S and λ1, . . . , λk ≥ 0 such

that x = λ1s1 ⊕ · · · ⊕ λksk.
A max cone C is invariant for A ∈ Rn×n

+ , if A ⊗ x ∈ C for all x ∈ C. We have the

following result.

Corollary 2.5. Let A ∈ Rn×n
+ , c ≥ 0. Then {x ∈ Rn

+ : rx(A) ≤ c} =
∨
{ej : rej(A) ≤ c}

is a max cone invariant for A.

Proof. The equality follows from the previous theorem. Clearly rA⊗x(A) = rx(A) for all

x ∈ Rn
+, so the max cone is invariant for A. �

Now we are in position to prove the following description of spectrum in max algebra.

Theorem 2.6. If A ∈ Rn×n
+ , then

σ⊗(A) = {t : there exists j ∈ {1, . . . , n}, t = rej(A)}.
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Proof. If t ∈ σ⊗(A), then there exists a nonzero x ∈ Rn
+ such that A ⊗ x = tx. So

rx(A) = limk→∞ ‖Ak⊗ ⊗ x‖1/k = t. By Theorem 2.4, there exists j ∈ {1, . . . , n} with

rej(A) = t.

Conversely, let j ∈ {1, . . . , n} and c := rej(A). Let M =
∨
{es : res(A) ≤ c}. By

Corollary 2.5, the max cone M is invariant for A. For the restriction A|M of A to M we

have by Corollary 2.2 that r⊗(A|M) = max{res(A|M) : es ∈ M} = c. So there exists a

max Perron-Frobenius eigenvector x ∈M ⊂ Rn
+ with A⊗ x = cx. �

Remark 2.7. In [27] the equality

r⊗(A) = max{rx(A) : x ∈ Rn
+}

is generalized to the setting of cone preserving maps in Banach spaces.

It follows from the proof of Theorem 2.6 that there exists a permutation matrix P such

that the matrix P TAP equals

(3)



Ad 0 0 . . . 0 0
∗ Ad−1 0 . . . 0 0
∗ ∗ Ad−2 . . . 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ . . . A2 0
∗ ∗ ∗ . . . ∗ A1

 ,

where A1, · · · , Ad are square matrices, d is the cardinality of σ⊗(A) and

r⊗(A1) < r⊗(A2) < · · · < r⊗(Ad) = r⊗(A)

are max eigenvalues of a matrix A. Moreover, for each i = 1, . . . , d the set

Mi =
∨
{ej : rej(A) ≤ r⊗(Ai)}

is a max cone invariant for A such that r⊗(A|Mi
) = r⊗(Ai).

In what follows we describe a correlation of our results with known results in terms of

a Frobenius normal form of a matrix A (see e.g. [13], [12], [20], [14] and the references

cited there). Each Ai for i = 1, . . . , d can be transformed by simultaneous permutations

of the rows and columns to a Frobenius normal form (FNF) ([8], [12], [13], [20])
A

[i]
li

0 0 . . . 0

∗ A
[i]
li−1 0 . . . 0

...
...

. . .
... 0

∗ ∗ ∗ . . . A
[i]
1

 ,
where A

[i]
1 , . . . , A

[i]
li

are irreducible square submatrices of Ai.
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This gives a FNF of a matrix A denoted by

(4)


Bl 0 0 . . . 0
∗ Bl−1 0 . . . 0
...

...
. . .

... 0
∗ ∗ ∗ . . . B1

 .
For example, the decomposition (3) of the identity matrix

I =

[
1 0
0 1

]
has only one block I, but its FNF has two blocks equal to [1]. In general, the diagonal

blocks in FNF are determined uniquely (up to a simultaneous permutation of their rows

and columns), however their order is not determined uniquely.

The matrices B1, . . . , Bl from (4) correspond to the sets of nodes N1, . . . , Nl of the

strongly connected components of the digraph G(A) = (N(A), E(A)). Note that in (4)

an edge from a node of Nµ to a node of Nν in G(A) may exist only if µ ≤ ν.

The reduced graph denoted by R(A) is a digraph whose nodes correspond to Nµ for

µ = 1, ..., l and the set of edges is

{(µ, ν) : there exist k ∈ Nµ and j ∈ Nν such that Akj > 0}.

By a class of A we mean a node µ (or also the corresponding set Nµ) of the reduced

graph R(A). A class µ is trivial if Bµ is the 1× 1 zero matrix. Class µ accesses class ν,

denoted µ→ ν, if µ = ν or if there exists a µ− ν path in R(A) (a path that starts in µ

and ends in ν). A node j of G(A) is accessed by a class µ, denoted by µ→ j, if j belongs

to a class ν such that µ→ ν.

The following result, that describes the max eigenvalues rej(A) via the access relation,

follows from Lemma 2.1.

Corollary 2.8. Let A ∈ Rn×n
+ and let B1, . . . , Bl be from (4). Then we have

rej(A) = max{r⊗(Bµ) : µ→ j}.

for all j = 1, . . . , n.

For each j = 1, . . . , n we have rej(A) = r⊗(Bν) for some class ν (but not vice versa in

general). Now the following result (sometimes called the spectral theorem in max algebra

([13, Theorem 3.1], [12, Theorem 4.5.4], [20, Corollary 4.2(i) ], [17], [10], [9]) follows from

Corollary 2.8 and Theorem 2.5.

Corollary 2.9. Let A ∈ Rn×n
+ and let B1, . . . , Bl be from (4). Then

σ⊗(A) = {r⊗(Bν) : r⊗(Bν) = max{r⊗(Bµ) : µ→ ν}} .
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If r⊗(Bν) = max{r⊗(Bµ) : µ → ν} is satisfied, then a class ν is called spectral. Thus

r⊗(Bν) ∈ σ⊗(A) if a class ν is spectral (but not necessarily vice versa as it is well known).

The following example illustrates the results obtained above.

Example 2.10. Let

A =


2 0 0 0 0
1 3 0 0 0
1 0 1 1 0
0 0 1 2 0
0 0 0 0 1

 .
Then A is in the forms (3) and (4), where

A3 =

[
2 0
1 3

]
, A2 =

[
1 1
1 2

]
, A1 = [1],

B4 = [2], B3 = [3], B2 = A2, B1 = A1.

The spectral classes correspond to B3, B2, B1 and re1(A) = re2(A) = 3, re3(A) = re4(A) =

2 and re5(A) = 1.

To conclude this section we state some related linear algebra results for the spectrum

of complex matrices and for the distinguished spectrum of non-negative matrices (see e.g.

[20], [14]). First we describe the set {|λ| : λ ∈ σ(A)} of a given matrix A ∈ Cn×n, where

σ(A) denotes the usual spectrum of A, via the usual local spectral radii. Recall that for

x ∈ Cn the local spectral radius ρx(A) at x is defined by

ρx(A) = lim sup
k→∞

‖Akx‖1/k,

where Ak denote the usual powers of A.

Proposition 2.11. If A ∈ Cn×n, then

{|λ| : λ ∈ σ(A)} = {t : there exists x ∈ Cn, t = ρx(A)}.

Proof. Since the inclusion ⊂ is obvious, it remains to prove the reverse inclusion. For

a given x ∈ Cn let us denote ρx(A) = t. By M let us denote the linear span of the

set {y : ρy(A) ≤ t}. Then M is an invariant subspace and the usual spectral radius

ρ(A|M) = t. Thus there exists λ ∈ σ(A) such that |λ| = t. This completes the proof. �

Proposition 2.11 implies the following known result (see e.g. [27]).

Corollary 2.12. If A ∈ Cn×n, then the usual spectral radius

ρ(A) = max{ρx(A) : x ∈ Cn}.

Recall that λ ∈ σ(A) of A ∈ Mn×n
+ is called a distinguished eigenvalue if there exists

x ∈ Rn
+, x 6= 0, such that Ax = λx. Let us denote the set of all distinguished eigenvalues

of A by σD(A), which is a non-empty set since ρ(A) ∈ σD(A). The following result is an
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analogue of Theorem 2.6 in nonnegative linear algebra (linear algebra over a semiring of

non-negative reals equipped with the usual sum and product).

Theorem 2.13. If A ∈ Rn×n
+ , then

σD(A) = {t : there exists j ∈ {1, . . . , n}, t = ρej(A)}.

Proof. ⊂: If Ax = λx for some x ≥ 0, x 6= 0, then λ = ρx(A). It is easy to see that

ρx(A) = max{ρej(A) : xj 6= 0}, which proves the inclusion ⊂.

⊃: Let t = ρej(A) for some j = 1, · · · , n. By M let us denote the subcone generated by

the set {ei : ρei(A) ≤ t}. Then AM ⊂M and ρ(A|M) = t. Since ρ(A|M) = max{ρx(A|M) :

x ∈M}, there exists x ∈M , x 6= 0, such that Ax = tx. This completes the proof. �

Remark 2.14. From the proof of Theorem 2.13 we can obtain a block triangular de-

composition of A ∈ Rn×n
+ , which is an analogue of (3) and consequently a FNF of A in

a similar manner as above. We omit the details. There are several similarities, but also

some differences, in the description of σ⊗(A) and σD(A) via an access relation (we refer

the reader to [20], [14], [13], [12]).

3. Spectral mapping theorem in max algebra for n× n matrices

The spectral mapping theorem for polynomials (see (5) bellow) in max algebra was

established in [20, Theorem 3.6]. Applying Theorem 2.6 we give a different proof of this

result (Theorem 3.3). Moreover, we extend it to power series in max algebra (Theorem

3.7).

Let P+ be the set of all polynomials with non-negative coefficients,

P+ = {p =

deg p∑
j=0

αjz
j : αj ≥ 0, j = 0, . . . deg p}.

For p, q ∈ P+, p =
∑deg p

j=0 αjz
j, q =

∑deg q
j=0 βjz

j define p⊕ q, p⊗ q ∈ P+ by

p⊕ q =

max{deg p,deg q}∑
j=0

max{αj, βj}zj,

p⊗ q =

deg p+deg q∑
j=0

max{αiβj−i : 0 ≤ i ≤ j}zj.

These algebraic operations on P+ satisfy the familiar laws. The proof of the following

result is elementary and we omit it.

Proposition 3.1. Let p, q, h ∈ P+. Then we have

(i) p⊕ p = p,

(ii) p⊕ q = q ⊕ p,

(iii) (p⊕ q)⊕ h = p⊕ (q ⊕ h),
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(iv) p⊗ q = q ⊗ p,

(v) (p⊗ q)⊗ h = p⊗ (q ⊗ h),

(vi) p⊗ (q ⊕ h) = p⊗ q ⊕ p⊗ h.

Let p ∈ P+, p =
∑deg p

j=0 αjz
j and t ≥ 0. Write p⊗(t) = max{αjtj : 0 ≤ j ≤ deg p}. For

A ∈ Rn×n
+ define

p⊗(A) =

deg p⊕
j=0

αjA
j
⊗.

The proof of the following fact is again straightforward and it is omitted.

Proposition 3.2. Let p, q ∈ P+ and A ∈ Rn×n
+ . Then

(i) (p⊕ q)⊗(A) = p⊗(A)⊕ q⊗(A),

(ii) (p⊗ q)⊗(A) = p⊗(A)⊗ q⊗(A).

Thus the mapping p 7→ p⊗(A) defines naturally a polynomial functional calculus for

matrices A ∈ Rn×n
+ .

Let A ∈ Rn×n
+ and p ∈ P+. It follows from [20, Theorem 3.6] that

(5) σ⊗(p⊗(A)) = p⊗(σ⊗(A)).

In [20] the equality (5) was deduced from the existence theorem of common max eigenvec-

tors for commutative matrices in max algebra ([20, Theorem 3.5], [12]) applied to matrices

A and p⊗(A).

Applying the results of the previous section we give a different proof of (5).

Theorem 3.3. Let A ∈ Rn×n
+ and p ∈ P+. Then

(6) r⊗(p⊗(A)) = p⊗(r⊗(A))

and

(7) σ⊗(p⊗(A)) = p⊗(σ⊗(A)).

Proof. Let t ∈ σ⊗(A). There exists x ∈ Rn
+, x 6= 0 with A ⊗ x = tx. So Aj⊗ ⊗ x = tjx

for all j, and so p⊗(A) ⊗ x = p⊗(t) ⊗ x. It follows p⊗(σ⊗(A)) ⊂ σ⊗(p⊗(A)) and so

p⊗(r⊗(A)) ≤ r⊗(p⊗(A)).

Let us denote b = r⊗(p⊗(A)). To prove (6) it remains to show that p⊗(r⊗(A)) ≥ b if

b > 0. Let us consider a critical cycle for p⊗(A), i.e., let i0, i1, . . . , ik−1, ik = i0 ∈ {1, . . . , n}
be such that

k−1∏
s=0

(p⊗(A))is+1,is = bk.

For s = 0, . . . , k − 1 we have

(p⊗(A))is+1,is = max{(αjAj⊗)is+1,is : 0 ≤ j ≤ deg p}.
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Choose j(s) ∈ {0, 1, . . . , deg p} such that

(p⊗(A))is+1,is = (αj(s)A
j(s)
⊗ )is+1,is .

Since is+1 6= is we have j(s) 6= 0. Choose is,0 = is, is,1, . . . , is,j(s) = is+1 such that

(A
j(s)
⊗ )is+1,is =

j(s)−1∏
m=0

Ais,m+1,is,m .

Consider the cycle

i0 = i0,0, i0,1, . . . , i0,j(0)−1, i0,j(0) = i1 = i1,0, i1,1 . . . , i1,j(1) = i2, i2,1, . . . , ik = i0

of length
∑k−1

s=0 j(s). We have

r⊗(A)
∑k−1

s=0 j(s) ≥
k−1∏
s=0

j(s)−1∏
m=0

Ais,m+1,is,m =
k−1∏
s=0

(A
j(s)
⊗ )is+1,is

=
k−1∏
s=0

(p⊗(A))is+1,is

αj(s)
=

bk∏k−1
s=0 αj(s)

.

Hence
k−1∏
s=0

(
αj(s)r⊗(A)j(s)

)
≥ bk

and there exists s, 0 ≤ s ≤ k − 1 with αj(s)r⊗(A)j(s) ≥ b. So p⊗(r⊗(A)) ≥ b. This proves

(6).

It remains to prove that σ⊗(p⊗(A)) ⊂ p⊗(σ⊗(A)). Suppose on the contrary that there

exists s ∈ σ⊗(p⊗(A)) \ p⊗(σ⊗(A)). We will show that this implies rej(p⊗(A)) 6= s for all

j ∈ {1, . . . , n}, which contradicts Theorem 2.6.

Let L = {j ∈ {1, . . . , n} : p⊗(rej(A)) < s} and XL =
∨
{ej : j ∈ L}. For j /∈ L we have

p⊗(rej(A)) > s by Theorem 2.6. Therefore

rej(p⊗(A)) ≥ max{rej(αmAm⊗ ) : 0 ≤ m ≤ deg p}

≥ max{αm(rej(A))m : 0 ≤ m ≤ deg p} = p⊗(rej(A)) > s.

On the other hand, XL is invariant for A. So for j ∈ L,

rej(p⊗(A)) ≤ r⊗(p⊗(A|XL)) = p⊗(r⊗(A|XL)) < s

by (6) and Theorem 2.6. So rej(p⊗(A)) 6= s for all j ∈ {1, . . . , n}, and so s /∈ σ⊗(p⊗(A))

by Theorem 2.6. This contradiction completes the proof. �

Remark 3.4. Alternatively, the inequality p⊗(r⊗(A)) ≥ r⊗(p⊗(A)) can be proved also in

the following way.

It follows from [12, Theorems 5.3.4 and 5.3.2] that

(8) r⊗(A) = max{maper(B)1/k : B ∈ Pk(A), k = 1, . . . , n},
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where Pk(A) is the set of all principal submatrices of A of order k. The permanent

maper(B) in max algebra is defined by

maper(B) = max
σ∈Pk

B1σ(1) · · ·B1σ(k),

where Pk denotes the set of all permutations of the set {1, 2, . . . , k}.
By (8) there exist k ∈ {1, . . . , n}, σ ∈ Pk and j(r) ∈ {1, . . . deg p} for each r ∈ {1, . . . , k}

such that

r⊗(p⊗(A))k = αj(1) · · ·αj(k)

k∏
r=1

(A
j(r)
⊗ )rσ(r).

Since σ is the product of cyclic permutations, it follows that

r⊗(p⊗(A))k ≤ αj(1) · · ·αj(k)r⊗(A)j(1)+···+j(k).

Thus there exist j(r) ∈ {1, . . . deg p} such that

r⊗(p⊗(A)) ≤ αj(r)r⊗(A)j(r) ≤ p⊗(r⊗(A)),

which reproves the desired inequality.

A reformulation of the equality (6) therefore asserts that

max
B∈Pk(p⊗(A)), k=1,...,n

maper(B)1/k = p⊗

(
max

C∈Pl(A), l=1,...,n
maper(C)1/l

)
.

In what follows we generalize Theorem 3.3 by considering power series instead of poly-

nomials.

Let A+ = {f =
∑∞

j=0 αjz
j : αj ≥ 0, j = 0, 1, . . . }.

For f, g ∈ A+, f =
∑∞

j=0 αz
j, g =

∑∞
j=0 βjz

j define

f ⊕ g =
∞∑
j=0

max{αj, βj}zj,

f ⊗ g =
∞∑
j=0

max{αiβj−i : 0 ≤ i ≤ j}zj.

These operations satisfy the same rules as polynomials, i.e., an analogue of Proposition

3.1 for a set A+ holds.

For f ∈ A+, f =
∑∞

j=0 αjz
j write Rf = lim infj→∞ α

−1/j
j . For 0 ≤ t < Rf write

f⊗(t) = sup{αjtj : j = 0, 1, . . . } (note that for t < Rf we have supj αjt
j <∞).

Let A ∈ Rn×n
+ , f =

∑∞
j=0 αjz

j ∈ A+, r⊗(A) < Rf . Define

f⊗(A) =
∞⊕
j=0

αjA
j
⊗.

Since r⊗(A) = limj→∞ ‖Aj⊗‖1/j this definition makes sense and f 7→ f⊗(A) defines an

analytic functional calculus for A ∈ Rn×n
+ with properties analogous to the polynomial

functional calculus (an analogue of Proposition 3.2 for a set A+ holds.)
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The spectral mapping theorem remains valid for power series as we will prove bellow

in Theorem 3.7.

For f ∈ A+, f =
∑∞

j=0 αjz
j and k ∈ N denote by Sk the k-th partial sum Sk =∑k

j=0 αjz
k. Clearly for A ∈ Rn×n

+ with r⊗(A) < Rf we have f⊗(A) = limk→∞ Sk⊗(A).

Moreover, the sequence of partial sums is non-decreasing, S0⊗(A) ≤ S1⊗(A) ≤ · · · .
It is known that the spectral radius in max algebra A 7→ r⊗(A) is continuous in Rn×n

+

(see e.g. [30], [33], [26], [22]). However, as the following example shows the spectrum in

max algebra A 7→ σ⊗(A) is in general not continuous.

Example 3.5. Let Ak =

[
1 0
k−1 2

]
, A =

[
1 0
0 2

]
. Then σ⊗(Ak) = {2} for all k ∈ N,

‖Ak − A‖ → 0 as k →∞ and σ⊗(A) = {1, 2}.

The next result summarizes the continuity properties of the spectrum in max algebra.

Proposition 3.6. (i) The spectrum in max algebra A 7→ σ⊗(A) is upper semi-continuous

in Rn×n
+ .

(ii) If A,Ak ∈ Rn×n
+ , ‖Ak − A‖ → 0 as k →∞ and A1 ≤ A2 ≤ · · · then

σ⊗(Ak)→ σ⊗(A).

Proof. (i) Let A,Ak ∈ Rn×n
+ such that ‖Ak − A‖ → 0 as k → ∞. Let λk ∈ σ⊗(Ak),

λk → λ. For each k ∈ N there exists an eigenvector xk ∈ Rn
+ such that ‖xk‖ = 1 and

Ak ⊗ xk = λkxk. By a compactness argument there exists a convergent subsequence of

the sequence (xk). Clearly its limit x satisfies ‖x‖ = 1 and A⊗x = λx, which proves (i).

(ii) Let A,Ak ∈ Rn×n
+ such that ‖Ak − A‖ → 0 as k → ∞ and A1 ≤ A2 ≤ · · · . Let

λ ∈ σ⊗(A). By Theorem 2.6 there exists j ∈ {1, . . . , n} such that λ = rej(A). Clearly

there exists k0 such that for all k ≥ k0 and i, l ∈ {1, . . . , n},

(Ak)i,l 6= 0⇔ Ai,l 6= 0.

Then λk = rej(Ak) ∈ σ⊗(Ak) and λk = rej(Ak)→ rej(A) = λ as k →∞, which completes

the proof. �

Now the spectral mapping theorem for power series in max algebra follows obviously

from Theorem 3.3 and Proposition 3.6(ii).

Theorem 3.7. Let f ∈ A+ and A ∈ Rn×n
+ such that r⊗(A) < Rf . Then σ⊗(f⊗(A)) =

f⊗(σ⊗(A)) and so r⊗(f⊗(A)) = f⊗(r⊗(A)).

4. Approximate point spectrum in max algebra and Bonsall’s cone

spectral radius

Recall that by M∞×∞
+ we denote the set of all non-negative bounded matrices (i.e.,

‖A‖ = supi,j∈NAij <∞ for all A ∈M∞×∞
+ ). Similarly l∞+ denotes a cone (and also a max

cone) of non-negative bounded sequences. For x, y ∈ l∞+ we write ‖x−y‖ = supi∈N |xi−yi|.
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Let A ∈ M∞×∞
+ . It is not hard to see that ‖A ⊗ x − A ⊗ y‖ ≤ ‖A‖ · ‖x − y‖ for all

x, y ∈ l∞+ . A map gA : l∞+ → l∞+ , gA : x 7→ A ⊗ x is therefore a well defined continuous

max linear map. We also have

‖A‖ = sup{‖A⊗x‖ : ‖x‖ ≤ 1, x ∈ l∞+ } = sup

{
‖A⊗ x‖
‖x‖

: x 6= 0, x ∈ l∞+
}

= sup
j∈N
‖A⊗ ej‖.

Since the map gA : l∞+ → l∞+ is monotone, positively homogeneous and continuous, the

spectral radius r⊗(A) of A ∈M∞×∞
+ in max algebra

r⊗(A) := lim
k→∞
‖Ak⊗‖1/k = inf

k∈N
‖Ak⊗‖1/k

by definition equals the Bonsall’s cone spectral radius rl∞+ (gA) of the map gA with respect

to the cone l∞+ (see e.g. [27], [5], [28], [22]).

Let A ∈ M∞×∞
+ and x ∈ l∞+ . As in the finite-dimensional case we define the local

spectral radius at x by rx(A) = lim supk→∞ ‖Ak⊗ ⊗ x‖1/k (in general the limit does not

exist).

Clearly rx(A) ≤ r⊗(A) for all x ∈ l∞+ . Moreover, ry(A) = r⊗(A) for y = (1, 1, . . . ).

Let {ej : j ∈ N} be the standard basis vectors. The following example shows that in

general sup rej(A) 6= r⊗(A), an so Theorem 2.6 for infinite matrices is not true.

Example 4.1. Consider the direct sum A =
⊕∞

n=1 Sn, where Sn is the n−dimensional

left shift, i.e., A⊗ e1 = 0 and A⊗ ej = ej−1 for all j ≥ 2. Then rej(A) = 0 for each basis

element ej, but r⊗(A) = 1.

The point spectrum in max algebra of A ∈M∞×∞
+ is the set of all t ≥ 0 for which there

exists x ∈ R∞+ , ‖x‖ = 1 with A⊗ x = tx.

The approximate point spectrum is the set of all t ≥ 0 for which there exists a sequence

(xk) ⊂ l∞+ of unit vectors such that

lim
k→∞
‖A⊗ xk − txk‖ = 0.

We denote the point and the approximate point spectrum in max algebra simply by

σp(A) and σap(A), respectively. Obviously σp(A) ⊂ σap(A). Also σap(A) is always closed

and nonempty, which follows from Theorem 4.2. It is proved in [27] that under certain

compactness assumptions we have r⊗(A) = max{t : t ∈ σp(A)}. Next we show that we

always have r⊗(A) = max{t : t ∈ σap(A)}.

Theorem 4.2. Let A ∈M∞×∞
+ . Let sup{rej(A) : j ∈ N} ≤ t ≤ r⊗(A). Then t ∈ σap(A).

In particular, r⊗(A) ∈ σap(A). Moreover, r⊗(A) = max{t : t ∈ σap(A)}.

Proof. First we prove that r⊗(A) ≥ t for all t ∈ σap(A). If t ∈ σap(A), then there exists

a sequence (xk) of unit vectors such that limk→∞ ‖A ⊗ xk − txk‖ = 0. By induction it

follows that limk→∞ ‖Aj⊗ ⊗ xk − tjxk‖ = 0 for all j ∈ N. Indeed,

‖Aj⊗ ⊗ xk − tjxk‖ ≤ ‖A
j
⊗ ⊗ xk − A

j−1
⊗ ⊗ txk‖+ ‖Aj−1

⊗ ⊗ txk − tjxk‖

≤ ‖Aj−1
⊗ ‖ · ‖A⊗ xk − txk‖+ t‖Aj−1

⊗ ⊗ xk − tj−1xk‖ → 0
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as k →∞ by the induction assumption.

It follows ‖Aj⊗‖ ≥ limk→∞ ‖Aj⊗ ⊗ xk‖ = tj, and so r⊗(A) ≥ t.

Let sup{rej(A) : j ∈ N} ≤ t ≤ r⊗(A) and ε > 0. We will construct u ∈ l∞+ , ‖u‖ = 1

such that ‖A⊗ u− tu‖ ≤ ε.

If t = 0, then rej(A) = limk→∞ ‖Ak⊗ ⊗ ej‖1/k = 0 for all j ∈ N. Let ε > 0. Then there

exists n ≥ 0 such that An⊗ ⊗ e1 6= 0 and ‖An+1
⊗ ⊗ e1‖ < ε‖An⊗ ⊗ e1‖. So it is sufficient to

take u =
An
⊗⊗e1

‖An
⊗⊗e1‖

. Then ‖u‖ = 1 and ‖A⊗ u‖ < ε. Hence 0 ∈ σap(A).

So without loss of generality we may assume that t = 1. Clearly ‖Aj⊗‖ ≥ r⊗(A)j ≥ 1

for all j. Let K = ‖A‖. Let ε > 0. Choose m0 ∈ N such that (1 + ε)m0 > 2
ε

and n0 ∈ N
such that (1 + ε)n0 > 2Km0(1 + ε)m0 . Let i0 ∈ N and n ≥ n0 satisfy ‖An⊗ ⊗ ei0‖ > 1/2.

For k ≥ 0 set αk = ‖Ak⊗ ⊗ ei0‖.

Claim. There exist numbers βk ≥ αk and m ≥ m0 such that βm = αm, β0 > ε−1 and

|β−1
k − β

−1
k+1| ≤

ε

max{βk, βk+1}
for all k ≥ 0.

Proof of the Claim. Set γk = αn(1+ε)|k−n|. Then γn = αn. Let m satisfy αm

γm
= maxk{αk

γk
}

(such an m exists since limk→∞
αk

γk
= 1

αn
limk→∞

αk

(1+ε)k−n = 0).

In particular we have αm

γm
≥ αn

γn
= 1, so αm ≥ αn > 1/2.

Set βk = αm(1 + ε)|k−m|. Clearly βm = αm. For each k ≥ 0 we have {βk, βk+1} =

{αm(1 + ε)r, αm(1 + ε)r+1} for some r (r = min{|k −m|, |k + 1−m|}) and so

|β−1
k − β

−1
k+1| =

1

αm(1 + ε)r

∣∣∣1− 1

1 + ε

∣∣∣ =
ε

αm(1 + ε)r+1
=

ε

max{βk, βk+1}
.

We show that m ≥ m0. Suppose the contrary. We have αm ≤ Km and γm = αn(1+ε)n−m.

So αm

γm
≤ Km

αn(1+ε)n−m < 2Km(1+ε)m0

(1+ε)n0
< 1, a contradiction. So m ≥ m0 and β0 = αm(1+ε)m >

(1+ε)m

2
> 1

ε
.

Finally, for each k we have αk

γk
≤ αm

γm
. So

αk ≤
αmγk
γm

= αm(1 + ε)|k−n|−|m−n| ≤ αm(1 + ε)|k−m| = βk.

Continuation of the proof of Theorem 4.2. Let u =
⊕∞

k=0

Ak
⊗⊗ei0
βk

. Since βk ≤ αk for all k

and βm = αm, we have ‖u‖ = 1.

We show ‖A⊗ u− u‖ ≤ ε. Fix j ∈ N. We have

uj = max
k≥0,i1,...,ik−1∈N

{ 1

βk
Aj,ik−1

Aik−1,ik−2
· · ·Ai1,i0

}
and

(A⊗ u)j = max
k≥1,i1,...,ik−1∈N

{ 1

βk−1

Aj,ik−1
Aik−1,ik−2

· · ·Ai1,i0
}
.

For k ≥ 1, i1, . . . , ik−1 ∈ N we have

|β−1
k − β

−1
k−1|Aj,ik−1

Aik−1,ik−2
· · ·Ai1,i0 ≤

εαk
max{βk, βk+1}

≤ ε.
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For k = 0 we have
∥∥∥ ei0β0 ∥∥∥= β−1

0 < ε. So

‖A⊗ u− u‖ = max
j

(A⊗ u− u)j ≤ ε.

Hence 1 ∈ σap(A). �

Remark 4.3. In the proof of Theorem 4.2 we can clearly in the definition of u take a

finite max sum, so we can take u with a finite support. Therefore we can conclude for

example that u ∈ c0.

Note that for a left shift A from Example 4.1 we have σp(A) = σap(A) = [0, 1]. On the

other hand, for its restriction A|c0 to c0 we have σp(A|c0) = [0, 1) and σap(A|c0) = [0, 1].

We conclude this section with some remarks on Corollary 2.5 and Theorem 2.6 in the

infinite setting. A max cone C ⊂ l∞+ is called σ−complete, if ⊕n∈Nxn ∈ C for all xn ∈ C.

For a set S ⊂ l∞+ we denote by
∨
σ S the σ−complete max cone generated by S, i.e.,

∨
σ S

is the set of all x ∈ l∞+ for which there exist s1, s2, . . . ∈ S and α1, α2, . . . ≥ 0 such that

x = ⊕n∈Nαnsn.

The proof of the following result is straightforward and it is omitted.

Proposition 4.4. Let A ∈ M∞×∞
+ , c ≥ 0. Then

∨
σ{ej : rej(A) ≤ c} is a σ−complete

max cone invariant for A.

Corollary 4.5. If A ∈M∞×∞
+ , then

{rej(A) : j ∈ N} ⊂ σap(A).

Proof. Let t = rej(A) for some j ∈ N. Let M =
∨
σ{es : res(A) ≤ t}. By Proposition 4.4

the set M is a σ−complete max cone invariant for A. For the restriction A|M of A to M

we have by Theorem 4.2 that sup{rei(A) : ei ∈ M} ≤ t ≤ r⊗(A|M) implies t ∈ σap(A),

which completes the proof. �

5. Spectral mapping theorem in the infinite case

Let q ∈ P+, q =
deg q∑
j=0

αjz
j be a polynomial with nonnegative coefficients. We write

q⊗(A) =
⊕deg q

j=0 αjA
j
⊗. For t ≥ 0 write q⊗(t) = max{αjtj : 0 ≤ j ≤ deg q}.

Both the point and approximate point spectrum satisfy the spectral mapping property

(for polynomials without the absolute term; see Theorem 5.4 bellow). One inclusion is

simple as the next lemma shows.

Lemma 5.1. Let A ∈ M∞×∞
+ , let q ∈ P+, q =

∑deg q
j=0 αjz

j be a polynomial with nonneg-

ative coefficients. Then q⊗(σp(A)) ⊂ σp(q⊗(A)) and q⊗(σap(A)) ⊂ σap(q⊗(A)).

Proof. Let t ∈ σp(A), let x be a nonzero vector satisfying A⊗x = tx. Then Aj⊗⊗x = tjx

for all j, and so q⊗(A)⊗ x = q⊗(t)x. Hence q⊗(t) ∈ σp(q⊗(A)).
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Let t ∈ σap(A). Then there exists a sequence (xk) ⊂ l∞+ of unit vectors with

limk→∞ ‖A⊗ xk − txk‖ = 0. Then for each j = 0, 1, . . . , deg q we have

‖αjAj⊗ ⊗ xk − αjtjxk‖ → 0,

and so∥∥∥q⊗(A)⊗ xk − q⊗(t)xk

∥∥∥ = max
{∥∥αjAj⊗ ⊗ xk − αjtjxk∥∥ : j = 0, 1, . . . , deg q

}
→ 0.

So q⊗(σap(A)) ⊂ σap(q⊗(A)). �

For the opposite inequality (for polynomials without the absolute term) we need the

following lemma.

Lemma 5.2. Let A ∈ M∞×∞
+ , q ∈ P+, q =

∑deg q
j=1 αjz

j. Suppose that q⊗(1) = 1, i.e.,

αj ≤ 1 for all j and there exists m, 1 ≤ m ≤ deg q with αm = 1. Let δ > 0 and x ∈ l∞+
satisfy ‖x‖ = 1 and ‖q⊗(A)⊗ x− x‖ ≤ δ. Then

‖Am⊗ ⊗ x− x‖ ≤ 3δdeg q ·max{1, ‖q⊗(A)‖2deg q}.

Proof. Write B = q⊗(A), n = deg q and K = max{1, ‖B‖n}.
For every r we have (Am⊗ ⊗ x− x)r ≤ (q⊗(A)⊗ x− x)r ≤ δ. So it is sufficient to show

(x− Am⊗ ⊗ x)r ≤ 3nδK2 for all r.

Fix r = r0. Find r1, . . . , rm such that

xrs −Brs,rs+1 · xrs+1 ≤ δ (s = 0, 1, . . . ,m− 1).

For s = 0, . . . ,m− 1 there exists js, 1 ≤ js ≤ n such that

Brs,rs+1 = αjs(A
js
⊗)rs,rs+1 .

So there exist k, k′, 0 ≤ k < k′ ≤ m such that

k−1∑
s=0

js =
k′−1∑
s=0

js (mod m),

i.e.,
k′−1∑
s=k

js = ma

for some a ∈ N, a = m−1
∑k′−1

s=k js ≤ nm−1(k′ − k) ≤ n.

We have

xr0 − xrk · (Bk
⊗)r0,rk ≤ xr0 − xrk ·Br0,r1 ·Br1,r2 · · ·Brk−1,rk

≤ (xr0 − xr1 ·Br0,r1) +Br0,r1(xr1 − xr2Br1,r2) + · · ·

· · ·+Br0,r1 · · ·Brk−2,rk−1
(xrk−1

− xrkBrk−1,rk) ≤ kKδ.

Similarly,

xrk − (Bk′−k
⊗ )rk,rk′xrk′ ≤ xrk − xrk′ ·Brk,rk+1

·Brk+1,rk+2
· · ·Brk′−1,rk′

≤ (k′ − k)Kδ.
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So

xrk − (Ama⊗ )rk,rk′xrk′ ≤ xrk − αjk · · ·αjk′−1
(Ama⊗ )rk,rk′xrk′

≤ xrk − αjk · · ·αjk′−1
· (Ajk⊗ )rk,rk+1

· · · (Ajk′−1

⊗ )rk′−1,rk′
xrk′

= xrk −Brk,rk+1
· · ·Brk′−1,rk′

xrk′ ≤ (k′ − k)Kδ.

Thus

xr0 − (Bk
⊗ ⊗ Ama⊗ ⊗ x)r0 ≤

(
xr0 − (Bk

⊗)r0,rkxrk

)
+ (Bk

⊗)r0,rk

(
xrk − (Ama⊗ )rk,rk′

)
xrk′

≤ kKδ +K2(k′ − k)δ ≤ nK2δ.

Hence

xr0 − (Ama⊗ ⊗ x)r0 ≤
(
xr0 − (A⊗ma ⊗Bk

⊗ ⊗ x)r0

)
+
(
Ama⊗ ⊗Bk

⊗ ⊗ x− Ama⊗ ⊗ x)
)
r0

≤ nK2δ + ‖Ama⊗ ‖
(
‖Bk
⊗ ⊗ x−Bk−1

⊗ ⊗ x‖+ ‖Bk−1
⊗ ⊗ x−Bk−2

⊗ ⊗ x‖+ · · ·+ ‖B ⊗ x− x‖
)

≤ nK2δ +K2kδ ≤ 2nK2δ.

Thus there exist s0 = r0, s1, . . . , sa such that

xs0 − (Am⊗ )s0,s1(A
m
⊗ )s1,s2 · · · (Am⊗ )sa−1,saxsa ≤ 2nK2δ

and

xr0 − (Am⊗ ⊗ x)r0 ≤ xs0 − (Am⊗ )s0,s1xs1

≤
(
xs0 − (Am⊗ )s0,s1(A

m
⊗ )s1,s2 · · · (Am⊗ )sa−1,saxsa

)
+(Am⊗ )s0,s1 · · · (Am⊗ )sa−2,sa−1

(
(Am⊗ )sa−1,saxsa − xsa−1

)
+ · · ·

· · ·+ (A⊗m)s0,s1

(
(Am⊗ )s1,s2xs2 − xs1

)
≤ 2nK2δ + aKδ ≤ 3nK2δ.

Since r0 was arbitrary, we have ‖Am⊗ ⊗ x‖ ≤ 3nK2δ. �

Corollary 5.3. Let A ∈M∞×∞
+ , q ∈ P+, q =

∑deg q
j=1 αjz

j, q⊗(1) = 1. Then:

(i) if 1 ∈ σap(q⊗(A)) then 1 ∈ σap(A);

(ii) if 1 ∈ σp(q⊗(A)) then 1 ∈ σp(A).

Proof. (i) Let 1 ≤ m ≤ deg q such that αm = 1 and let 1 ∈ σap(q⊗(A)). Let ε > 0.

By Lemma 5.2 there exists a unit vector x ∈ l∞+ such that ‖Am⊗ ⊗ x − x‖ < ε. Let

y =
⊕m−1

j=0 Aj⊗ ⊗ x. Then ‖y‖ ≥ ‖x‖ = 1 and

‖A⊗ y − y‖ =
∥∥∥ m⊕
j=1

Aj⊗ ⊗ x−
m−1⊕
j=0

Aj⊗ ⊗ x
∥∥∥ ≤ ‖Am⊗ ⊗ x− x‖ < ε.

So 1 ∈ σap(A), which proves (i).

The proof of (ii) is similar. �

Now we can prove the spectral mapping theorem for the point spectrum and for the

approximate point spectrum (for polynomials without the absolute term).

Theorem 5.4. Let A ∈M∞×∞
+ , q ∈ P+, q =

∑deg q
j=1 αjz

j, q 6= 0. Then:
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(i) σap(q⊗(A)) = q⊗(σap(A));

(ii) σp(q⊗(A)) = q⊗(σp(A)).

Proof. (i) The inclusion σap(q⊗(A)) ⊃ q⊗(σap(A) was proved in Lemma 5.1.

Conversely, let s ∈ σap(q⊗(A)) and let t ≥ 0 satisfy s = q⊗(t) (note that the function

t 7→ q⊗(t) is injective, continuous, q⊗(0) = 0 and limt→∞ q⊗(t) = ∞). We show that

t ∈ σap(A).

If t = 0 = s, then we have 0 ∈ σap(q⊗(A)). Since q 6= 0, there exists m ∈ {1, . . . , deg q}
such that αm 6= 0. Since αmA

m
⊗ ≤ q⊗(A), we have 0 ∈ σap(A

m
⊗ ). For each ε > 0 there

exists a unit vector x with ‖Am⊗ ⊗ x‖ < εm. So there exists j, 0 ≤ j ≤ m − 1 with

‖Aj+1
⊗ ⊗ x‖ < ε‖Aj⊗ ⊗ x‖ and y :=

Aj
⊗⊗x

‖Aj
⊗⊗x‖

that satisfies ‖y‖ = 1 and ‖A⊗ y‖ < ε.

So we may assume that t > 0 and s > 0. Set A′ = A/t and q′ =
deg q∑
j=1

αjt
j

s
zj. Then

q′⊗(A′) =
deg q⊕
j=1

αjt
j

s

Aj
⊗
tj

= q⊗(A)
s

, 1 ∈ σap(q′⊗(A′)) and q′⊗(1) = 1. By Corollary 5.3 it follows

that 1 ∈ σap(A′) and so t ∈ σap(A), which proves (i).

The proof of (ii) is similar. �

Given A ∈M∞×∞
+ and α ≥ 0 it is easy to see that σap(αI ⊕ A) ⊂ [α,∞) and

σp(αI ⊕ A) ⊂ [α,∞). Moreover, we have the following result.

Proposition 5.5. Let A ∈M∞×∞
+ , α ≥ 0, q(z) = α + z. Then

(9) σap(q⊗(A)) ∩ (α,∞) = q⊗(σap(A)) ∩ (α,∞)

and

σp(q⊗(A)) ∩ (α,∞) = q⊗(σp(A)) ∩ (α,∞)

Proof. ⊃: The inclusions q⊗(σap(A)) ⊂ σap(q⊗(A)) and q⊗(σp(A)) ⊂ σp(q⊗(A)) were

proved in Lemma 5.1.

⊂: Write B = q⊗(A) = αI ⊕ A and let s ∈ σap(B), s > α. Let 0 < ε < s − α. Take

x ∈ l∞+ , ‖x‖ = 1 such that ‖B ⊗ x− sx‖ < ε.

For each r, (A⊗ x− sx)r ≤ (B ⊗ x− sx)r < ε. We show that (sx− A⊗ x)r < ε. We

distinguish two cases:

Suppose first that xr >
ε

s−α . Then there exists r′ with

sxr −Br,r′ · xr′ < ε,

so either sxr − Ar,r′xr′ < ε or r′ = r and sxr − αxr < ε. Since the second case is not

possible, we have

(sx− A⊗ x)r ≤ sxr − Ar,r′xr′ < ε.

If xr ≤ ε
s−α then

(sx− A⊗ x)r ≤ sxr ≤
sε

s− α
.
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So

‖A⊗ x− sx‖ = sup
r
|(A⊗ x− sx)r| ≤ max

{
ε,

sε

s− α

}
=

sε

s− α
.

Letting ε→ 0 we get s ∈ σap(A), which proves (9).

Similarly, if s > α, s ∈ σp(B) and B ⊗ x = sx for some nonzero x ∈ l∞+ , then it is easy

to see that A⊗ x = sx and s ∈ σp(A). �

The following result follows from Lemma 5.1, Theorem 5.4 and Proposition 5.5.

Corollary 5.6. Let A ∈M∞×∞
+ , q ∈ P+, q =

∑deg q
j=0 αjz

j. Then

(10) q⊗(σp(A)) ⊂ σp(q⊗(A)) ⊂ q⊗(σp(A)) ∪ {α0}

and

q⊗(σap(A)) ⊂ σap(q⊗(A)) ⊂ q⊗(σap(A)) ∪ {α0}.

Remark 5.7. In general for the point spectrum nothing better than (10) can be said, for

example consider the right shift Ai+1,i = 1 (i ≥ 1), Ai,j = 0 otherwise, with σp(A) = ∅
and the polynomial p(z) = z + 1. Then x = (1, 1, . . . ) satisfies (A ⊕ I)x = x. Moreover,

σp(I ⊕ A) = {1} and the corresponding max eigencone consists of x = (xi)i∈N ∈ l∞+ such

that xi ≤ xi+1 for all i ∈ N.

We do not know if this may happen for the approximate point spectrum.

We conclude the paper with some remarks on the generalizations of results from Sections

4 and 5. The matrices in these sections may be of any size, not necessarily countable.

More precisely, these results are true for max type kernel operators

(Af)(x) = sup
y∈Ω

a(x, y)f(y).

Here Ω is a non-empty set and the kernel a : Ω × Ω → [0,∞) is bounded (i.e., ‖A‖∞ =

supx,y∈Ω a(x, y) <∞). Thus A acts on the max cone l∞+ (Ω) of bounded functions f : Ω→
[0,∞) (i.e., ‖f‖∞ = supx∈Ω f(x) <∞). The proofs are similar as above and we omit the

details (for example the standard vectors en are replaced by the functions ey = χ{y}).

It is well known that max algebra is an idempotent semifield isomorphic to max +

algebra Rmax (the set R ∪ {−∞} equipped with the operations a ⊕ b = max{a, b} and

a ⊗ b = a + b) and to min + algebra or tropical algebra Rmin (R ∪ {∞} equipped with

the operations a⊕ b = min{a, b} and a⊗ b = a+ b) via maps x 7→ log x and x 7→ − log x,

respectively.

The results above can thus be reformulated and applied also to these settings, i.e., to

max-plus type operators

(Bg)(x) = sup
y∈Ω

(b(x, y) + g(y))

on an idempotent semimodule of bounded (from above) functions g : Ω → Rmax (see

e.g. [12], [27], [23] and the references cited there) and its tropical versions known also
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as Bellman operators (which arise in numerous applications to optimal control problems,

discrete mathematics, turnpike theory, mathematical economics, games and controlled

Markov processes, the theory of generalized solutions of the Hamilton-Jacobi-Bellman

differential equations, the theory of continuously observed and controlled quantum sys-

tems, ... - see e.g. [21], [25], [24] and the references cited there).
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