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TOPOLOGY DESIGN OF ELASTIC STRUCTURES FOR A CONTACT MODEL

S.M. GIUSTI∗, J. SOKO LOWSKI, AND J. STEBEL

Abstract. In this paper we employ topological derivatives for optimum design problems in solid
mechanics. A nonlinear contact model governed by a variational inequality is considered. Beside the
theoretical developments, some computational examples are included. The numerical results show that
the proposed method of optimum design can be applied to a broad class of engineering problems.

1. Introduction

An asymptotic expansion of a given shape functional, when a geometrical domain is singularly
perturbed by the insertion of holes, can be obtained by performing a topological asymptotic analysis.
This analysis is applied in the mathematical model that represents the physical phenomena under
consideration. Asymptotic analysis of linear and nonlinear models in solid mechanics is considered in
details in the recent monograph [1]. The related results can be also found in [14, 13, 23, 26, 7, 18, 27,
11, 6].

Classical shape optimization for contact problems is considered in [28] for the variational inequalities
of the first and the second kind. The shape and material derivatives are determined in the framework
of the conical differentiability of solutions to variational inequalities. Another branch of applied models
with unilateral constraints are the crack models with nonlinear nonpenetration conditions on the crack
faces (lips) [21, 20, 22]. For such models the elastic energy is differentiated with respect to the crack
length [10]. The stability of solutions to the evolution variational inequalities is analyzed in [19].
A new class of variational inequalities arises when a finite interpenetration is allowed in the potential
contact region of the body with a rigid foundation, as proposed in [8].

In this work we present a closed form for the topological derivative when a small circular disc, with
a material different than the surrounding medium, is introduced in an arbitrary point of the elastic
body. We consider the energy shape functional associated to the frictionless contact problem allowing
a finite interpenetration between an elastic body and a rigid foundation [8].

In order to apply the theoretical results, we present a computational procedure for topological
optimization based on the topological derivative concept. The optimization procedure consists in
minimizing the structural compliance for a given amount of material. This constraint in the volume
of the optimized structure is introduced in the formulation of the optimization problem by means of
an exact quadratic scheme. The robustness of the topological optimization technique presented in
this work is demonstrated by a set of numerical examples, related to the topology design of elastic
structures under this particular nonlinear contact condition. On the other hand, the formulation of the
problem of topology optimization of structures in unilateral contact, with computational approaches
such as SIMP (Solid Isotropic Microstructure with Penalization) and ESO (Evolutionary Structural
Optimization), can be found in [16, 24, 9, 29].

This paper is organized as follows. Section 2 describes the frictionless contact model for finite
interpenetration in two-dimensional elasticity. The topological derivative associated to this problem
is presented in Section 3, where a simple and analytical formula is given. The compliance topology
optimization procedure for elastic structures subjected to a volume constraint is outlined in Section 4.
A set of numerical experiments is presented in Section 5. The paper ends in Section 6 with some
concluding remarks.

Key words and phrases. Topological derivative, frictionless contact problem, asymptotic analysis, topological opti-
mization, optimum design problems.
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2. Static contact model for finite interpenetration

We consider the problem of an elastic body having contact with a rigid foundation. The domain of
the body is denoted by Ω ⊂ R2. The boundary ∂Ω of the body consists of three mutually disjoint parts
with positive measures ΓD, ΓN and ΓC , where different boundary conditions are prescribed. On the
boundary ΓD we prescribe Dirichlet boundary conditions (displacement), on ΓN Neumann boundary
conditions (traction) and, finally, on ΓC the contact condition with the rigid foundation that admits
an interpenetration, see Figure 1(a). For the contact model, we consider only a normal compliance
law of the type

σn(u) = −p(un − g) , (2.1)

where un := u · n denotes the normal component of the displacement field u, n is the unit outward
normal vector to the boundary ∂Ω and g the gap on the potential contact zone. Moreover, in (2.1),
σn(u) represents the normal component to the boundary of the stress tensor σ(u), i.e. σn(u) = σ(u)n·n.
The Cauchy stress tensor σ(u) is defined as:

σ(u) := Cε(u) , (2.2)

where ε(u) is the symmetric part of the gradient of the displacement field u, i.e.

ε(u) :=
1

2
(∇u+ (∇u)>) , (2.3)

and C denotes the fourth-order elastic tensor. For an isotropic elastic body, this tensor is given by:

C = 2µI + λ(I⊗ I), (2.4)

with µ and λ denoting the Lamé coefficients. In the above expression, we use I and I to denote,
respectively, the identities of fourth and second order. In terms of the engineering constant E (Young’s
modulus) and υ (Poisson’s ratio) the above constitutive response can be written as:

C =
E

1− υ2
[(1− υ)I + υ(I⊗ I)] . (2.5)

The function p : R→ R+ = [0,+∞] in (2.1) is used to model the interpenetration condition between
the body and the foundation. This function p is monotone with the following properties:

p(y) = 0 for y ≤ a, with a constant
lim
y→b−

p(y) = +∞ for y > a, with b constant and b > a

p(y) = +∞ for y ≥ b
. (2.6)

The parameter a indicates the initial contact and the value of b describes a limit such that no
further interpenetration is possible, see Figure 1(b).

The strong form of the equilibrium equation under this contact condition is given by: find the
displacement field u : Ω→ R2 such that

−div σ(u) = 0 in Ω
u = u on ΓD

σ(u)n = t on ΓN
σn(u) = −p(un − g) on ΓC
στ (u) = 0 on ΓC

. (2.7)

The last condition in (2.7) indicates that the contact is without friction, where στ (u) = σ(u)n −
σn(u)n denotes the tangential component of the stress tensor σ(u).

The weak formulation of the problem stated in (2.7) is given by the following variational equation:
find u ∈ U with (un − g) ∈ dom(p), such that:∫

Ω
σ(u) · (ε(v)− ε(u)) +

∫
ΓC

p(un − g)(vn − un) =

∫
ΓN

t̄ · (v − u) ∀v ∈ U , (2.8)

where the set of admissible functions U is given by:

U := {ϕ ∈ H1(Ω;R2) : ϕ = ū on ΓD}, (2.9)
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(a) Contact problem. (b) example of function p(y).

Figure 1. Contact problem formulation.

and the domain of definition of the function p, namely dom(p), is:

dom(p) :=

{
ϕ ∈ L1(ΓC) : p(ϕ) ∈ L1(ΓC),∃C > 0 :

∫
ΓC

p(ϕ)v ≤ C‖v‖H1/2(ΓC)

}
. (2.10)

For a detailed description of this model, we refer the reader to [8].

3. Topological derivative

In this section we obtain an asymptotic expansion for the energy shape functional when a small disc
of radius ρ, with different constitutive property, is introduced in an arbitrary point x̂ of the domain
Ω, far enough from the potential contact region ΓC , and denoted by Bρ := {x ∈ R2 : |x− x̂| < ρ}, see
Figure 2. Thus, introducing a characteristic function χ = 1Ω, associated to the unperturbed domain,
it is possible to define the characteristic function associated to the topological perturbed domain χρ.
Particularly, when the topological perturbation is an inclusion, we have χρ(x̂) = 1Ω − (1 − γ)1Bρ(x̂)

,

where γ ∈ R+ is the contrast parameter in the material property of the medium. Then we assume
that a given shape functional ψ(χρ(x̂)), associated to the topological perturbed domain Ωρ, admits
the following topological asymptotic expansion

ψ(χρ(x̂)) = ψ(χ) + f(ρ)T ψ(x̂) + o(f(ρ)) , (3.1)

where ψ(χ) it is the shape functional associated to the unperturbed domain, f(ρ) it is a function such
that f(ρ) → 0, with ρ → 0+. The function x̂ 7→ T ψ(x̂) is the so-called topological derivative of ψ in
the point x̂. Thus, the topological derivative can be seen as a first order correction factor over ψ(χ)
to approximate ψ(χρ(x̂)). In fact, after rearranging (3.1), we have

ψ(χρ(x̂))− ψ(χ)

f(ρ)
= T ψ(x̂) +

o(f(ρ))

f(ρ)
. (3.2)

Taking the limit ρ → 0+ in the above expression, we have the classical definition of the topological
derivative [25] given by

T ψ(x̂) = lim
ρ→0+

ψ(χρ(x̂))− ψ(χ)

f(ρ)
. (3.3)

Note that, the shape functionals ψ(χρ(x̂)) and ψ(χ) are associated to domains with different topolo-
gies. Then, to calculate the limit ρ → 0+ in (3.3) it is necessary to perform a asymptotic expansion
of the functional ψ(χρ(x̂)) with respect to the parameter ρ.

In this work we are interested in the asymptotic expansion for the energy shape functional associated
to the contact problem (2.8), given by [8]:

Jχ(u) :=
1

2

∫
Ω
σ(u) · ε(u)−

∫
ΓN

t̄ · u+

∫
ΓC

P (un − g), (3.4)
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Figure 2. Perturbed contact problem.

where the function P (y) is given by:

P (y) :=

∫ y

−∞
p(z). (3.5)

Considering the singular perturbation described above and denoted by Bρ, the energy shape func-
tional associated to the perturbed domain is given by:

Jχρ(uρ) :=
1

2

∫
Ω
σρ(uρ) · ε(uρ)−

∫
ΓN

t̄ · uρ +

∫
ΓC

P (uρn − g), (3.6)

where uρ is the solution of the problem in the singularly perturbed domain given by: find the dis-
placement field uρ : Ω→ R2 such that

−div σρ(uρ) = 0 in Ω
uρ = u on ΓD

σ(uρ)n = t on ΓN
σn(uρ) = −p(uρn − g) on ΓC
στ (uρ) = 0 on ΓC

JuρK = 0 on ∂Bρ
Jσρ(uρ)Kn = 0 on ∂Bρ

, (3.7)

since uρn := uρ ·n is used to denote the normal component of the displacement field uρ on the boundary
ΓC . The symbol J(·)K in (3.7) denotes the jump of function (·) across the boundary ∂Bρ and the stress
operator σρ(·) is defined as:

σρ(φ) := γρCε(φ), (3.8)

where the parameter γρ is defined as:

γρ :=

{
1 in Ω \ Bρ
γ in Bρ

. (3.9)

Note that the domain Ω is topologically perturbed by the introduction of an inclusion Bρ(x̂) of the
same nature as the bulk material, but with contrast γ. Finally, the variational problem associated to
(3.7) can be written as: find uρ ∈ Uρ with (uρn − g) ∈ dom(p), such that:∫

Ω
σρ(uρ) · (ε(v)− ε(uρ)) +

∫
ΓC

p(uρn − g)(vn − uρn) =

∫
ΓN

t̄ · (v − uρ) ∀v ∈ Uρ , (3.10)

where the set of admissible functions Uρ is given by:

Uρ := {ϕ ∈ U : JϕK = 0 on ∂Bρ}. (3.11)

For an explicit and analytical formula for the topological derivative TJ (x̂) of the functional (3.4)
associated to the problem (2.7), we introduce the following result:
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Theorem 1. The energy shape functional of an elastic solid with a disc of radius ρ, centered at point
x̂ ∈ Ω and with constitutive property characterized by the parameter γ, admits for ρ→ 0+ the following
asymptotic expansion:

Jχρ(uρ) = Jχ(u) + ρ2πHγσ(u(x̂)) · ε(u(x̂)) + o(ρ2) ∀x̂ ∈ Ω, (3.12)

where u(x̂) is the solution of the problem (2.7) evaluated at x̂ and Hγ is the fourth-order tensor defined
as:

Hγ :=
1

4

(1− γ)2

1 + βγ

(
2

1 + β

1− γ
I +

α− β
1 + αγ

I⊗ I

)
, (3.13)

where I and I are the identities tensors of second- and fourth-order, respectively, and the parameters
α and β depend exclusively on the Poisson’s ratio of the elastic medium, given by

α :=
1 + υ

1− υ
and β :=

3− υ
1 + υ

. (3.14)

Proof. The reader interested in the proof of this result may refer to [15, 17, 1]. �

Corollary 2. From the asymptotic expansion presented in Theorem 1, we can recognize the topological
derivative of the functional Jχ(u) given by:

TJ (x̂) := Hγσ(u(x̂)) · ε(u(x̂)). (3.15)

4. Topological optimization procedure

In order to illustrate the applicability of the topological asymptotic expansion (3.15), here we present
an optimization procedure for elastic structures under the contact condition described in Section 2.
The optimization procedure is based on the domain representation in a bi-material fashion, whose
constituents properties are characterized by the Young modulus E and the phase contrast γ∗. Thus,
as in (3.8) and (3.9), we have

E(x) =

{
E ∀x ∈ Ωh,

γ∗E ∀x ∈ Ωw,
(4.1)

where Ωh and Ωw denote the domains occupied by the two materials, the hard and weak materials,
respectively.

The optimization problem consists in minimizing the structural compliance for a given amount of
material. It can be written as {

Minimize ψ(χ) = −Jχ(u),
Subjected to |Ωh| ≤ V ,

(4.2)

where |Ωh| is the Lebesgue measure of the domain Ωh and V is the required volume at the end of the
optimization process. In order to solve the above problem, we use an exact quadratic penalization
scheme. Thus, problem (4.2) is re-written as following

Minimize
Ω⊂R2

FΩ(u) = −Jχ(u) + λs2
Ω , (4.3)

where λ is a positive parameter and the function sΩ is defined as

sΩ := 1− |Ω
h|
V

. (4.4)

By considering the linearity property of the topological derivative operator, the topological deriva-
tive of the functional FΩ can be written as

TF (x̂) = −TJ (x̂)− 2λ

V
sΩ . (4.5)

From the definition of the Young modulus (4.1), we remark that (4.5) always measures the sensitivity
of TF when the two materials are interchanged within the domain. Then, the computation of (4.5) is
carried out using the expressions (3.15) with γ = γ∗ if x ∈ Ωh; and γ = 1/γ∗ if x ∈ Ωw. Having made
the previous consideration and in order to solve the optimization problem (4.3), we use the topology
optimization algorithm proposed in [3]. This algorithm is based on the concept of level-set domain
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representation and uses the topological derivative (4.5) as a feasible descent direction to minimize
the cost function. This class of algorithms has been successfully applied in research areas related to
topological optimization such as: microstructure of materials [4], load bearing structures [3], thermal
conductors [12] and load bearing structures subjected to pointwise stress constraint [2, 5]. For a
detailed development of the algorithm we refer to the previous references.

5. Numerical examples

Here we present five numerical examples associated to the topological optimization procedure out-
lined in the previous section. In all examples we set the Young modulus E = 2.1 GPa, Poisson’s
ratio ν = 0.3, the contrast parameter γ = 1 × 10−3 and the force F = 1 × 19 N . In the figures, the
topology is identified by the strong material distribution (in black) and the inclusions of weak material
(in white) are used to mimic the holes. Furthermore, the thick lines that appear on the figures are
used to denote clamped boundary conditions (u|ΓD = 0). The volume constraint is imposed with an
exact quadratic penalization scheme. The function p(y) used in the examples has the same behavior
as presented in Fig.(1(b)). The variational equation (2.8) was solved using standard finite element
technique. In particular, the three-node triangles are used to discretize the domain.

5.1. Example 1. In this first example we consider a unit square panel submitted to a force F applied
on its right upper corner, as shown in fig. 3(a). The volume constraint is of 50% of the initial volume.
In fig. 3(b) we show the optimal topology without the contact condition. Then, a contact condition is
applied in the bottom side with a gap of g = 0.10, see fig. 3(a) where c = 0.20 and d = 0.20, and the
parameter b is such that the function p reaches the value of p(y) = 1× 1015. In fig. 3(c) is presented
the obtained topology, where the effect of the contact condition is evident.

(a) Contact problem. (b) Without contact. (c) With contact.

Figure 3. Example 1. Results.

In fig. 4, we present the obtained results for three different values for the gap, i.e. g = {0.15, 0.20, 0.25}
(the result for the gap g = 0.10 is shown in fig. 3(c)).

In order to evaluate the effect of the function p(y), in fig. 5 the optimal topologies for different
values of function p(y) are presented. For this example, we set the gap in g = 0.10 and the parameter
b, in each case, is such that the function p reaches the values p = {8 × 1012, 1 × 1013, 1 × 1020} (the
result for p = 1× 1015 is shown in fig. 3(c)).

5.2. Example 2. In this example we present the optimal topology design of a cantilever beam with
a load F applied in the middle right side of its rectangular domain. The domain of the beam is a
rectangular plane with dimensions of 2.00× 1.00. The contact region is located in the bottom of the
plane with length c, as shown in fig. 6(a). The volume constraint is of 40% of the initial volume, the
gap is g = 0.1 and the parameter b is such that the function p reaches the value of p = 1 × 1015. In
this example, we study the influence of the length of the contact region in the optimal topology. In
fig. (6(b)), we present the result without considering the contact condition. In figs. 6(c)–6(e) is shown
the results for three different values of parameter c = {0.20, 0.50, 0.70}.



7

(a) g = 0.15. (b) g = 0.20. (c) g = 0.25.

Figure 4. Example 1. Results for different values of the gap.

(a) p(y) = 812. (b) p(y) = 113. (c) p(y) = 120.

Figure 5. Example 1. Results for different values of function p(y).

5.3. Example 3. Now we consider the same domain and boundary conditions as in the previous
example. Here we create a square hole of size 0.25 × 0.25 centered at the rectangular panel and the
contact region is located on the top side of the hole, see fig. 7(a). The volume constraint is of 40% of
the initial volume and the gap is g = 1× 10−5. The result for the case without the contact condition
is presented in fig. 7(b). In fig. 7(c), we show the obtained topology considering the contact problem.
Note the similarity in the results, without the boundary condition in the contact region, between this
example and the previous (fig. 6(b)).

5.4. Example 4. In this example, the design of a unit square panel subjected to two forces F applied
at the corners of the top side with a volume constraint of 30% of the initial volume is presented. The
contact region is also in the top side of the panel, located a distance d = 0.25 from the right side and
length c = 0.50. The gap considered is g = 1 × 10−3 and the parameter b is such that the function
p reaches the value of p = 1 × 1015. The aim of this example is show the influence of the contact
condition in the complexity of the final topology. The results with and without considering the contact
condition are presented in figs. 8(c) and 8(b), respectively. As can be seen, topology changes from a
very simple (two bars in the directions of the applied forces) to a more complex, characterized by a
structure of bars similar to a small bridge.

5.5. Example 5. In this last example, we consider the topology design of a rectangular panel with
height = 1.2 and width = 1.0, with a square hole in the right side of the domain. The design domain,
boundary condition and the system of applied forces are presented in fig. 9(a), where c = 0.20 and
d = 0.40. This example can be seen as the classical case of topology design of a gripping mechanism.
On the potential contact region the gap is g = 1× 1−5 and the function p reaches the value of 1× 115.
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(a) Contact problem.

(b) Without contact. (c) c = 0.20.

(d) c = 0.50. (e) c = 0.70.

Figure 6. Example 2. Results for different lengths of contact region.

The volume constraint imposed is of 50% of the initial volume. The results are presented in figs. 9(c)
and 9(b).

Again, in this example the effect of the contact model is manifested in the complexity of the optimal
topology.

6. Final remarks

An analytical expression for the topological derivative of the energy shape functional associated
to a frictionless contact model that allows a finite interpenetration between a two-dimensional elastic
body and a rigid foundation has been presented. As topological perturbation, a disc with a different
material has been considered in the analysis. The final formula is a general simple analytical expression
in terms of the solution of the state equation and the constitutive parameters evaluated in each point
of the unperturbed domain. The associated topological sensitivity has been used in a structural
design algorithm based on the topological derivative and a level-set domain representation method.
The robustness of the optimization procedure has been analyzed through some numerical experiments
of compliance topology optimization of elastic structures subjected to volume constraint. Finally,
we remark that the optimization procedure is conditioned by the contact model to produce more
complex topologies that obtained by considering a unilateral contact condition and approaches such
as SIMP-model.
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(a) Contact problem.

(b) Without contact. (c) With contact.

Figure 7. Example 3. Results.

(a) Contact problem. (b) Without contact. (c) With contact.

Figure 8. Example 4. Results.
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