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Abstract: Many researchers in social mobility and stratification, when applying the Mare model of educational transitions, has found declining effect of parental background by increasing educational stages. Furthermore theoretical interpretations have been advanced to explain this finding, e.g. the social life course change process. Recently, however, this finding has been challenged. It is argued that the declining effect of parental background is a statistical artifact of a selection process due to unobservable variables in the transition mechanism. In this paper we clearly explain this phenomenon and illustrate the analysis with empirical data. From both the formal statistical analysis and the empirical application it is quite clear that declining parental effect is consistent with the selection hypothesis, and that once selection is taken into account, parental effects are constant across transitions.
1. Introduction 
A common finding in social mobility and stratification research is declining effect of parental background by consecutive educational transitions; see e.g. Hauser and Andrew (2007), Stolzenberg (1994), Muller and Karle (1993). This was first pointed out by Mare (1980) using logit regression models of consecutive educational transitions. Hence this type of analysis has been known in the literature as the Mare model.
A prominent theoretical explanation, the life course change hypothesis LCCH, has been put forward to explain this finding, Clausen (1991). According to LCCH “Maturity tends to bring increasing skills in assessing what one must do to achieve success …”. Hence the LCCH posits that life experience brings more information and experience to the individual and this enables it to act more independent of is social background and upbringing. An empirical implication of this is a declining dependence of social background on later educational transitions. And according to many studies, this is what the data confirms.

However, there seems to be confusion in the literature to decide whether one studies the effects of background characteristics on mobility by cohort or by educational transition, Lucas (2001) and Cameron and Heckman (1998), who seems to be addressing both subjects. However, the statistical content of these matters are entirely different and the contribution of this paper is to clarify the latter, the change of the effect of background characteristics trough transitions though the educational system. The paper demonstrates clearly that one reason for the observed declining effect of background characteristics is due to unobserved heterogeneity leading to sample selection bias when analyzing educational transitions. 
Hence, Sample selection on unobservables (SSU) offers an additional explanation for the declining effect of parental background by consecutive educational transitions than that offered by the LCCH. Actually SSU completely contradicts the LCCH, as pointed out by Cameron and Heckman (1998). 

As correctly pointed out and illustrated by Muller and Karle (1993) the distribution of social background characteristics becomes more and more homogenous as one study later and later educational transitions. This, however, might not only pertain to the observed background characteristics but also to potential unobserved background characteristics. 
Whether all important background characteristics are controlled for in the empirical analysis is a fundamental un-testable assumption within the framework of the Mare model. 

The consequence of selection on observables is unproblematic in regression analysis, as long as the observables enter the model as independent variables, Maddala (1983). However, the consequences of selection on unobservables might be very serious to the entire inference of the statistical analysis. 

Selection on unobservables is really just a special case of missing independent variables. If we assume that at the first educational transition the observed independent variables are uncorrelated with the unobservables but both has an effect on educational transitions, then at later transitions, observed and unobserved independent varaiables will be correlated, see Lancaster 1990. Now, at this stage omission of the unobserved variables might potentially lead to bias of the estimated effect of the observed variables; see e.g. Stolzenberg and Relles (1997), exactly because at this stage they are correlated
If the observed and unobserved independent variables are positively correlated Stolzenberg and Relles shows that in this case the effect of the selection process leads to a negative bias of the observed independent variables.

The remaining of the paper is organized as follows. In section two we introduce a stylized model that captures the essentials of the empirical problem. In section three we show an application that illustrates the nature of the problem and what happens when it is analyzed correctly. Finally section four offers a small discussion.
2. A stylized model

In this section we shall propose a relatively simple model that allows us to study the selection effects of educational transitions and thereby address the issues raised in the introduction. 

Define two latent stochastic variables,
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, indicating the propensity to which an individual will pass stage one and two of an educational system. Of course, we never observe these propensities, only whether the individual actually passes each of these stages. This is indicates by two binary variables, where 
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 and 0 otherwise, j = 1,2. Whether an individual passes each of these stages dependents on a number of observed and unobserved characteristics, e.g. parental social class, own innate ability and motivation. This is captured through the following system of regression models:
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where xj, j = 1,2 denotes the observed background characteristics for each transition and ej, j = 1,2, denotes the unobserved characteristics as well as any pure noise. We assume that the unobserved characteristics, hence forth denoted error terms, are distributed as:
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Where N(.,.) denotes that standard multivariate normal density and where
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As is clear from the statement above we assume that the variance of both error terms are one, as we cannot identify error term variance in binary regression models, see Maddela (1983). We also assume that the error terms are correlated with correlation coefficient
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The fundamental problem of studying educational transmissions is that:
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That is, the conditional probability of observing a transition at stage two conditional on having passed stage one is not equal to the unconditional probability of passing stage two. The first probability, the conditional probability concerns the likelihood of passing stage two, among those who actually passed stage one, where as the latter, the unconditional probability, concerns the likelihood of passing for a randomly selected individual in the population. The conditional probability is often refereed to as the Mare model, see Mare (1980). The second is sometimes known as the Heckman selection model, see Maddala (1983). 

As any statistical procedure that analyze the relationship between these probabilities and background characteristics will be based on one of the two models, it is apparent that they might lead to different inference on the importance on the relationship between passing stage two and background characteristics. 
Which models should one then adopt? The answer to this depends on what one is interested in analyzing. If one is interested in describing the population that passes stage two, one should use the Mare model. However, if one is interested in analyzing the causal relations between back ground characteristics and the probability of passing stage two, one should use the Heckman model. This will be illustrated and then formally analyzed below.
Illustration
In figure 1 below we sketch the relationship between the propensity of passing stage one, the y-axis, and a background characteristic, say parental SES or any other quantitative measure of parental background, the x-axis. 
 ---------- figure 1 about here -----------------
The ellipse illustrate a particular quintile of the multivariate distribution of the propensity to pass stage one,
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, and the background characteristic, x. From the figure is appears that they are positively correlated. Whether one passed stage one is determined by crossing a certain threshold, in the figure it is set to zero on the y-axis. That is, those with a propensity to pass stage one above zero, passes and those with a propensity below zero, fails to pass. Thus among those who passed stage one there is a different relationship between x and 
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Note that from figure 1 we are able to estimate the true relationship between x and 
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 because we have available the entire sample. 
Imagine now a high degree of correlation between the propensity to pass stage one,
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 plots look very similar. This is of course only for expository reasons. We then get the following relationship between x and 
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 illustrated in figure 2 below:
----- figure 2 about here -------------------
Because of the assumed high correlation between
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 the threshold from stage one is almost identical with that of stage two and hence the relationship between passing stage two and the background characteristic looks similar to that of passing stage one and the background characteristic.
When we now analyze the relationship between passing stage two and the background characteristic using the selected sample (which is easily illustrated as we just replicate figure one), we find the dotted line, whereas the true relationship is illustrated by the solid line. This means that from the selected sample, we would infer a weak (or even zero) relationship between the propensity to pass stage two and the background characteristic even though there really is a much stronger relationship in the population as indicated by the solid line.
The reason for the apparent weak relationship between the propensity to pass stage two and the background characteristic in the selected sample is that those with characteristics implying a low propensity to pass stage two are under represented in the selected sample and those with characteristics implying a high propensity to pass stage two are over represented, yielding the false picture that “everybody” passed stage two.

This picture is, however, wrong. If one implements a policy change that allows more people to pass stage one, we would observe many more students failing stage two than implied by the observed relationship between passing stage two and the background characteristic in the selected sample.

We will now show this a bit more formerly.

Formal analysis

When carrying out a more formal analysis it appears that beside of the selection problem affecting the regression analysis of the relationship between the propensity to pass stage two and background characteristics we also find a re-scaling effect on the parameters of the selected model.
First, the selection problem arises because: 
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, that is the mean of the propensity to pass stage two in the selected sample is not equal to the mean in the population. More particular we find that:
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where
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. This result can be found in e.g. Heckman (1979). This states that the conditional mean is equal to the unconditional mean plus a correction giving more weight to those under represented in the sample and less weight to those overrepresented in the sample.
Second, the scaling problem arises because the conditional variance is not equal to the unconditional variance. Formerly we have: 
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[image: image24.wmf]
see Maddala (1983) p. 269 or Heckman (1979). 
In sum, the selected sample is different to the population both in terms of mean and variance. As we have assumed normality of the data, these are all the features of the data that can be different. Hence, no features of the data are equal in the two distributions. Knowing the conditional sample does not lead to any information of the unconditional sample.
Consequences:

What are the consequences of the differences of the conditional sample in terms of estimating parameters that we, erroneously think, reflect the causal mechanisms of the population. To see this we write the conditional probability of passing stage two, conditional on passing stage one, in terms of the joint probability of the propensity to pass stage one and two and the marginal propensity of passing stage one. Both these probabilities reflects the population and hence involves “true” causal parameters. Doing this we find:
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where the last equality is due to normality of e1 and e2 and the approximation is due to Nicoletti and Peracchi (2001), who shows that is works well for correlations up to about 0.8. We employ the approximation because it is a convenient way to show the attenuations bias (equal to the combined effect of selection and scaling). When we estimate the relationship between background characteristics and whether one passes stage two we essentially look at the combined effect of true effects and attenuation effects. That is, if we estimate the combined effect on stage two we estimate
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But how will selection and scaling affect the estimate of
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? Taking the selection issue first, we might look at it as a missing variable problem. In general this missing variable problem might yield bias in any direction. However in our context it is natural to assume that the coefficients of the variables that are commonly omitted in e1 and e2 have the same sign and therefore
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> 0. Furthermore it is natural to assume that x1 and x2 are either the same or highly correlated. Finally it is also natural to assume that 
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as the combined effect in the nominator in (*) both combine the positive effect of social background, x2, and the negative selection effect,
[image: image36.wmf](

)

11

x

rlb

. That is, if one does not take into account the selection bias of the first educational transition, this will lower the estimated effect of social background characteristics in the second transition. This is in line with findings in many studies that do not deal with selection, Hauser and Andrew (2007), Stolzenberg (1994).
The effect of scaling, that is the denominator in (*), is unclear. As the conditional variance of 
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we cannot a priori tell the direction of the scaling effect.
In sum, we might have two contradicting forces working on the estimates of the selected sample. One is the selection issue and the other is the scaling issue. However, as we have no idea a priori, which of the forces at work that is the largest, we must estimate the model taking into account the selection process of the previous transitions. From this model we can then test the bias of the Mare model. 

One way to avoid the scaling issue and concentrate on the selection effects is to look at marginal effects, rather than estimated regression coefficients, as the former are independent of scaling effect of the regression coefficients.
In the next section we will illustrate the selection issue with an empirical example.

3. An application

Data for this study comes from the Danish Youth Longitudinal Study (DYLS). The DYLS consists of an original nationally representative panel of about 3,100 Danish respondents all of which were born around 1954. The respondents were first interviewed in 1968 at age 14 when they attended 7th grade of elementary school. Additional waves have been carried out in 1969, 1970, 1973, 1976, 1992, and finally in 2001 when respondents were around 47 years old. In the paper we use information taken from the 1968 and 1992 waves.
We use information of the parental social class, expressed in terms of the five-fold EGP classification (EGP-5) introduced by Halpin (1999). This is further aggregated in to three levels distinguishing between: (1) Professional and managerial employees and self-employed with 10 or more employees (Service classes I and II), (2) Routine non-manual professionals (class III), Self-employed and small employers (1-9 employees) (class IV), and skilled workers (classes V/VI) and (3) unskilled and semi-skilled workers (class VII). For simplicity, we use the EGP as a linear variable. Furthermore we use information on the respondents ability and gender. The respondents ability is a one-factor score on number of corrects answers on a verbal test, number of corrects answers on a spatial test and the number of corrects answers on inductive test. The test was administered when the respondent was in 7th grade.
We study the effect of parental background on obtaining upper secondary education,
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We illustrate the effect of the selection on passing the first stage (obtaining an upper secondary education) on the selected sample that one would use to analyze passing of the second stage (obtaining an academic education) according to the Mare-model of educational transitions.

In figure 3a and b we show the distribution of ability in the population and in the selected sample of those who has passed stage one.

----- figure 3a and b around here -------

From the figures it is very apparent that the distribution of abilities are near to normally distributed in the population but highly skew in the selected sample. This is of course because ability is closely related to passing the first stage.

In table 1 we show the distribution of social background and gender in the population and in the selected sample.

---- table 1 about here --------

From the table we find that the distribution of parental EGP and gender are different between the population and the selected sample, further reflecting the selection process in passing stage one.

We will now estimate two models on the effect of background characteristics on the probability of passing stage two using the data set just introduced. We will estimate one model comparable to the Mare model and one based on the population parameters. The “Mare model” is a straight forward probit model on the selected data set and the model based on population parameters is based on the joint probability of passing stage one and two in order to capture both the selection effect and the true effect from background characteristics on the probability of passing stage two.

A bivariate probit model for educational transitions

The joint probability of passing both stages can, according to simple laws of probability theory, be expressed as the conditional probability of passing stage one multiplied by the marginal probability of passing stage one. Thus we construct a log-likelihood function based on the marginal probability of the out-come of the first stage (either pass or fail) multiplied by the probability of passing the second stage conditional on passing stage one, but only for those how passed stage one. Formerly we have:
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In table 2 we present estimation results for both the Mare model and the model taking into account the selection process at stage one.
Results

------ table 2 about here -------

From the table it is quite evident that there is a large difference on the significance of parental background in the joint probability model and the Mare model. In the joint probability model parental background is highly significant in the process of passing stage two whereas this is not the case in the Mare model.  Both fathers and mothers EGP is highly significant in the joint probability model whereas they are insignificant in the Mare Model. Thus, the implications of the two models in terms of the life course chance theory are complete contradictory. According to the Mare model it is confirmed and a according to the joint probability model it is wrong.
What model should we believe? According to statistical theory it is not a difficult question. The Mare model is nested within the joint probability model and is obtained by setting the correlation coefficient between the error terms in the first and second stage to zero. Hence, testing whether this is zero amounts to testing whether the Mare model is correct. And in this case this is clearly rejected.

Hence we find that there is a significant selection process going on at stage one, and hence that individuals with lower class background is under represented in the data set used to estimate the transition at stage two. Note that this selection process goes on among all explanatory variables, not only those pertaining to class background. Ability is highly significant in explaining passing stage two in the joint probability model whereas it is insignificant in the Mare model. Hence, at stage one, a significant proportion of low ability individuals are dropping out and not present in the data for estimation the Mare model at stage two. Hence, this model also erroneously concludes that there is no relationship between ability and passing stage two.

In sum, we have illustrated that in this application the use of the Mare model leads to very erroneously inference in terms of how parental background characteristics as well as other time invariant background characteristics influence two consecutive educational transitions. Thus our application highlights the importance of using more sophisticated statistical models that take into account the selective nature of educational transitions.
4. Discussion
In this paper we have demonstrated that the traditional Mare model, usually employed by sociologist to analyze educational transitions might potentially lead to wrong inference on the importance of time-invariant background characteristics on consecutive educational transitions. The reason for this is the selective nature of the data generation process. From one educational transition to the next a number of individuals are selected “out” of the analysis. As the selection potential happens on both observed and unobserved background characteristics we get a dilution of the relationship between the dependent variable (a later educational transition) and the background characteristics. The dilution takes out most of those with background characteristics implying that they will no pass a certain educational process, making those who pass more and more homogenous and thereby giving the false impression that the relationship between background characteristics and educational transitions weakens as one moves to analyze later transitions.
Our empirical application points this out, as it clearly illustrates that analyzing the last of to educational transitions employing the Mare model leads to a conclusion that background characteristics decrease over transitions, while using a model that allows for the selection process over educational transitions correctly states that the importance of parental background characteristics remain constant over educational transitions.
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Figures and tables

Figure 1. The Propensity to pass stage one and background characteristics.
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Figure 2. The Propensity to pass stage two and background characteristics.
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Figure 3a. Ability for the total sample.                                     Figure 3b. Ability for y1 = 1
Table 1. Sample statistics for background characteristics

	Variable
	Total sample
	Sample with y1 = 1


	Mothers EGP = 1
	15,3
	29,3

	Mothers EGP = 2
	43,4
	49,0

	Mothers EGP = 3
	41,2
	21,6

	Fathers EGP = 1
	21,4
	40,0

	Fathers EGP = 2
	40,9
	41,5

	Fathers EGP = 3
	37,7
	18,5

	Gender = Female
	57,2
	54,6

	Gender = Male
	42,8
	45,4


Table 2. Probit estimation results

	Variable


	Sample selection probit
	Simple  probit on selected sample

	Second stage
	Estimate
	Sd. error
	Estimate
	Sd. error

	Constant
	-0.124
	0.116
	0.741***
	0.190

	Gender
	0.154**
	0.069
	0.230**
	0.118

	Fathers EGP
	-0.224***
	0.067
	0.004
	0.112

	Mothers EGP
	-0.294***
	0.071
	-0.192
	0.118

	Ability
	0.552***
	0.040
	0.128**
	0.067

	First stage
	

	Constant
	0.229**
	0.110
	0.232**
	0.111

	Gender
	0.076
	0.064
	0.080
	0.065

	Fathers EGP
	-0.280***
	0.061
	-0.277***
	0.061

	Mothers EGP
	-0.258***
	0.065
	-0.263***
	0.065

	Ability
	0.591***
	0.040
	0.587***
	0.040
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	0.999***
	0.011
	-
	-


Note:* indicates significance at the 10 % level, ** at the 5  % level and *** at the 1 %

Level. n = 2204. 
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