
IN
ST
IT
U
TE

of
MA

THEMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic INSTITUTE of MATHEMATICS

A
CA

D
EM

Y
of

SC
IE
N
CE

S
of

th
e
CZ
EC

H
RE

PU
BL
IC Perturbation of m-isometries

by nilpotent operators

Teresa Bermúdez

AntonioMartinón

VladimírMüller

Juan Agustín Noda

Preprint No. 31-2014

PRAHA 2014





PERTURBATION OF m-ISOMETRIES BY NILPOTENT OPERATORS

TERESA BERMÚDEZ, ANTONIO MARTINÓN, VLADIMIR MÜLLER, AND JUAN AGUSTÍN NODA

Abstract. We prove that if T is an m-isometry on a Hilbert space and Q an n-nilpotent

operator commuting with T , then T + Q is a (2n + m− 2)-isometry. Moreover, we show

that a similar result for (m, q)-isometries on Banach spaces is not true.

1. Introduction

The notion of m-isometric operators on Hilbert spaces was introduced by Agler [1]. See

also [14], [6], [4] and [5]. Recently Sid Ahmed [15] has defined m-isometries on Banach

spaces, Bayart [7] introduced (m, q)-isometries on Banach spaces, and (m, q)-isometries on

metric spaces were considered in [8]. Moreover, Hoffman, Mackey and Searcóid [13] have

studied the role of the second parameter q. Recall the main definitions.

A map T : E −→ E (m ≥ 1 integer and q > 0 real), defined on a metric space E with

distance d, is called an (m, q)-isometry if, for all x, y ∈ E,

m∑
k=0

(−1)m−k
(
m

k

)
d(T kx, T ky)q = 0 . (1.1)

We say that T is a strict (m, q)-isometry if either m = 1 or T is an (m, q)-isometry with

m > 1, but is not an (m− 1, q)-isometry. Note that (1, q)-isometries are isometries.

The above notion of an (m, q)-isometry can be adapted to Banach spaces in the following

way: a bounded linear operator T : X −→ X, where X is a Banach space with norm ‖ · ‖,

is an (m, q)-isometry if and only if, for all x ∈ X,

m∑
k=0

(−1)m−k
(
m

k

)
‖T kx‖q = 0 . (1.2)

In the setting of Hilbert spaces, the case q = 2 can be expressed in a special way. Agler

[1] gives the following definition: a linear bounded operator T : H −→ H acting on a Hilbert
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space H is an (m, 2)-isometry if

m∑
k=0

(−1)m−k
(
m

k

)
T ∗kT k = 0 . (1.3)

(m, 2)-isometries on Hilbert spaces will be called for short m-isometries.

The paper is organized as follows. In the next section we collect some results about

applications of arithmetic progressions to m-isometric operators.

In section 3 we prove that, in the setting of Hilbert spaces, if T is an m-isometry, Q is

an n-nilpotent operator and they commute, then T + Q is a (2n + m − 2)-isometry. This

is a partial generalization of the following result obtained in [9, Theorem 2.2]: if T is an

isometry and Q is a nilpotent operator of order n commuting with T , then T +Q is a strict

(2n− 1)-isometry.

In the last section we give some examples of operators on Banach spaces which are of the

form identity plus nilpotent, but they are not (m, q)-isometries, for any positive integer m

and any positive real number q.

Notation. Throughout this paper H denotes a Hilbert space and B(H) the algebra of

all linear bounded operators on H. Given T ∈ B(H), T ∗ denotes its adjoint. Moreover,

m ≥ 1 is an integer and q > 0 a real number.

2. Preliminaries: arithmetic progressions and (m, q)-isometries

In this section we give some basic properties of m-isometries. We need some preliminaries

about arithmetic progressions and their applications to m-isometries. In [10], some results

about this topic are recollected.

Let G be a group, not necessarily commutative, and denote its operation by +. Given a

sequence a = (an)n≥0 in G, the difference sequence Da = (Da)n≥0 is defined by (Da)n :=

an+1 − an. The powers of D are defined recursively by D0a := a, Dk+1a = D(Dka). It is

easy to show that

(Dka)n =

k∑
i=0

(−1)k−i
(
k

i

)
ai+n ,

for all k ≥ 0 and n ≥ 0 integers.

A sequence a in a group G is called an arithmetic progression of order h = 0, 1, 2..., if

Dh+1a = 0. Equivalently,
h+1∑
i=0

(−1)h+1−i
(
h+ 1

i

)
ai+j = 0 (2.4)
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for j = 0, 1, 2.... It is well known that the sequence a in G is an arithmetic progression

of order h if and only if there exists a polynomial p(n) in n, with coefficients in G and of

degree less or equal to h, such that p(n) = an, for every n = 0, 1, 2...; that is, there are

γh, γh−1, ..., γ1, γ0 ∈ G, which depend only on a, such that, for every n = 0, 1, 2...,

an = p(n) =

h∑
i=0

γin
i . (2.5)

We say that the sequence a is an arithmetic progression of strict order h = 0, 1, 2..., if h = 0

or if it is of order h > 0, but is not of order h − 1; that is, the polynomial p of (2.5) has

degree h.

Moreover, a sequence a in a group G is an arithmetic progression of order h if and only

if, for all n ≥ 0,

an =

h∑
k=0

(−1)h−k
n(n− 1) · · ·

︷ ︸︸ ︷
(n− k) · · · (n− h)

k!(h− k)!
ak ; (2.6)

that is,

an =

h∑
k=0

(−1)h−k
(
n

k

)(
n− k − 1

h− k

)
ak . (2.7)

Now we give a basic result about m-isometries.

Theorem 2.1. Let H be a Hilbert space. An operator T ∈ B(H) is a strict m-isometry if

and only if there are Am−1 6= 0, Am−2, ..., A1, A0 in B(H), which depend only on T , such

that, for every n = 0, 1, 2...,

T ∗nTn =

m−1∑
i=0

Ain
i ; (2.8)

that is, the sequence (T ∗nTn)n≥0 is an arithmetic progression of strict order m−1 in B(H).

Proof. If T ∈ B(H) is a strict m-isometry, then it satisfies equation (1.3). Hence, for each

integer i ≥ 0,

m∑
k=0

(−1)m−k
(
m

k

)
T ∗iT ∗kT kT i =

m∑
k=0

(−1)m−k
(
m

k

)
T ∗k+iT k+i = 0 , (2.9)

but
m−1∑
k=0

(−1)m−1−k
(
m− 1

k

)
T ∗kT k 6= 0 . (2.10)

By (2.4), the operator sequence (T ∗nTn)n≥0 is an arithmetic progression of strict order

m− 1. Therefore, from (2.5) we obtain that there is a polynomial p(n), of degree m− 1 in
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n, with coefficients in B(H) satisfying p(n) = T ∗nTn; that is, there are operators Am−1 6=

0, Am−2, ..., A1, A0 in B(H), such that, for every n = 0, 1, 2...,

T ∗nTn = Am−1n
m−1 +Am−2n

m−2 + · · ·+A1n+A0 .

Conversely, if (T ∗nTn)n≥0 is an arithmetic progression of strict order m − 1, then the

equations (2.9) and (2.10) hold. Taking i = 0 we obtain (1.3), so T is a strict m-isometry. �

Now we recall an elementary property of (m, q)-isometries on metric spaces which will be

used in next sections:

Proposition 2.1. [8, Proposition 3.11] Let E be a metric space and T : E −→ E be an

(m, q)-isometry. If T is an invertible strict (m, q)-isometry, then m is odd.

3. m-isometry plus n-nilpotent

Recall that an operator Q ∈ B(H) is nilpotent of order n (n ≥ 1 integer), or n-nilpotent,

if Qn = 0 and Qn−1 6= 0.

In any finite dimensional Hilbert space H, strict m-isometries can be characterized in a

very simple way: a linear operator T ∈ B(H) is a strict m-isometry if and only if m is odd

and T = A + Q, where A and Q are commuting operators on H, A is unitary and Q a

nilpotent operator of order m+1
2 , ([2, page 134] & [9, Theorem 2.7]).

It was proved in [9, Theorem 2.2] that if A ∈ B(H) is an isometry and Q ∈ B(H) is an

n-nilpotent operator such that TQ = QT , then T +Q is a strict (2n− 1)-isometry. Now we

obtain a partial generalization of this result: if T ∈ B(H) is an m-isometry and Q ∈ B(H) is

an n-nilpotent operator commuting with T , then T +Q is a (2n+m−2)-isometry. However,

T +Q is not necessarily a strict (2n+m−2)-isometry. For example, if T is an isometry and

Q any n-nilpotent operator (n > 1) such that TQ = QT , then T = T + Q + (−Q) is not a

strict (4n− 3)-isometry.

Theorem 3.1. Let H be a Hilbert space. Let T ∈ B(H) be an m-isometry and Q ∈ B(H)

an n-nilpotent operator (n ≥ 1 integer) such that TQ = QT . Then T +Q is (2n+m− 2)-

isometry.
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Proof. Fix an integer k ≥ 0 and denote by h := min{k, n− 1}. Then we have

(T +Q)∗k(T +Q)k =

(
h∑

i=0

(
k

i

)
Q∗iT ∗k−i

) h∑
j=0

(
k

j

)
T k−jQj

 =

=

h∑
i,j=0

(
k

i

)(
k

j

)
Q∗iT ∗k−iT k−jQj =

=
∑

0≤i<j≤h

(
k

i

)(
k

j

)
Q∗iT ∗j−iT ∗k−jT k−jQj +

∑
0≤j≤i≤h

(
k

i

)(
k

j

)
Q∗iT ∗k−iT k−iT i−jQj .

From (2.8) we obtain, for certain Am−1, ...., A0 ∈ B(H),

(T +Q)∗k(T +Q)k =
∑

0≤i<j≤h

(
k

i

)(
k

j

)
Q∗iT ∗j−i

(
m−1∑
r=0

Ar(k − j)r
)
Qj+

+
∑

0≤j≤i≤h

(
k

i

)(
k

j

)
Q∗i

(
m−1∑
r=0

Ar(k − i)r
)
T i−jQj .

Write

Br,i,j := Q∗iT ∗j−iArQ
j ∈ B(H) , Cr,i,j := Q∗iArT

i−jQj ∈ B(H) ,

qr,i,j :=

(
k

i

)(
k

j

)
(k − j)r , pr,i,j :=

(
k

i

)(
k

j

)
(k − i)r .

Note that

(
k

i

)
and

(
k

j

)
are real polynomials in k of degree less or equal to h ≤ n− 1, and

(k − j)r and (k − i)r have degree r ≤ m− 1. Hence qr,i,j and pr,i,j are real polynomials of

degree less or equal to m− 1 + 2(n− 1) = 2n+m− 3. Consequently we can write

(T +Q)∗k(T +Q)k =
m−1∑
r=0

∑
0≤i<j≤h

Br,i,jqr,i,j +

m−1∑
r=0

∑
0≤j≤i≤h

Cr,i,jpr,i,j ,

which is a polynomial in k, of degree less or equal to 2n+m− 3 with coefficients in B(H).

By Theorem 2.1, the operator T +Q is an (2n+m− 2)-isometry. �

For isometries it is possible to say more [9, Theorem 2.2].

Theorem 3.2. Let H be a Hilbert space. Let T ∈ B(H) be an isometry and Q ∈ B(H)

be an n-nilpotent operator (n ≥ 1 integer) such that TQ = QT . Then T + Q is a strict

(2n− 1)-isometry.
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Proof. By Theorem 3.1 we obtain that T + Q is a (2n − 1)-isometry. Note that as T is an

isometry we have T ∗kT k = I, for every positive integer k.

As in the proof of Theorem 3.1, for any integer k ≥ 0, we have that

(T +Q)∗k(T +Q)k =

h∑
i,j=0

(
k

i

)(
k

j

)
Q∗iT ∗h−iTh−jQj =

=
∑

0≤i<j≤h

(
k

i

)(
k

j

)
Q∗iT ∗j−iQj +

∑
0≤j≤i≤h

(
k

i

)(
k

j

)
Q∗iT i−jQj ,

where h := min{k, n− 1}.

The coefficient of the summand that appears at k2n−1 is equal to(
k

n− 1

)2

Q∗n−1Qn−1 ,

which is null if and only if Q∗n−1Qn−1 = 0; that is, if and only if Qn−1 = 0. Therefore, if

Q is nilpotent of order n, then (T + Q)∗k(T + Q)k can be written as a polynomial in k, of

degree 2n−1 and coefficients in B(H). Consequently T +Q is a strict (2n−1)-isometry. �

Now we obtain the following corollary of Theorem 3.2.

Corollary 3.1. Let H be a Hilbert space. Let Q ∈ B(H) be an n-nilpotent operator (n ≥ 1

integer). Then I +Q is a strict (2n− 1)-isometry.

Recall that an operator T ∈ B(H) is N -supercyclic (N ≥ 1 integer) if there exists a

subspace F ⊂ H of dimension N such that its orbit {Tnx : n ≥ 0, x ∈ F} is dense in H.

Moreover, T is called supercyclic if it is 1-supercyclic. See [12] and [11].

Bayart [7, Theorem 3.3] proved that on an infinite dimensional Banach space an (m, q)-

isometry is never N -supercyclic, for any N ≥ 1. In the setting of Banach spaces, Yarmah-

moodi, Hedayatian and Yousefi [16, Theorem 2.2] showed that any sum of an isometry and

a commuting nilpotent operator is never supercyclic. For Hilbert space operators we extend

the result [16, Theorem 2.2] to m-isometries plus commuting nilpotent operators.

Corollary 3.2. Let H be an infinite dimensional Hilbert space. If T ∈ B(H) is an m-

isometry that commutes with a nilpotent operator Q, then T +Q is never N -supercyclic for

any N .
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4. Some examples in the setting of Banach spaces

Theorem 3.2 is not true for finite-dimensional Banach spaces even for m = 1.

Denote by `dp := (Cd, ‖ · ‖p).

Example 4.1. Let Q : C2 −→ C2 be defined by Q(x, y) := (y, 0), hence Q is a 2-nilpotent

operator. The following assertions hold:

(1) I +Q is not a (3, p)-isometry on `2p for any 1 ≤ p <∞ and p 6= 2.

(2) I +Q is not a (3, p)-isometry on `2∞ for any p > 0.

(3) I +Q is a strict (2k + 1, 2k)-isometry on (C2, ‖.‖2k) for any k = 1, 2, 3, . . .

Proof. For (x, y) ∈ C2 we have

(I +Q)(x, y) = (x+ y, y) , (I +Q)2(x, y) = (x+ 2y, y) , (I +Q)3(x, y) = (x+ 3y, y) .

Write

A(x, y; p, q) := ‖(I +Q)3(x, y)‖qp − 3‖(I +Q)2(x, y)‖qp + 3‖(I +Q)(x, y)‖qp − ‖(x, y)‖qp.

(1) We consider two cases, 1 < p <∞ and p = 1.

(a) Case 1 < p <∞. For x = 0, y = 1 and q = p, we have

A(0, 1; p, p) = 3p + 1− 3 · 2p − 3 + 6− 1 = 3p − 3 · 2p + 3 .

So A(0, 1; p, p) = 0 if and only if 3p−1 + 1 = 2p, which is true only when p = 2 or p = 1 since

the function f(t) = 3t−1 + 1− 2t is null only for t = 1 and t = 2.

Consequently I +Q is not a (3, p)-isometry on `2p if p 6= 2 and 1 < p <∞.

(b) Case p = 1. In order to prove that I + Q is not a (3, 1)-isometry on `21, we take the

vector (1,−1) and obtain that

A(1,−1; 1, 1) = ‖(I+Q)3(1,−1)‖1−3‖(I+Q)2(1,−1)‖1+3‖(I+Q)(1,−1)‖1−‖(1,−1)‖1 6= 0.

(2) For (x, y) ∈ C2 we have

A(x, y;∞, p) := ‖(I +Q)3(x, y)‖p∞ − 3‖(I +Q)2(x, y)‖p∞ + 3‖(I +Q)(x, y)‖p∞ −‖(x, y)‖p∞ =

= max{|x+ 3y|, |y|}p − 3 max{|x+ 2y|, |y|}p + 3 max{|x+ y|, |y|}p −max{|x|, |y|}p .
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In particular, for x := (1,−1),

A(1,−1;∞, p) = 2p − 1 6= 0.

Therefore I +Q is not a (3, p)-isometry on `2∞ for any p > 0.

(3) First we prove by induction on k that I +Q is a (2k + 1, 2k)-isometry on `22k for any

k = 1, 2, 3 . . . Note that, for (x, y) ∈ C2,

(I +Q)s(x, y) = (x+ sy, y) (s = 0, 1, 2 . . .) .

By Corollary 3.1, the operator I +Q is a strict (3,2)-isometry on `22. Hence I +Q is a strict

(2k + 1, 2k)-isometry on `22 for all k = 1, 2, 3 . . . [13, Corollary 4.6]. Thus for (x, y) ∈ C2,

2k+1∑
s=0

(−1)2k+1−s
(

2k + 1

s

)
(|x+ sy|2 + |y|2)k = 0 . (4.11)

Suppose that I + Q is a (2i − 1, 2i − 2)-isometry on `22i−2 for every i = 2, 3, . . . , k. Hence

I +Q is also a (2k + 1, 2i− 2)-isometry on `22i−2. Then, for (x, y) ∈ C2,

2k+1∑
s=0

(−1)2k+1−s
(

2k + 1

s

)
(|x+ sy|2i−2 + |y|2i−2) = 0, (2 ≤ i ≤ k) .

Therefore

2k+1∑
s=0

(−1)2k+1−s
(

2k + 1

s

)
|x+ sy|2i−2 = 0, (2 ≤ i ≤ k) . (4.12)

Taking into account the equality (4.12) we can write (4.11) in the following way:

0 =

2k+1∑
s=0

(−1)2k+1−s
(

2k + 1

s

) k∑
i=0

(
k

i

)
|x+ sy|2i|y|2(k−i)

=

k−1∑
i=0

(
k

i

)
|y|2(k−i)

2k+1∑
s=0

(−1)2k+1−s
(

2k + 1

s

)
|x+ sy|2i

+

2k+1∑
s=0

(−1)2k+1−s
(

2k + 1

s

)
|x+ sy|2k

=

2k+1∑
s=0

(−1)2k+1−s
(

2k + 1

s

)
(|x+ sy|2k + |y|2k) .

Therefore I +Q is a (2k + 1, 2k)-isometry on `22k.
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Now we prove that I+Q is a strict (2k+1, 2k)-isometry on `22k. Suppose on the contrary

that I +Q is a (2k, 2k)-isometry on `22k. Then

2k−1∑
s=0

(−1)2k−1−s
(

2k − 1

s

)
(|x+ sy|2k + |y|2k) = 0

for all (x, y) ∈ C2. So

2k−1∑
s=0

(−1)2k−1−s
(

2k − 1

s

)
|x+ sy|2k = 0 (4.13)

for all (x, y) ∈ C2. In particular, for y = 1 and x = 0, 1, 2, . . . we have

2k−1∑
s=0

(−1)2k−1−s
(

2k − 1

s

)
(x+ s)2k = 0 . (4.14)

So (s2k)∞s=0 is an arithmetic progression of order 2k− 2, which is a contradiction with (2.5).

�

Remark 4.2. Notice that in any Hilbert space of dimension n, there are strict m-isometries

only for any m ≤ 2n−1. However, as the above example shows, there are strict (2k+1, 2k)-

isometries for any integer k in a Banach space of dimension 2.

The following example gives an operator of the form I + Q with Q a nilpotent operator

such that I +Q is not an (m, q)-isometry for any integer m and any q > 0.

Example 4.3. Let X be the Banach space of all continuous functions from [0, 1] to R such

that vanish at 1 endowed with sup-norm. Define Q : X −→ X by

(Qf)(t) :=

 f(t+ 1
2 ) if 0 ≤ t ≤ 1

2

0 if 1
2 < t ≤ 1 .

Then Q ∈ B(X) is 2-nilpotent operator. Moreover, I +Q is not an (m, q)-isometry for any

m = 1, 2, 3... and any q > 0.

Proof. It is clear that I +Q is not an isometry since the function f ∈ X given by

f(t) :=

 1 if 0 ≤ t ≤ 1
2

−2t+ 2 if 1
2 < t ≤ 1

satisfies ‖f‖ = 1 and ‖(I +Q)f‖ = 2.
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For m = 2, 3, 4... consider the function fm ∈ X defined by

fm(t) :=



−4t+ 1 if 0 ≤ t ≤ 1
4

0 if 1
4 < t ≤ 1

2

−4
m−1 t+ 2

m−1 if 1
2 < t ≤ 3

4

4
m−1 t−

4
m−1 if 3

4 < t ≤ 1 .

Figure 1. Graphics of functions f3, f5 and f7

Note that fm( 3
4 ) = 1

1−m = min
0≤t≤1

fm(t).

Fix q > 0. For k = 0, 1, 2... we have

‖(I +Q)kfm‖q = ‖(I + kQ)fm‖q = sup
0≤t≤1

|fm(t) + k(Qfm)(t)|q .

If 0 ≤ k ≤ m− 1, then

‖(I +Q)kfm‖q = |fm(0) + kfm(1/2)|q = 1 ,

since k 1
m−1 ≤ 1. But as m 1

m−1 > 1 we obtain

‖(I +Q)mfm‖q = |fm(1/4) +mfm(3/4)|q =

(
m

m− 1

)q

> 1 .
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Consequently

m∑
k=0

(−1)m−k
(
m

k

)
‖(I+Q)kfm‖q =

m−1∑
k=0

(−1)m−`
(
m

k

)
+‖(I+Q)mfm‖q = −1+

(
m

m− 1

)q

6= 0 .

Therefore I +Q is not an (m, q)-isometry for any m = 1, 2, 3... and any q > 0. �
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